# An Accelerated Directional Derivative Method for Smooth Stochastic Convex Optimization 

Eduard Gorbunov ${ }^{1}$<br>Pavel Dvurechensky ${ }^{2}$ Alexander Gasnikov ${ }^{1}$<br>${ }^{1}$ Moscow Institute of Physics and Technology, Russia<br>${ }^{2}$ Weierstrass Institute for Applied Analysis and Stochastics, Germany

6 July, 2018

## The Problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\left\{f(x):=\mathbb{E}_{\xi}[F(x, \xi)]=\int_{\mathcal{X}} F(x, \xi) d P(x)\right\}, \tag{1}
\end{equation*}
$$

## The Problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\left\{f(x):=\mathbb{E}_{\xi}[F(x, \xi)]=\int_{\mathcal{X}} F(x, \xi) d P(x)\right\}, \tag{1}
\end{equation*}
$$

(1) $f(x)$ - convex function

## The Problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\left\{f(x):=\mathbb{E}_{\xi}[F(x, \xi)]=\int_{\mathcal{X}} F(x, \xi) d P(x)\right\}, \tag{1}
\end{equation*}
$$

(1) $f(x)$ - convex function
(2) $F(x, \xi)$ - closed function of $x P$-almost surely in $\xi$

## The Problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\left\{f(x):=\mathbb{E}_{\xi}[F(x, \xi)]=\int_{\mathcal{X}} F(x, \xi) d P(x)\right\} \tag{1}
\end{equation*}
$$

(1) $f(x)$ - convex function
(2) $F(x, \xi)$ - closed function of $x P$-almost surely in $\xi$
(3) For $P$ almost every $\xi$, the function $F(x, \xi)$ has gradient $g(x, \xi)$, which is $L(\xi)$-Lipschitz continuous with respect to the Euclidean norm

## The Problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\left\{f(x):=\mathbb{E}_{\xi}[F(x, \xi)]=\int_{\mathcal{X}} F(x, \xi) d P(x)\right\} \tag{1}
\end{equation*}
$$

(1) $f(x)$ - convex function
(2) $F(x, \xi)$ - closed function of $x P$-almost surely in $\xi$
(3) For $P$ almost every $\xi$, the function $F(x, \xi)$ has gradient $g(x, \xi)$, which is $L(\xi)$-Lipschitz continuous with respect to the Euclidean norm

$$
\|g(x, \xi)-g(y, \xi)\|_{2} \leqslant L(\xi)\|x-y\|_{2}, \forall x, y \in \mathbb{R}^{n}, \text { a.s. in } \xi
$$

## The Problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\left\{f(x):=\mathbb{E}_{\xi}[F(x, \xi)]=\int_{\mathcal{X}} F(x, \xi) d P(x)\right\} \tag{1}
\end{equation*}
$$

(1) $f(x)$ - convex function
(2) $F(x, \xi)$ - closed function of $x P$-almost surely in $\xi$
(3) For $P$ almost every $\xi$, the function $F(x, \xi)$ has gradient $g(x, \xi)$, which is $L(\xi)$-Lipschitz continuous with respect to the Euclidean norm

$$
\|g(x, \xi)-g(y, \xi)\|_{2} \leqslant L(\xi)\|x-y\|_{2}, \forall x, y \in \mathbb{R}^{n}, \text { a.s. in } \xi
$$

(9) $L_{2}:=\sqrt{\mathbb{E}_{\xi}\left[L(\xi)^{2}\right]}<+\infty$

## The Problem

Under this assumptions
(1) $\mathbb{E}_{\xi}[g(x, \xi)]=\nabla f(x)$
(2) $\|\nabla f(x)-\nabla f(y)\|_{2} \leqslant L_{2}\|x-y\|_{2}, \forall x, y \in \mathbb{R}^{n}$

## The Problem

Under this assumptions
(1) $\mathbb{E}_{\xi}[g(x, \xi)]=\nabla f(x)$
(2) $\|\nabla f(x)-\nabla f(y)\|_{2} \leqslant L_{2}\|x-y\|_{2}, \forall x, y \in \mathbb{R}^{n}$

Also we assume that

$$
\begin{equation*}
\mathbb{E}_{\xi}\left[\|g(x, \xi)-\nabla f(x)\|_{2}^{2}\right] \leqslant \sigma^{2} \tag{2}
\end{equation*}
$$

## The Problem

Finally, we assume that we have the following oracle.

## The Problem

Finally, we assume that we have the following oracle.
(1) Oracle:

$$
x \in \mathbb{R}^{n}, e \in S_{2}(1) \rightarrow \widetilde{f}^{\prime}(x, \xi, e)=\langle g(x, \xi), e\rangle+\zeta(x, \xi, e)+\eta(x, \xi, e)
$$

## The Problem

Finally, we assume that we have the following oracle.
(1) Oracle:

$$
x \in \mathbb{R}^{n}, e \in S_{2}(1) \rightarrow \widetilde{f}^{\prime}(x, \xi, e)=\langle g(x, \xi), e\rangle+\zeta(x, \xi, e)+\eta(x, \xi, e)
$$

(2) $\mathbb{E}_{\xi}\left[\zeta(x, \xi, e)^{2}\right] \leqslant \Delta_{\zeta}, \forall x \in \mathbb{R}^{n}, \forall e \in S_{2}(1)$

## The Problem

Finally, we assume that we have the following oracle.
(1) Oracle:

$$
x \in \mathbb{R}^{n}, e \in S_{2}(1) \rightarrow \widetilde{f}^{\prime}(x, \xi, e)=\langle g(x, \xi), e\rangle+\zeta(x, \xi, e)+\eta(x, \xi, e)
$$

(2) $\mathbb{E}_{\xi}\left[\zeta(x, \xi, e)^{2}\right] \leqslant \Delta_{\zeta}, \forall x \in \mathbb{R}^{n}, \forall e \in S_{2}(1)$
(3) $|\eta(x, \xi, e)| \leqslant \Delta_{\eta}, \forall x \in \mathbb{R}^{n}, \forall e \in S_{2}(1)$

## The Problem

Finally, we assume that we have the following oracle.
(1) Oracle:

$$
x \in \mathbb{R}^{n}, e \in S_{2}(1) \rightarrow \widetilde{f}^{\prime}(x, \xi, e)=\langle g(x, \xi), e\rangle+\zeta(x, \xi, e)+\eta(x, \xi, e)
$$

(2) $\mathbb{E}_{\xi}\left[\zeta(x, \xi, e)^{2}\right] \leqslant \Delta_{\zeta}, \forall x \in \mathbb{R}^{n}, \forall e \in S_{2}(1)$
(3) $|\eta(x, \xi, e)| \leqslant \Delta_{\eta}, \forall x \in \mathbb{R}^{n}, \forall e \in S_{2}(1)$

Further we will use random vector from uniform distribution over the Euclidean sphere in $\mathbb{R}^{n}$ as $e$ and denote it $e \in R S_{2}^{n}(1)$.

