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Training on Heterogeneous Unreliable Devices

The Paper in Brief

« We develop a simple method for distributed training with
unstable (i.e. frequently joining and leaving) workers

« |t combines the communication efficiency of All-Reduce
with the fault tolerance of Gossip-based methods

= Has strong theoretical guarantees both for convergence
to the actual average and stochastic optimization

« In practice, allows distributed training on preemptible
instances and outperforms standard data-parallel
training at a fraction of cost for ResNet and ALBERT

Background: Data-Parallel Training

Most popular approach to distributed training: split batches across
devices, average gradients, run the SGD step
Naively sending all gradients is slow; more efficient versions (Ring,
Butterfly) are used in practice
However, standard All-Reduce fails in congested/high-latency networks

« Gossip fares better, but loses efficiency (sends all data to each neighbor)
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Background: Local SGD
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Moshpit All-Reduce

Special case: exact averaging in d steps for a full "grid"
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General case:
Algorithm 1 Moshpit All-Reduce (for i-th peer) Group key:
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Matchmaking(} // wait for peers to assemble

peers, = DHT.get ([, 1]) Key property: if two peers

#, ¢t = Al1Reduce(# ' peers,) | ]

€= (CIT 1], ) i same as eq. (1) weininthe aame grOUP i
end for round {, they choose different
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Theoretical guarantees:
1. Correctness: If all workers have a non-zero probability of successfully

running a communication round and the order of peers, is random, then
all focal vectors converge to the global average with probability 1:
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2. Exponential convergence to the average: for a version of Moshpit All-
Reduce with random splitting into r groups at each step, we have
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Moshpit SGD & Its Convergence
Moshpit SGD = Local SGD + Moshpit All-Reduce

Theoretical guarantees: under the standard assumptions of bounded
variance of stochastic gradients, reasonable number of iterations of Moshpit
All-Reduce, and the bounded effect of peers’ vanishing we recover:

» The best known rates from (Khaled et al., 2020; Woodworth et al., 2020)
in convex and strongly convex cases
The best known rates from (Koloskova et al., 2020; Li et al., 2019) in the
non-convex case
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Experiments

Averaging performance

« We compare per-iteration convergence in a simulated setup

+ All-Reduce takes too long to average with non-zero failure probability

« Gossip/SGP converge much slower (=10 iterations for target precision)
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ResNet-50 on ImageNet
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« We evaluate Moshpit-SGD and several baselines in two environments
+ (16 nodes with 1xV100 and 64 workers with 81 different GPUs)

« Comparable to All-Reduce in terms of iterations, faster in terms of time
+ Decentralized methods run faster, but achieve worse results

ALBERT on BookCorpus § ) )
Baseline: All-Reduce on 8 /100 of ) v s I
+ Moshpit SGD: 66 preemptible GPUs
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