Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices

Max Ryabinin*, Eduard Gorbunov*, Vsevolod Plokhotnyuk, Gennady Pekhimenko
• We propose a scalable method for data-parallel training on unreliable devices
We propose a scalable method for data-parallel training on unreliable devices. It iteratively performs All-Reduce in non-overlapping groups to average the gradients.
Summary

• We propose a scalable method for data-parallel training on unreliable devices

• It iteratively performs All-Reduce in non-overlapping groups to average the gradients

• Has strong theoretical guarantees
Summary

- We propose a scalable method for data-parallel training on unreliable devices.
- It iteratively performs All-Reduce in non-overlapping groups to average the gradients.
- Has strong theoretical guarantees.
- Pretrain ResNet-50 and ALBERT on preemptible nodes faster than gossip-based strategies.
Background

- Large-scale training is done in a distributed manner
Background

- Large-scale training is done in a distributed manner
- For the data-parallel case, you need to exchange gradients
Background

- Large-scale training is done in a distributed manner

- For the data-parallel case, you need to exchange gradients

- Naive method would be $O(n^2)$ in workers, faster AllReduce protocols are used in practice
Background

- Large-scale training is done in a distributed manner.
- For the data-parallel case, you need to exchange gradients.
- Naive method would be $O(n^2)$ in workers, faster AllReduce protocols are used in practice.
- However, they are more fragile and need expensive high-speed network.
Background

- Large-scale training is done in a distributed manner
- For the data-parallel case, you need to exchange gradients
- Naive method would be $O(n^2)$ in workers, faster AllReduce protocols are used in practice
- However, they are more fragile and need expensive high-speed network
- Gossip methods are more fault-tolerant, but less communication-efficient and converge slower

img src: Stochastic Gradient Push for Distributed Deep Learning. Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, Michael Rabbat. ICML 2019
Moshpit All-Reduce: core idea
Moshpit All-Reduce: core idea
Moshpit All-Reduce: core idea
Moshpit All-Reduce: core idea
Moshpit All-Reduce

- Instead of running All-Reduce across all workers at once, let’s do it in several steps with smaller groups.

- Arrange peers in a (virtual) grid, average across one axis at once.

- Workers find others via Distributed Hash Table — an efficient decentralized data structure.

- Each single round is efficient because of All-Reduce, and multiple parallel groups give us fault tolerance!
Moshpit All-Reduce

Algorithm 1 Moshpit All-Reduce (for \(i\)-th peer)

Input: parameters \(\{\theta_j\}_{j=1}^{N}\), number of peers \(N\), \(d\), \(M\), number of iterations \(T\), peer index \(i\)

\(\theta_i^0 := \theta_i\)

\(C_i^0 := \text{get_initial_index}(i)\)

for \(t \in 1 \ldots T\) do

\(\text{DHT}[C_i^{t-1}, t].\text{add}(\text{address}_i)\)

Matchmaking() // wait for peers to assemble

\(\text{peers}_i := \text{DHT.get}([C_i^{t-1}, t])\)

\(\theta_i^t, c_i^t := \text{AllReduce}(\theta_i^{t-1}, \text{peers}_i)\)

\(C_i^t := (C_i^{t-1}[1:], c_i^t)\) // same as eq. (1)

end for

Return \(\theta_i^T\)

\[
\text{get_initial_index}(i) = \left(\left\lfloor \frac{i}{M^{j-1}} \right\rfloor \mod M \right)_{j \in \{1, \ldots, d\}}
\]

\[
C_i^t := \left(c_i^{t-d+1}, c_i^{t-d+2}, \ldots, c_i^t \right)
\]
Theoretical properties

• If $N = M^d$ and there are no faults, then Moshpit All-Reduce finds an exact average after d steps
Theoretical properties

- If $N = M^d$ and there are no faults, then Moshpit All-Reduce finds an exact average after d steps.

- **Correctness**: if all workers have a non-zero probability of successfully running a communication round and the order of peers is random, then all local vectors converge to the global average with probability 1:

$$\forall i \left\| \theta_i^t - \frac{1}{N} \sum_i \theta_i^0 \right\|_2^2 \xrightarrow{t \to \infty} 0$$
Theoretical properties

• If $N = M^d$ and there are no faults, then Moshpit All-Reduce finds an exact average after d steps

• **Correctness**: if all workers have a non-zero probability of successfully running a communication round and the order of peers is random, then all local vectors converge to the global average with probability 1:

$$\forall i \quad \left\| \theta_i^t - \frac{1}{N} \sum_i \theta_i^0 \right\|_2^2 \xrightarrow{t \to \infty} 0$$

• **Exponential convergence to the average**: for a version of Moshpit All-Reduce with random splitting into r groups at each step, we have

$$\mathbb{E} \left[\frac{1}{N} \sum_{i=1}^{N} \left\| \theta_i^T - \bar{\theta} \right\|^2 \right] = \left(\frac{r-1}{N} + \frac{r}{N^2} \right)^T \frac{1}{N} \sum_{i=1}^{N} \left\| \theta_i - \bar{\theta} \right\|^2$$
Theoretical properties

• If $N = M^d$ and there are no faults, then Moshpit All-Reduce finds an exact average after d steps.