## Preliminaries

(1) Prox-function: differentiable 1-strongly convex w.r.t. $I_{p}$-norm (where $1 \leqslant p \leqslant 2$ ) function $d: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

## Preliminaries

(1) Prox-function: differentiable 1-strongly convex w.r.t. $I_{p}$-norm (where $1 \leqslant p \leqslant 2$ ) function $d: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
(2) Bregman divergence w.r.t. $d$ is a function of two arguments:

$$
\begin{equation*}
V[z](x) \stackrel{\text { def }}{=} d(x)-d(z)-\langle\nabla d(z), x-z\rangle \tag{3}
\end{equation*}
$$

## Preliminaries

(1) Prox-function: differentiable 1-strongly convex w.r.t. $I_{p}$-norm (where $1 \leqslant p \leqslant 2$ ) function $d: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
(2) Bregman divergence w.r.t. $d$ is a function of two arguments:

$$
\begin{equation*}
V[z](x) \stackrel{\text { def }}{=} d(x)-d(z)-\langle\nabla d(z), x-z\rangle \tag{3}
\end{equation*}
$$

Note that from strong convexity of $d$ follows

$$
V[z](x) \geqslant \frac{1}{2}\|x-z\|_{p}^{2}, \quad x, z \in \mathbb{R}^{n}
$$

## Key lemma

In our proofs of complexity bounds, we rely on the following lemma.

## Key lemma

In our proofs of complexity bounds, we rely on the following lemma.
Lemma
Let $e \in R S_{2}(1)$, i.e be a random vector uniformly distributed on the surface of the unit Euclidean sphere in $\mathbb{R}^{n}$,

## Key lemma

In our proofs of complexity bounds, we rely on the following lemma.
Lemma
Let $e \in R S_{2}(1)$, i.e be a random vector uniformly distributed on the surface of the unit Euclidean sphere in $\mathbb{R}^{n}, \quad p \in[1,2]$ and $q$ be given by $\frac{1}{p}+\frac{1}{q}=1$.

## Key lemma

In our proofs of complexity bounds, we rely on the following lemma.
Lemma
Let $e \in R S_{2}(1)$, i.e be a random vector uniformly distributed on the surface of the unit Euclidean sphere in $\mathbb{R}^{n}, \quad p \in[1,2]$ and $q$ be given by $\frac{1}{p}+\frac{1}{q}=1$. Then, for $n \geqslant 8$ and $\rho_{n}=\min \{q-1,16 \ln n-8\} n^{\frac{2}{q}-1}$,

## Key lemma

In our proofs of complexity bounds, we rely on the following lemma.
Lemma
Let $e \in R S_{2}(1)$, i.e be a random vector uniformly distributed on the surface of the unit Euclidean sphere in $\mathbb{R}^{n}, \quad p \in[1,2]$ and $q$ be given by $\frac{1}{p}+\frac{1}{q}=1$. Then, for $n \geqslant 8$ and $\rho_{n}=\min \{q-1,16 \ln n-8\} n^{\frac{2}{q}-1}$,

$$
\begin{equation*}
\mathbb{E}_{e}\|e\|_{q}^{2} \leq \rho_{n} \tag{4}
\end{equation*}
$$

## Key lemma

In our proofs of complexity bounds, we rely on the following lemma.
Lemma
Let $e \in R S_{2}(1)$, i.e be a random vector uniformly distributed on the surface of the unit Euclidean sphere in $\mathbb{R}^{n}, \quad p \in[1,2]$ and $q$ be given by $\frac{1}{p}+\frac{1}{q}=1$. Then, for $n \geqslant 8$ and $\rho_{n}=\min \{q-1,16 \ln n-8\} n^{\frac{2}{q}-1}$,

$$
\begin{gather*}
\mathbb{E}_{e}\|e\|_{q}^{2} \leq \rho_{n},  \tag{4}\\
\mathbb{E}_{e}\left(\langle s, e\rangle^{2}\|e\|_{q}^{2}\right) \leq \frac{6 \rho_{n}}{n}\|s\|_{2}^{2}, \quad \forall s \in \mathbb{R}^{n} . \tag{5}
\end{gather*}
$$

## Key lemma: intuition

The last inequality for $q=\infty$ could be rewritten (without loss of generality assume that $\|s\|_{2}=1$ ) as follows:

$$
\mathbb{E}_{e}\left[\langle s, e\rangle^{2}\|e\|_{\infty}^{2}\right] \lesssim \frac{1}{n} \cdot \frac{\ln n}{n} \quad \forall s \in S_{2}(1)
$$

## Key lemma: intuition

The last inequality for $q=\infty$ could be rewritten (without loss of generality assume that $\|s\|_{2}=1$ ) as follows:

$$
\mathbb{E}_{e}\left[\langle s, e\rangle^{2}\|e\|_{\infty}^{2}\right] \lesssim \frac{1}{n} \cdot \frac{\ln n}{n} \quad \forall s \in S_{2}(1)
$$

It could be obtained using phenomenon of concentration of measure. It turns out (см. A. Blum, J. Hopcroft, R. Kannan, Foundations of Data Science; K. Ball, An elementary introduction to modern convex geometry; V. A. Zorich, Mathematical analysis in natural science problems) that with probability $\geqslant 1-\frac{2}{c} e^{-\frac{c^{2}}{2}}$ the following inequality holds $|\langle I, e\rangle| \leqslant \frac{c}{\sqrt{n-1}}$, where $I-$ some arbitrary fixed vector.

## Key lemma: intuition

The last inequality for $q=\infty$ could be rewritten (without loss of generality assume that $\|s\|_{2}=1$ ) as follows:

$$
\mathbb{E}_{e}\left[\langle s, e\rangle^{2}\|e\|_{\infty}^{2}\right] \lesssim \frac{1}{n} \cdot \frac{\ln n}{n} \quad \forall s \in S_{2}(1) .
$$

It could be obtained using phenomenon of concentration of measure. It turns out (cm. A. Blum, J. Hopcroft, R. Kannan, Foundations of Data Science; K. Ball, An elementary introduction to modern convex geometry; V. A. Zorich, Mathematical analysis in natural science problems) that with probability $\geqslant 1-\frac{2}{c} e^{-\frac{c^{2}}{2}}$ the following inequality holds $|\langle I, e\rangle| \leqslant \frac{c}{\sqrt{n-1}}$, where $I-$ some arbitrary fixed vector. Putting $c=10$ and $I=s$ we get that with big probability $\langle s, e\rangle^{2} \leqslant \frac{100}{n}$; and putting $c=2 \sqrt{\ln n}$ and vectors / directed along coordinate axis one can obtain that with probability $\geqslant 1-\frac{1}{n \sqrt{n}}$ the following inequality holds $\|e\|_{\infty}^{2} \leqslant \frac{4 \ln n}{n}$.

