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overlapping groups to average the gradients

• Has strong theoretical guarantees

• Pretrain ResNet-50 and ALBERT on preemptible 
nodes faster than gossip-based strategies
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Background
• Large-scale training is done in a distributed manner

• For the data-parallel case, you need to exchange 
gradients

• Naive method would be O(n^2) in workers, faster 
AllReduce protocols are used in practice

• However, they are more fragile and need expensive 
high-speed network

• Gossip methods are more fault-tolerant, but less 
communication-efficient and converge slower

img src: Stochastic Gradient Push for Distributed Deep Learning.  
Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, Michael Rabbat. ICML 2019
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Moshpit All-Reduce
• Instead of running All-Reduce across all 

workers at once, let’s do it in several steps 
with smaller groups


• Arrange peers in a (virtual) grid, average 
across one axis at once


• Workers find others via Distributed Hash Table 
— an efficient decentralized data structure


• Each single round is efficient because of All-
Reduce, and multiple parallel groups give us 
fault tolerance!



Moshpit All-Reduce



• If N = Md and there are no faults, then Moshpit All-Reduce finds an exact average 
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Optimization problem

• Function f(x) is available through stochastic gradients only


• Each worker has an access to the stochastic gradients of f(x)
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Moshpit SGD

Number of active workers at iteration k+1

Local-SGD with Moshpit All-Reduce instead of averaging
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Moshpit SGD: convergence

Under these assumptions we recover guarantees for centralized Local SGD:


• For convex problems, equivalent to [1,2]


• For non-convex problems — as in [3,4]

[1] Tighter Theory for Local SGD on Identical and Heterogeneous Data. Khaled et al., AISTATS 2020 

[2] Is Local SGD Better than Minibatch SGD? Woodworth et al., ICML 2020 

[3] A Unified Theory of Decentralized SGD with Changing Topology and Local Updates. Koloskova et al., ICML 2020 

[4] Communication-Efficient Local Decentralized SGD Methods. Li et al., 2019



Experiments: averaging
• First, we verify the performance gains in a controlled setting


• With non-zero failure probability, All-Reduce takes too many retries!


• On the other hand, Gossip-based methods converge very slowly


• Moshpit Averaging outperforms baselines with p>0 and gets the average in two rounds with p=0



Experiments: distributed training
• We train ResNet-50 and ALBERT-large on unreliable devices (e.g. spot instances)


• Baselines include both standard data-parallel training and decentralized methods


• Achieve the same quality faster and cheaper



Conclusion
• We propose a simple method for communication-efficient distributed training


• Built-in fault tolerance, convergence similar to standard methods


• Learn more:
Code

github.com/yandex-research/moshpit-sgd

Paper

arxiv.org/abs/2103.03239


