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1. The Problem

6. Numerical Experiments

Problem: Non-convex distributed optimization / training, where n workers 
(devices/clients) jointly solve a problem by communicating with a central server

server

. . .

n workers/devices

Options for              :

4. New Method: MARINA2. Unbiased Compression

3. QGD and DIANA

Assumptions: smoothness of local loss functions and lower-boundedness

5. New Method: VR-MARINA

7. In the paper, we also have

One can handle this issue via communication compression

Distributed methods often suffer from communication bottleneck

Example: RandK compression operator picks K components uniformly at random
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stepsize

learnable local shifts:

QGD [1]:

DIANA [2]:

# of communication rounds to find     such that      

QGD:

DIANA:

dependencies on numerical 
factors, smoothness constants 
and initial suboptimality are 
omitted

typically small

# of communication rounds to find an   -stationary point

assumption (holds for RandK, 
l2-quantization) expected density

Assumption:

typically small

uniformly at random

# of communication rounds/oracle calls to find an   -stationary point

(   -stationary point)
VR-DIANA [3]:

Binary Classification with Non-Convex Loss

(1) Mini-batch VR-MARINA, (2) VR-MARINA for expectation 
minimization, (3) MARINA with partial partcipation of clients,
(4) analysis under Polyak-Lojasiewicz condition, (5) explicit 
dependencies on smoothness constants, non-uniform 
sampling, (6) experiments with neural networks
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