## Accelerated Randomized Directional Derivative Method



## Complexity of ARDD

Theorem
Let $A R D D$ method be applied to solve problem (1).

## Complexity of ARDD

## Theorem

Let $A R D D$ method be applied to solve problem (1). Then

$$
\begin{align*}
\mathbb{E}\left[f\left(y_{N}\right)\right]-f\left(x^{*}\right) & \leqslant \frac{384 \Theta_{p} n^{2} \rho_{n} L_{2}}{N^{2}}+\frac{4 N}{n L_{2}} \cdot \frac{\sigma^{2}}{m}+\frac{61 N}{24 L_{2}} \Delta_{\zeta}+\frac{122 N}{3 L_{2}} \Delta_{\eta}^{2} \\
& +\frac{12 \sqrt{2 n \Theta_{p}}}{N^{2}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)  \tag{6}\\
& +\frac{N^{2}}{12 n \rho_{n} L_{2}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)^{2},
\end{align*}
$$

## Complexity of ARDD

Theorem
Let $A R D D$ method be applied to solve problem (1). Then

$$
\begin{align*}
\mathbb{E}\left[f\left(y_{N}\right)\right]-f\left(x^{*}\right) & \leqslant \frac{384 \Theta_{\rho} n^{2} \rho_{n} L_{2}}{N^{2}}+\frac{4 N}{n L_{2}} \cdot \frac{\sigma^{2}}{m}+\frac{61 N}{24 L_{2}} \Delta_{\zeta}+\frac{122 N}{3 L_{2}} \Delta_{\eta}^{2} \\
& +\frac{12 \sqrt{2 n \Theta_{p}}}{N^{2}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)  \tag{6}\\
& +\frac{N^{2}}{12 n \rho_{n} L_{2}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)^{2}
\end{align*}
$$

where $\Theta_{p}=V\left[z_{0}\right]\left(x^{*}\right)$ is defined by the chosen proximal setup and $\mathbb{E}[\cdot]=\mathbb{E}_{e_{1}, \ldots, e_{N}, \xi_{1,1}, \ldots, \xi_{N, m}}[\cdot]$.

## Complexity of ARDD

|  | $p=1$ | $p=2$ |
| :---: | :---: | :---: |
| $N$ | $O\left(\sqrt{\frac{n \ln n \mathbf{L}_{\mathbf{2}} \Theta_{\mathbf{1}}}{\varepsilon}}\right)$ | $O\left(\sqrt{\frac{n^{2} L_{2} \Theta_{2}}{\varepsilon}}\right)$ |
| $m$ | $O\left(\max \left\{1, \sqrt{\frac{\ln n}{n}} \cdot \frac{\sigma^{2}}{\varepsilon^{3 / 2}} \cdot \sqrt{\frac{\Theta_{1}}{L_{2}}}\right\}\right)$ | $O\left(\max \left\{1, \frac{\sigma^{2}}{\varepsilon^{3 / 2}} \cdot \sqrt{\frac{\theta_{2}}{L_{2}}}\right\}\right)$ |
| $\Delta_{\zeta}$ | $O\left(\min \left\{n(\ln n)^{2} L_{2}^{2} \Theta_{1}, \frac{\varepsilon^{2}}{n \Theta_{1}}, \frac{\varepsilon^{\frac{3}{2}}}{\sqrt{n \ln n}} \cdot \sqrt{\frac{L_{2}}{\Theta_{1}}}\right\}\right)$ | $O\left(\min \left\{n^{3} L_{2}^{2} \Theta_{2}, \frac{\varepsilon}{n \Theta_{2}}, \frac{\varepsilon^{\frac{3}{2}}}{n} \cdot \sqrt{\frac{L_{2}}{\theta_{2}}}\right\}\right)$ |
| $\Delta_{\eta}$ | $O\left(\min \left\{\sqrt{n} \ln n L_{\mathbf{2}} \sqrt{\Theta_{1}}, \frac{\varepsilon}{\sqrt{n \Theta_{1}}}, \frac{\varepsilon^{\frac{3}{4}}}{\sqrt[4]{n \ln n}} \cdot \sqrt[4]{\frac{L_{2}}{\Theta_{1}}}\right\}\right)$ | $O\left(\min \left\{n^{\frac{3}{2}} L_{2} \sqrt{\Theta_{2}}, \frac{\varepsilon}{\sqrt{n \theta_{2}}}, \frac{\varepsilon^{\frac{3}{4}}}{\sqrt{n}} \cdot \sqrt[4]{\frac{L_{2}}{\theta_{2}}}\right\}\right)$ |
| O-le calls | $O\left(\max \left\{\sqrt{\frac{n \ln n L_{\mathbf{2}} \Theta_{\mathbf{1}}}{\varepsilon}}, \frac{\sigma^{2} \Theta_{\mathbf{1}} \ln n}{\varepsilon^{2}}\right\}\right)$ | $O\left(\max \left\{\sqrt{\frac{n^{2} L_{2} \Theta_{2}}{\varepsilon}}, \frac{\sigma^{2} \Theta_{2} n}{\varepsilon^{2}}\right\}\right)$ |

Table: ARDD parameters for the cases $p=1$ and $p=2$.

## Randomized Directional Derivative Method

## Algorithm 2 Randomized Directional Derivative (RDD) method

Input: $x_{0}$ - starting point; $N \geqslant 1$ - number of iterations; $m$ - batch size.
Output: point $\bar{x}_{N}$.
1: for $k=0, \ldots, N-1$ do
2: $\quad \alpha \leftarrow \frac{1}{48 n \rho_{n} L_{2}}$.
Generate $e_{k+1} \in R S_{2}(1)$ independently from previous iterations and $\xi_{i}, i=1, \ldots, m-$ independent realizations of $\xi$.
4: $\quad x_{k+1} \leftarrow \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\alpha n\left\langle\widetilde{\nabla}^{m} f\left(x_{k}\right), x-x_{k}\right\rangle+V\left[x_{k}\right](x)\right\}$.
5: Calculate

$$
\widetilde{\nabla}^{m} f\left(x_{k+1}\right)=\frac{1}{m} \sum_{i=1}^{m} \widetilde{f}^{\prime}\left(x_{k+1}, \xi_{i}, e_{k+1}\right) e_{k+1} .
$$

6: end for
7: return $\bar{x}_{N} \leftarrow \frac{1}{N} \sum_{k=0}^{N-1} x_{k}$

## Complexity of RDD

Theorem
Let RDD method be applied to solve problem (1).