• **Correctness**: if all workers have a non-zero probability of successfully running a communication round and the order of peers is random, then all local vectors converge to the global average with probability 1:

$$\forall i \quad \left\| \theta_i^t - \frac{1}{N} \sum \theta_i^0 \right\|_2^2 \xrightarrow{t\to\infty} 0$$

• **Exponential convergence to the average**: for a version of Moshpit All-Reduce with random splitting into r groups at each step, we have

$$\mathbb{E} \left[\frac{1}{N} \sum_{i=1}^N \| \theta_i^T - \overline{\theta} \|_2^2 \right] = \left(\frac{r - 1}{N} + \frac{r}{N^2} \right)^T \frac{1}{N} \sum_{i=1}^N \| \theta_i - \overline{\theta} \|_2^2$$
Optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

- Function $f(x)$ is available through stochastic gradients only
- Each worker has an access to the stochastic gradients of $f(x)$
Moshpit SGD

\[
x_i^{k+1} = \begin{cases}
 x_i^k - \gamma g_i^k, & \text{if } k + 1 \mod \tau \neq 0 \\
 \text{Moshpit All-Reduce}_{j \in P_{k+1}} (x_j - \gamma g_j^k), & \text{if } k + 1 \mod \tau = 0
\end{cases}
\]

Number of active workers at iteration \(k+1\)
Moshpit SGD

\[
x_{i}^{k+1} = \begin{cases}
x_{i}^{k} - \gamma g_{i}^{k}, & \text{if } k + 1 \mod \tau \neq 0 \\
\text{Moshpit All-Reduce}_{j \in P_{k+1}}(x_{j} - \gamma g_{j}^{k}), & \text{if } k + 1 \mod \tau = 0
\end{cases}
\]

Number of active workers at iteration \(k+1\)

Local-SGD with Moshpit All-Reduce instead of averaging
Moshpit SGD: assumptions

• Homogeneity: \[f_1(x) = f_2(x) = \ldots = f_N(x) = f(x) \]
Moshpit SGD: assumptions

- Homogeneity:
 \[f_1(x) = f_2(x) = \ldots = f_N(x) = f(x) \]

- Bounded variance:
 \[\mathbb{E} \left[\left\| g_i^k - \nabla f_i \left(x_i^k \right) \right\|^2 \mid x_i^k \right] \leq \sigma^2 \]
Moshpit SGD: assumptions

- Homogeneity:
 \[f_1(x) = f_2(x) = \ldots = f_N(x) = f(x) \]

- Bounded variance:
 \[\mathbb{E} \left[\left\| g_i^k - \nabla f_i \left(x_i^k \right) \right\|^2 \mid x_i^k \right] \leq \sigma^2 \]

- Effect of peers’ vanishing is bounded:
 \[\mathbb{E} \left[\langle x_{k+1}^1 - \hat{x}_{k+1}^1, x_{k+1}^1 \rangle + \langle \hat{x}_{k+1}^1 - 2x^*, \rangle \right] \leq \Delta_{pv}^k \]

\[N_k = |P_k| \]
\[x_{k+1} = \frac{1}{N_{k+1}} \sum_{i \in P_{k+1}} x_i^{k+1} \]
\[\hat{x}_{k+1} = \frac{1}{N_k} \sum_{i \in P_k} \left(x_i^k - \gamma g_i^k \right) \]
Moshpit SGD: assumptions

- **Homogeneity:**
 \[f_1(x) = f_2(x) = \ldots = f_N(x) = f(x) \]

- **Bounded variance:**
 \[
 \mathbb{E} \left[\left\| g_i^k - \nabla f_i \left(x_i^k \right) \right\|^2 \mid x_i^k \right] \leq \sigma^2
 \]

- **Effect of peers’ vanishing is bounded:**
 \[
 \mathbb{E} \left[\langle x_i^{k+1} - \hat{x}_i^{k+1}, x_i^{k+1} \rangle + \hat{x}_i^{k+1} - 2x^* \right] \leq \Delta_{pv}^k
 \]

\[
N_k = |P_k|
\]

\[
x_i^{k+1} = \frac{1}{N_k^{k+1}} \sum_{i \in P_{k+1}} x_i^{k+1}
\]

\[
\hat{x}_i^{k+1} = \frac{1}{N_k} \sum_{i \in P_k} \left(x_i^k - \gamma g_i^k \right)
\]

- **Averaging quality:**
 \[
 \mathbb{E} \left[\frac{1}{n_{\alpha \tau}} \sum_{i \in P_{\alpha \tau}} \left\| x_i^{\alpha \tau} - x_{\alpha \tau} \right\|^2 \right] \leq \gamma^2 \delta_{aq}^2
 \]
Moshpit SGD: convergence

Under these assumptions we recover guarantees for *centralized* Local SGD:

- For convex problems, equivalent to [1,2]
- For non-convex problems — as in [3,4]

[1] Tighter Theory for Local SGD on Identical and Heterogeneous Data. Khaled et al., AISTATS 2020
Experiments: averaging

• First, we verify the performance gains in a controlled setting

• With non-zero failure probability, All-Reduce takes too many retries!

• On the other hand, Gossip-based methods converge very slowly

• Moshpit Averaging outperforms baselines with p>0 and gets the average in two rounds with p=0
Experiments: distributed training

• We train ResNet-50 and ALBERT-large on unreliable devices (e.g. spot instances)

• Baselines include both standard data-parallel training and decentralized methods

• Achieve the same quality faster and cheaper
Conclusion

• We propose a simple method for communication-efficient distributed training

• Built-in fault tolerance, convergence similar to standard methods

• Learn more:

 Paper
 arxiv.org/abs/2103.03239

 Code
 github.com/yandex-research/moshpit-sgd