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Summary

We propose a scalable method for data-parallel
training on unreliable devices
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Has strong theoretical guarantees croun

Pretrain ResNet-50 and ALBERT on preemptible
nodes faster than gossip-based strategies
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Background

 |[arge-scale training is done in a distributed manner

* For the data-parallel case, you need to exchange
gradients

 Naive method would be O(nA2) in workers, faster
AllIReduce protocols are used in practice

 However, they are more fragile and need expensive @
high-speed network

 (Gossip methods are more fault-tolerant, but less
communication-efficient and converge slower

img src: Stochastic Gradient Push for Distributed Deep Learning.
Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, Michael Rabbat. ICML 2019
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Instead of running All-Reduce across all
workers at once, let’s do it in several steps
with smaller groups

Arrange peers in a (virtual) grid, average
across one axis at once

Workers find others via Distributed Hash Table
— an efficient decentralized data structure

Each single round is efficient because of All-
Reduce, and multiple parallel groups give us
fault tolerance!

Moshpit All-Reduce
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Moshpit All-Reduce

Algorithm 1 Moshpit All-Reduce (for z-th peer)

Input: parameters {6, } ;-V:p number of peers N, d,
]\g , number of 1terations 7', peer index ¢
CY := get_initial_index (i) get_initial_index(i) = (|i/M?~"| mod M)
fortc1l...7Tdo
DHT[C! ™', t].add(address;) y f—dal  t—da2 /
Matchmaking () // wait for peers to assemble Cz L= (Cz’ , C; IR Ci)
peers, := DHT.get([C! ', t])
ft,ct := Al1Reduce(f!™ ', peers,)
Ct:= (C;7'[1:1,ct) // same as eq. (1)
end for
Return 0

je{1l,...,d}
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Optimization problem

* Function f(x) is available through stochastic gradients only

 Each worker has an access to the stochastic gradients of f(x)



Moshpit SGD
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Moshpit SGD

R+l i —9; if £+ 1 mod 7 # 0
’ Moshpit All-Reduce;.p  (z; —~vg;), ifk+1mod7 =0
Number of active workers at iteration k+1

N

N
Local-SGD with Moshpit All-Reduce instead of averaging
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Moshpit SGD: convergence

Under these assumptions we recover guarantees for centralized | ocal SGD:

 For convex problems, equivalent to [1,2]

 For non-convex problems — as in [3,4]

[1] Tighter Theory for Local SGD on Identical and Heterogeneous Data. Khaled et al., AISTATS 2020
[2] Is Local SGD Better than Minibatch SGD? Woodworth et al., ICML 2020
[3] A Unified Theory of Decentralized SGD with Changing Topology and Local Updates. Koloskova et al., ICML 2020
[4] Communication-Efficient Local Decentralized SGD Methods. Li et al., 2019



Experiments: averaging

First, we verify the performance gains in a controlled setting
With non-zero failure probability, All-Reduce takes too many retries!
On the other hand, Gossip-based methods converge very slowly

Moshpit Averaging outperforms baselines with p>0 and gets the average in two rounds with p=0
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Experiments: distributed training

* We train ResNet-50 and ALBERT-large on unreliable devices (e.g. spot instances)
 Baselines include both standard data-parallel training and decentralized methods

* Achieve the same quality faster and cheaper
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Conclusion

* \We propose a simple method for communication-efficient distributed training
* Built-in fault tolerance, convergence similar to standard methods
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