## Complexity of RDD

Theorem
Let RDD method be applied to solve problem (1). Then

$$
\begin{align*}
\mathbb{E}\left[f\left(\bar{x}_{N}\right)\right]-f\left(x_{*}\right) & \leqslant \frac{384 n \rho_{n} L_{2} \Theta_{p}}{N}+\frac{2}{L_{2}} \frac{\sigma^{2}}{m}+\frac{n}{12 L_{2}} \Delta_{\zeta}+\frac{4 n}{3 L_{2}} \Delta_{\eta}^{2} \\
& +\frac{8 \sqrt{2 n \Theta_{p}}}{N}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)  \tag{7}\\
& +\frac{N}{3 L_{2} \rho_{n}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)^{2}
\end{align*}
$$

## Complexity of RDD

Theorem
Let RDD method be applied to solve problem (1). Then

$$
\begin{align*}
\mathbb{E}\left[f\left(\bar{x}_{N}\right)\right]-f\left(x_{*}\right) & \leqslant \frac{384 n \rho_{n} L_{2} \Theta_{p}}{N}+\frac{2}{L_{2}} \frac{\sigma^{2}}{m}+\frac{n}{12 L_{2}} \Delta_{\zeta}+\frac{4 n}{3 L_{2}} \Delta_{\eta}^{2} \\
& +\frac{8 \sqrt{2 n \Theta_{p}}}{N}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)  \tag{7}\\
& +\frac{N}{3 L_{2} \rho_{n}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)^{2},
\end{align*}
$$

where $\Theta_{p}=V\left[z_{0}\right]\left(x^{*}\right)$ is defined by the chosen proximal setup and $\mathbb{E}[\cdot]=\mathbb{E}_{e_{1}, \ldots, e_{N}, \xi_{1,1}, \ldots, \xi_{N, m}}[\cdot]$.

## Complexity of RDD

|  | $p=1$ | $p=2$ |
| :---: | :---: | :---: |
| $N$ | $O\left(\frac{L_{2} \Theta_{1} \ln n}{\varepsilon}\right)$ | $O\left(\frac{n L_{\mathbf{2}} \Theta_{\mathbf{2}}}{\varepsilon}\right)$ |
| $m$ | $O\left(\max \left\{1, \frac{\sigma^{2}}{\varepsilon L_{2}}\right\}\right)$ | $O\left(\max \left\{1, \frac{\sigma^{2}}{\varepsilon L_{\mathbf{2}}}\right\}\right)$ |
| $\Delta_{\zeta}$ | $O\left(\min \left\{\frac{(\ln n)^{2}}{n} L_{\mathbf{2}}^{\mathbf{2}} \Theta_{1}, \frac{\varepsilon^{2}}{n \Theta_{1}}, \frac{\varepsilon L_{\mathbf{2}}}{n}\right\}\right)$ | $O\left(\min \left\{n L_{2}^{2} \Theta_{\mathbf{2}}, \frac{\varepsilon^{2}}{n \Theta_{\mathbf{2}}}, \frac{\varepsilon L_{\mathbf{2}}}{n}\right\}\right)$ |
| $\Delta_{\eta}$ | $O\left(\min \left\{\frac{\ln n}{\sqrt{n}} L_{\mathbf{2}} \sqrt{\Theta_{1}}, \frac{\varepsilon}{\sqrt{n \Theta_{1}}}, \sqrt{\frac{\varepsilon L_{\mathbf{2}}}{n}}\right\}\right)$ | $O\left(\min \left\{\sqrt{n} L_{\mathbf{2}} \sqrt{\Theta_{\mathbf{2}}}, \frac{\varepsilon}{\left.\left.\sqrt{n \Theta_{\mathbf{2}}}, \sqrt{\frac{\varepsilon L_{\mathbf{2}}}{n}}\right\}\right)}\right.\right.$ |
| O-le calls | $O\left(\max \left\{\frac{L_{2} \Theta_{1} \ln n}{\varepsilon}, \frac{\sigma^{2} \Theta_{1} \ln n}{\varepsilon^{2}}\right\}\right)$ | $O\left(\max \left\{\frac{n L_{\mathbf{2}} \Theta_{\mathbf{2}}}{\varepsilon}, \frac{n \sigma^{2} \Theta_{\mathbf{2}}}{\varepsilon^{2}}\right\}\right)$ |

Table: RDD parameters for the cases $p=1$ and $p=2$.

## ARDD and RDD

| Method | $p=1$ | $p=2$ |
| :---: | :---: | :---: |
| ARDD | $\tilde{O}\left(\max \left\{\sqrt{\frac{n L_{2} \Theta_{1}}{\varepsilon}}, \frac{\sigma^{2} \Theta_{1}}{\varepsilon^{2}}\right\}\right)$ | $\tilde{O}\left(\max \left\{\sqrt{\frac{n^{2} L_{2} \Theta_{2}}{\varepsilon}}, \frac{\sigma^{2} \Theta_{2} n}{\varepsilon^{2}}\right\}\right)$ |
| $\operatorname{RDD}$ | $\tilde{O}\left(\max \left\{\frac{L_{2} \Theta_{1}}{\varepsilon}, \frac{\sigma^{2} \Theta_{1}}{\varepsilon^{2}}\right\}\right)$ | $\tilde{O}\left(\max \left\{\frac{n L_{2} \Theta_{2}}{\varepsilon}, \frac{n \sigma^{2} \Theta_{2}}{\varepsilon^{2}}\right\}\right)$ |

Table: ARDD and RDD complexities for $p=1$ and $p=2$

## ARDD and RDD

| Method | $p=1$ | $p=2$ |
| :---: | :---: | :---: |
| ARDD | $\tilde{O}\left(\max \left\{\sqrt{\frac{n L_{2} \theta_{1}}{\varepsilon}}, \frac{\sigma^{2} \theta_{1}}{\varepsilon^{2}}\right\}\right)$ | $\tilde{O}\left(\max \left\{\sqrt{\frac{n^{2} L_{2} \theta_{2}}{\varepsilon}}, \frac{\sigma^{2} \theta_{2} n}{\varepsilon^{2}}\right\}\right)$ |
| RDD | $\tilde{O}\left(\max \left\{\frac{L_{2} \Theta_{1}}{\varepsilon}, \frac{\sigma^{2} \theta_{1}}{\varepsilon^{2}}\right\}\right)$ | $\tilde{O}\left(\max \left\{\frac{n L_{2} \theta_{2}}{\varepsilon}, \frac{n \sigma^{2} \theta_{2}}{\varepsilon^{2}}\right\}\right)$ |

Table: ARDD and RDD complexities for $p=1$ and $p=2$

## Remark

Note that for $p=1$ RDD gives dimensional independent complexity bounds.

## Strongly convex case

We will additionally assume two facts.
(1) Function $f(x)$ is $\mu_{p}$-strongly convex w.r.t. $I_{p}$-norm.

## Strongly convex case

We will additionally assume two facts.
(1) Function $f(x)$ is $\mu_{p}$-strongly convex w.r.t. $l_{p}$-norm.
(2) There is such a constant $\Omega_{p}$ for our choice of prox-function $d(\cdot)$ that

## Strongly convex case

We will additionally assume two facts.
(1) Function $f(x)$ is $\mu_{p}$-strongly convex w.r.t. $I_{p}$-norm.
(2) There is such a constant $\Omega_{p}$ for our choice of prox-function $d(\cdot)$ that

$$
x-\text { such random point that } \mathbb{E}_{x}\left[\left\|x-x_{*}\right\|_{p}^{2}\right] \leqslant R_{p}^{2}
$$

## Strongly convex case

We will additionally assume two facts.
(1) Function $f(x)$ is $\mu_{p}$-strongly convex w.r.t. $I_{p}$-norm.
(2) There is such a constant $\Omega_{p}$ for our choice of prox-function $d(\cdot)$ that

$$
x-\text { such random point that } \mathbb{E}_{x}\left[\left\|x-x_{*}\right\|_{p}^{2}\right] \leqslant R_{p}^{2}
$$

$$
\begin{equation*}
\Longrightarrow \mathbb{E}_{x} d\left(\frac{x-x_{*}}{R_{p}}\right) \leqslant \frac{\Omega_{p}}{2} \tag{8}
\end{equation*}
$$

## ARDD method for strongly convex functions (ARDDsc)

$\overline{\text { Algorithm } 3 \text { Accelerated Randomized Directional Derivative method for strongly convex }}$ functions (ARDDsc)

Input: $x_{0}-$ starting point s.t. $\left\|x_{0}-x_{*}\right\|_{p}^{2} \leq R_{p}^{2} ; K \geqslant 1-$ number of iterations; $\mu_{p}$ - strong convexity parameter.
Output: point $u_{K}$.
1: Set $N_{0}=\left\lceil\sqrt{\frac{8 a L_{2} \Omega_{p}}{\mu_{p}}}\right\rceil$, where $a=384 n^{2} \rho_{n}$
2: for $k=0, \ldots, K-1$ do
3: Set

$$
\begin{equation*}
m_{k}:=\max \left\{1,\left\lceil\frac{8 b \sigma^{2} N_{0} 2^{k}}{L_{2} \mu_{p} R_{p}^{2}}\right\rceil\right\}, \quad R_{k}^{2}:=R_{p}^{2} 2^{-k}+\frac{4 \Delta}{\mu_{p}}\left(1-2^{-k}\right), \text { where } b=\frac{4}{n} \tag{9}
\end{equation*}
$$

4: $\quad$ Set $d_{k}(x)=R_{k}^{2} d\left(\frac{x-u_{k}}{R_{k}}\right)$.
5: Run ARDD with starting point $u_{k}$ and prox-function $d_{k}(x)$ for $N_{0}$ steps with batch size $m_{k}$.

Set $u_{k+1}=y_{N_{0}}, k=k+1$.
end for
return $u_{K}$

## Complexity of ARDDsc

Theorem
Let $f$ in problem (1) be $\mu_{p}$-strongly convex and ARDDsc method be applied to solve this problem.

## Complexity of ARDDsc

Theorem
Let $f$ in problem (1) be $\mu_{p}$-strongly convex and ARDDsc method be applied to solve this problem. Then

$$
\begin{equation*}
\mathbb{E} f\left(u_{K}\right)-f^{*} \leqslant \frac{\mu_{\rho} R_{\rho}^{2}}{2} \cdot 2^{-K}+2 \Delta \tag{10}
\end{equation*}
$$

## Complexity of ARDDsc

Theorem
Let $f$ in problem (1) be $\mu_{p}$-strongly convex and ARDDsc method be applied to solve this problem. Then

$$
\begin{equation*}
\mathbb{E} f\left(u_{K}\right)-f^{*} \leqslant \frac{\mu_{\rho} R_{\rho}^{2}}{2} \cdot 2^{-K}+2 \Delta \tag{10}
\end{equation*}
$$

where $\Delta=$
$\frac{61 N_{0}}{24 L_{2}} \Delta_{\zeta}+\frac{122 N_{0}}{3 L_{2}} \Delta_{\eta}{ }^{2}+\frac{12 \sqrt{2 n R_{p}^{2} \Omega_{p}}}{N_{0}^{2}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)+\frac{N_{0}^{2}}{12 n \rho_{n} L_{2}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)^{2}$.

## Complexity of ARDDsc

Theorem
Let $f$ in problem (1) be $\mu_{p}$-strongly convex and ARDDsc method be applied to solve this problem. Then

$$
\begin{equation*}
\mathbb{E} f\left(u_{K}\right)-f^{*} \leqslant \frac{\mu_{\rho} R_{p}^{2}}{2} \cdot 2^{-K}+2 \Delta \tag{10}
\end{equation*}
$$

where $\Delta=$
$\frac{61 N_{0}}{24 L_{2}} \Delta_{\zeta}+\frac{122 N_{0}}{3 L_{2}} \Delta_{\eta}^{2}+\frac{12 \sqrt{2 n R_{p}^{2} \Omega_{p}}}{N_{0}^{2}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)+\frac{N_{0}^{2}}{12 n \rho_{n} L_{2}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)^{2}$. Moreover, under an appropriate choice of $\Delta_{\zeta}$ and $\Delta_{\eta}$ s.t. $2 \Delta \leqslant \varepsilon / 2$, the oracle complexity to achieve $\varepsilon$-accuracy of the solution is

## Complexity of ARDDsc

## Theorem

Let $f$ in problem (1) be $\mu_{p}$-strongly convex and ARDDsc method be applied to solve this problem. Then

$$
\begin{equation*}
\mathbb{E} f\left(u_{K}\right)-f^{*} \leqslant \frac{\mu_{\rho} R_{p}^{2}}{2} \cdot 2^{-K}+2 \Delta \tag{10}
\end{equation*}
$$

where $\Delta=$
$\frac{61 N_{0}}{24 L_{2}} \Delta_{\zeta}+\frac{122 N_{0}}{3 L_{2}} \Delta_{\eta}^{2}+\frac{12 \sqrt{2 n R_{p}^{2} \Omega_{p}}}{N_{0}^{2}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)+\frac{N_{0}^{2}}{12 n \rho_{n} L_{2}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)^{2}$. Moreover, under an appropriate choice of $\Delta_{\zeta}$ and $\Delta_{\eta}$ s.t. $2 \Delta \leqslant \varepsilon / 2$, the oracle complexity to achieve $\varepsilon$-accuracy of the solution is

$$
\widetilde{O}\left(\max \left\{n^{\frac{1}{2}+\frac{1}{q}} \sqrt{\frac{L_{2} \Omega_{p}}{\mu_{p}}} \log _{2} \frac{\mu_{p} R_{p}^{2}}{\varepsilon}, \frac{n^{\frac{2}{q}} \sigma^{2} \Omega_{p}}{\mu_{p} \varepsilon}\right\}\right) .
$$

## Complexity of ARDDsc

|  | $p=1$ |
| :---: | :---: |
| $\Delta_{\zeta}$ | $O\left(\min \left\{\varepsilon \sqrt{\frac{L_{2} \mu_{1}}{n \ln \Omega_{1}}}, \varepsilon^{2} \frac{n L \frac{L}{2} \Omega_{1}}{R_{1}^{2} \mu_{1}^{2}}, \varepsilon \cdot \frac{\mu_{1}}{n \Omega_{1}}\right\}\right)$ |
| $\Delta_{\eta}$ | $O\left(\min \left\{\sqrt{\varepsilon} \sqrt[4]{\frac{L_{2} \mu_{1}}{n \ln \Omega_{1}}}, \varepsilon \frac{\sqrt{n} \ln n L_{2} \sqrt{\Omega_{1}}}{R_{1} \mu_{1}}, \sqrt{\varepsilon} \cdot \sqrt{\frac{\mu_{1}}{n \Omega_{1}}}\right\}\right)$ |
| O-le calls | $\widetilde{O}\left(\max \left\{n^{\frac{1}{2}} \sqrt{\frac{L_{2} \Omega_{1}}{\mu_{1}}} \log _{2} \frac{\mu_{1} R_{1}^{2}}{\varepsilon}, \frac{\sigma^{2} \Omega_{1}}{\mu_{1} \varepsilon}\right\}\right)$ |
|  | $p=2$ |
| $\Delta_{\zeta}$ | $O\left(\min \left\{\varepsilon \sqrt{\frac{L_{2} \mu_{2}}{n^{2} \Omega_{2}}}, \varepsilon^{2} \frac{m n^{3} L_{2}^{2} \Omega_{2}}{R_{2}^{2} \mu_{2}^{2}}, \varepsilon \cdot \frac{\mu_{2}}{n \Omega_{2}}\right\}\right)$ |
| $\Delta_{\eta}$ | $O\left(\min \left\{\sqrt{\varepsilon} \sqrt[4]{\frac{L_{2} \mu_{2}}{n^{2} \Omega_{2}}}, \varepsilon \frac{\sqrt{n^{3} L_{2}} \sqrt{\Omega_{2}}}{R_{2} \mu_{2}}, \sqrt{\varepsilon} \cdot \sqrt{\frac{\mu_{2}}{n \Omega_{2}}}\right\}\right)$ |
| O-le calls | $\widetilde{O}\left(\max \left\{n \sqrt{\frac{L_{2} \Omega_{2}}{\mu_{2}}} \log _{2} \frac{\mu_{2} R_{2}^{2}}{\varepsilon}, \frac{n \sigma^{2} \Omega_{2}}{\mu_{2} \varepsilon}\right\}\right)$ |

Table: Algorithm 3 parameters for the cases $p=1$ and $p=2$.

## RDD for strongly convex functions

Algorithm 4 Randomized Directional Derivative method for strongly convex functions (RDDsc)

Input: $x_{0}-$ starting point s.t. $\left\|x_{0}-x_{*}\right\|_{p}^{2} \leq R_{p}^{2} ; K \geqslant 1-$ number of iterations; $\mu_{p}$ - strong convexity parameter.
Output: point $u_{K}$.
1: Set $N_{0}=\left\lceil\frac{8 a L_{2} \Omega_{p}}{\mu_{p}}\right\rceil$, where $a=384 n \rho_{n}$.
2: for $k=0, \ldots, K-1$ do
3: Set
$m_{k}:=\max \left\{1,\left\lceil\frac{8 b \sigma^{2} 2^{k}}{L_{2} \mu_{p} R_{p}^{2}}\right\rceil\right\}, \quad R_{k}^{2}:=R_{p}^{2} 2^{-k}+\frac{4 \Delta}{\mu_{p}}\left(1-2^{-k}\right)$, where $b=2$
4: $\quad$ Set $d_{k}(x)=R_{k}^{2} d\left(\frac{x-u_{k}}{R_{k}}\right)$.
5: Run RDD with starting point $u_{k}$ and prox-function $d_{k}(x)$ for $N_{0}$ steps with batch size $m_{k}$.

Set $u_{k+1}=y_{N_{0}}, k=k+1$.
end for
return $u_{K}$

## Complexity of RDDsc

Theorem
Let $f$ in problem (1) be $\mu_{p}$-strongly convex and RDDsc method be applied to solve this problem.

## Complexity of RDDsc

Theorem
Let $f$ in problem (1) be $\mu_{p}$-strongly convex and RDDsc method be applied to solve this problem. Then

$$
\begin{equation*}
\mathbb{E} f\left(u_{K}\right)-f^{*} \leqslant \frac{\mu_{\rho} R_{\rho}^{2}}{2} \cdot 2^{-K}+2 \Delta, \tag{12}
\end{equation*}
$$

## Complexity of RDDsc

Theorem
Let $f$ in problem (1) be $\mu_{p}$-strongly convex and RDDsc method be applied to solve this problem. Then

$$
\begin{equation*}
\mathbb{E} f\left(u_{K}\right)-f^{*} \leqslant \frac{\mu_{\rho} R_{p}^{2}}{2} \cdot 2^{-K}+2 \Delta, \tag{12}
\end{equation*}
$$

where
$\Delta=\frac{n}{12 L_{2}} \Delta_{\zeta}+\frac{4 n}{3 L_{2}} \Delta_{\eta}{ }^{2}+\frac{8 \sqrt{2 n R_{p}^{2} \Omega_{p}}}{N_{0}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)+\frac{N_{0}}{3 L_{2} \rho_{n}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)^{2}$.

## Complexity of RDDsc

Theorem
Let $f$ in problem (1) be $\mu_{p}$-strongly convex and RDDsc method be applied to solve this problem. Then

$$
\begin{equation*}
\mathbb{E} f\left(u_{K}\right)-f^{*} \leqslant \frac{\mu_{\rho} R_{\rho}^{2}}{2} \cdot 2^{-K}+2 \Delta, \tag{12}
\end{equation*}
$$

where
$\Delta=\frac{n}{12 L_{2}} \Delta_{\zeta}+\frac{4 n}{3 L_{2}} \Delta_{\eta}{ }^{2}+\frac{8 \sqrt{2 n R_{p}^{2} \Omega_{p}}}{N_{0}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)+\frac{N_{0}}{3 L_{2} \rho_{n}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)^{2}$. Moreover, under an appropriate choice of $\Delta_{\zeta}$ and $\Delta_{\eta}$ s.t. $2 \Delta \leqslant \varepsilon / 2$, the oracle complexity to achieve $\varepsilon$-accuracy of the solution is

## Complexity of RDDsc

## Theorem

Let $f$ in problem (1) be $\mu_{p}$-strongly convex and RDDsc method be applied to solve this problem. Then

$$
\begin{equation*}
\mathbb{E} f\left(u_{K}\right)-f^{*} \leqslant \frac{\mu_{\rho} R_{p}^{2}}{2} \cdot 2^{-K}+2 \Delta, \tag{12}
\end{equation*}
$$

where
$\Delta=\frac{n}{12 L_{2}} \Delta_{\zeta}+\frac{4 n}{3 L_{2}} \Delta_{\eta}^{2}+\frac{8 \sqrt{2 n R_{p}^{2} \Omega_{p}}}{N_{0}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)+\frac{N_{0}}{3 L_{2} \rho_{n}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \Delta_{\eta}\right)^{2}$. Moreover, under an appropriate choice of $\Delta_{\zeta}$ and $\Delta_{\eta}$ s.t. $2 \Delta \leqslant \varepsilon / 2$, the oracle complexity to achieve $\varepsilon$-accuracy of the solution is

$$
\widetilde{O}\left(\max \left\{\frac{n^{\frac{2}{9}} L_{2} \Omega_{p}}{\mu_{p}} \log _{2} \frac{\mu_{p} R_{p}^{2}}{\varepsilon}, \frac{n^{\frac{2}{q}} \sigma^{2} \Omega_{p}}{\mu_{p} \varepsilon}\right\}\right)
$$

## Complexity of RDDsc

|  | $p=1$ |
| :---: | :---: |
| $\Delta_{\zeta}$ | $O\left(\min \left\{\frac{\varepsilon L_{2}}{n}, \varepsilon^{2} \frac{(\ln n)^{2} L_{2}^{2}}{n R_{1}^{2} \mu_{1}^{2}}, \varepsilon \frac{\mu_{1}}{n \Omega_{1}}\right\}\right)$ |
| $\Delta_{\eta}$ | $O\left(\min \left\{\sqrt{\frac{\varepsilon L_{2}}{n}}, \varepsilon \frac{\ln n L_{2}}{\sqrt{n R_{1} \mu_{1}}}, \sqrt{\varepsilon \frac{\mu_{1}}{n \Omega_{1}}}\right\}\right)$ |
| O-le calls | $\tilde{O}\left(\max \left\{\frac{L_{2} \Omega_{1}}{\mu_{1}} \log _{2} \frac{\mu_{1} R_{1}^{2}}{\varepsilon}, \frac{\sigma^{2} \Omega_{1}}{\mu_{1} \varepsilon}\right\}\right)$ |
|  | $p=2$ |
| $\Delta_{\zeta}$ | $O\left(\min \left\{\frac{\varepsilon L_{2}}{n}, \varepsilon^{2} \frac{n L_{2}^{2}}{R_{2}^{2} \mu_{2}^{2}}, \varepsilon \frac{\mu_{2}}{\Omega_{2}}\right\}\right)$ |
| $\Delta_{\eta}$ | $O\left(\min \left\{\sqrt{\frac{\varepsilon L_{2}}{n}}, \varepsilon \frac{\sqrt{n} L_{2}}{R_{2} \mu_{2}}, \sqrt{\varepsilon \frac{\mu_{2}}{n \Omega_{2}}}\right\}\right)$ |
| O-le calls | $\widetilde{O}\left(\max \left\{\frac{n L_{2} \Omega_{2}}{\mu_{2}} \log _{2} \frac{\mu_{2} R_{2}^{2}}{\varepsilon}, \frac{n \sigma^{2} \Omega_{2}}{\mu_{2} \varepsilon}\right\}\right)$ |

Table: Algorithm 4 parameters for the cases $p=1$ and $p=2$.

## Derivative-Free Optimization

Consider the following zeroth-order oracle.

## Derivative-Free Optimization

Consider the following zeroth-order oracle.
(1) Oracle: $(x, y) \rightarrow(\widetilde{f}(x, \xi), \widetilde{f}(y, \xi))$, where

$$
\widetilde{f}(x, \xi)=F(x, \xi)+\equiv(x, \xi)
$$

## Derivative-Free Optimization

Consider the following zeroth-order oracle.
(1) Oracle: $(x, y) \rightarrow(\widetilde{f}(x, \xi), \widetilde{f}(y, \xi))$, where

$$
\widetilde{f}(x, \xi)=F(x, \xi)+\equiv(x, \xi)
$$

(2) $|\equiv(x, \xi)| \leqslant \Delta, \forall x \in \mathbb{R}^{n}$, a.s. in $\xi$

## Derivative-Free Optimization

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

## Derivative-Free Optimization

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$
\begin{align*}
\widetilde{\nabla}^{m} f^{t}(x) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\tilde{f}\left(x+t e, \xi_{i}\right)-\widetilde{f}\left(x, \xi_{i}\right)}{t} e \\
& =\left(\left\langle g^{m}\left(x, \overrightarrow{\xi_{m}}\right), e\right\rangle+\frac{1}{m} \sum_{i=1}^{m}\left(\zeta\left(x, \xi_{i}, e\right)+\eta\left(x, \xi_{i}, e\right)\right)\right) e, \tag{13}
\end{align*}
$$

## Derivative-Free Optimization

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$
\begin{align*}
\widetilde{\nabla}^{m} f^{t}(x) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\tilde{f}\left(x+t e, \xi_{i}\right)-\widetilde{f}\left(x, \xi_{i}\right)}{t} e \\
& =\left(\left\langle g^{m}\left(x, \overrightarrow{\xi_{m}}\right), e\right\rangle+\frac{1}{m} \sum_{i=1}^{m}\left(\zeta\left(x, \xi_{i}, e\right)+\eta\left(x, \xi_{i}, e\right)\right)\right) e, \tag{13}
\end{align*}
$$

(1) $g^{m}\left(x, \overrightarrow{\xi_{m}}\right):=\frac{1}{m} \sum_{i=1}^{m} g\left(x, \xi_{i}\right)$

## Derivative-Free Optimization

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$
\begin{align*}
\widetilde{\nabla}^{m} f^{t}(x) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\tilde{f}\left(x+t e, \xi_{i}\right)-\widetilde{f}\left(x, \xi_{i}\right)}{t} e \\
& =\left(\left\langle g^{m}\left(x, \overrightarrow{\xi_{m}}\right), e\right\rangle+\frac{1}{m} \sum_{i=1}^{m}\left(\zeta\left(x, \xi_{i}, e\right)+\eta\left(x, \xi_{i}, e\right)\right)\right) e \tag{13}
\end{align*}
$$

(1) $g^{m}\left(x, \overrightarrow{\xi_{m}}\right):=\frac{1}{m} \sum_{i=1}^{m} g\left(x, \xi_{i}\right)$
(2) $\zeta\left(x, \xi_{i}, e\right)=\frac{F\left(x+t e, \xi_{i}\right)-F\left(x, \xi_{i}\right)}{t}-\left\langle g\left(x, \xi_{i}\right), e\right\rangle, \quad i=1, \ldots, m$

## Derivative-Free Optimization

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$
\begin{align*}
\widetilde{\nabla}^{m} f^{t}(x) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\tilde{f}\left(x+t e, \xi_{i}\right)-\widetilde{f}\left(x, \xi_{i}\right)}{t} e \\
& =\left(\left\langle g^{m}\left(x, \overrightarrow{\xi_{m}}\right), e\right\rangle+\frac{1}{m} \sum_{i=1}^{m}\left(\zeta\left(x, \xi_{i}, e\right)+\eta\left(x, \xi_{i}, e\right)\right)\right) e \tag{13}
\end{align*}
$$

(1) $g^{m}\left(x, \overrightarrow{\xi_{m}}\right):=\frac{1}{m} \sum_{i=1}^{m} g\left(x, \xi_{i}\right)$
(2) $\zeta\left(x, \xi_{i}, e\right)=\frac{F\left(x+t e, \xi_{i}\right)-F\left(x, \xi_{i}\right)}{t}-\left\langle g\left(x, \xi_{i}\right), e\right\rangle, \quad i=1, \ldots, m$
(3) $\eta\left(x, \xi_{i}, e\right)=\frac{\equiv\left(x+t e, \xi_{i}\right)-\equiv\left(x, \xi_{i}\right)}{t}, \quad i=1, \ldots, m$

## Derivative-Free Optimization

$$
\begin{aligned}
\zeta\left(x, \xi_{i}, e\right) & =\frac{F\left(x+t e, \xi_{i}\right)-F\left(x, \xi_{i}\right)}{E^{t}}-\left\langle g\left(x, \xi_{i}\right), e\right\rangle, \quad i=1, \ldots, m \\
\eta\left(x, \xi_{i}, e\right) & =\frac{\equiv\left(x+t e, \xi_{i}\right)-\equiv\left(x, \xi_{i}\right)}{t}, \quad i=1, \ldots, m .
\end{aligned}
$$

## Derivative-Free Optimization

$$
\begin{aligned}
\zeta\left(x, \xi_{i}, e\right) & =\frac{F\left(x+t e, \xi_{i}\right)-F\left(x, \xi_{i}\right)}{\text { it }}-\left\langle g\left(x, \xi_{i}\right), e\right\rangle, \quad i=1, \ldots, m \\
\eta\left(x, \xi_{i}, e\right) & =\frac{\equiv\left(x+t e, \xi_{i}\right)-\equiv\left(x, \xi_{i}\right)}{t}, \quad i=1, \ldots, m .
\end{aligned}
$$

By Lipschitz smoothness of $F(\cdot, \xi)$, we have $|\zeta(x, \xi, e)| \leqslant \frac{L(\xi) t}{2}$ for all $x \in \mathbb{R}^{n}$ and $e \in S_{2}(1)$.

## Derivative-Free Optimization

$$
\begin{aligned}
\zeta\left(x, \xi_{i}, e\right) & =\frac{F\left(x+t e, \xi_{i}\right)-F\left(x, \xi_{i}\right)}{\vdots(t)}-\left\langle g\left(x, \xi_{i}\right), e\right\rangle, \quad i=1, \ldots, m \\
\eta\left(x, \xi_{i}, e\right) & =\frac{\equiv\left(x+t e, \xi_{i}\right)-\equiv\left(x, \xi_{i}\right)}{t}, \quad i=1, \ldots, m .
\end{aligned}
$$

By Lipschitz smoothness of $F(\cdot, \xi)$, we have $|\zeta(x, \xi, e)| \leqslant \frac{L(\xi) t}{2}$ for all $x \in \mathbb{R}^{n}$ and $e \in S_{2}(1)$. Hence,

$$
\mathbb{E}_{\xi}\left[\zeta(x, \xi, e)^{2}\right] \leqslant \frac{L_{2}^{2} t^{2}}{4}=: \Delta_{\zeta}, \quad \forall x \in \mathbb{R}^{n}, e \in S_{2}(1)
$$

## Derivative-Free Optimization

$$
\begin{aligned}
\zeta\left(x, \xi_{i}, e\right) & =\frac{F\left(x+t e, \xi_{i}\right)-F\left(x, \xi_{i}\right)}{E(x)}-\left\langle g\left(x, \xi_{i}\right), e\right\rangle, \quad i=1, \ldots, m \\
\eta\left(x, \xi_{i}, e\right) & =\frac{\equiv\left(x+t e, \xi_{i}\right)-\equiv\left(x, \xi_{i}\right)}{t}, \quad i=1, \ldots, m .
\end{aligned}
$$

By Lipschitz smoothness of $F(\cdot, \xi)$, we have $|\zeta(x, \xi, e)| \leqslant \frac{L(\xi) t}{2}$ for all $x \in \mathbb{R}^{n}$ and $e \in S_{2}(1)$. Hence,

$$
\mathbb{E}_{\xi}\left[\zeta(x, \xi, e)^{2}\right] \leqslant \frac{L_{2}^{2} t^{2}}{4}=: \Delta_{\zeta}, \quad \forall x \in \mathbb{R}^{n}, e \in S_{2}(1)
$$

At the same time, from $|\equiv(x, \xi)| \leqslant \Delta$, we have that

$$
|\eta(x, \xi, e)| \leqslant \frac{2 \Delta}{t}=: \Delta_{\eta}, \quad \forall x \in \mathbb{R}^{n}, e \in S_{2}(1), \text { a.s. in } \xi
$$

## Thank you for your attention! Questions?

