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The Problem

min
x∈Rn

⎧⎨⎩f (x) := E𝜉[F (x , 𝜉)] =

∫︁
𝒳

F (x , 𝜉)dP(x)

⎫⎬⎭ , (1)

1 f (x) — convex function
2 F (x , 𝜉) — closed function of x P-almost surely in 𝜉

3 For P almost every 𝜉, the function F (x , 𝜉) has gradient g(x , 𝜉), which
is L(𝜉)-Lipschitz continuous with respect to the Euclidean norm

‖g(x , 𝜉)− g(y , 𝜉)‖2 6 L(𝜉)‖x − y‖2, ∀x , y ∈ Rn, a.s. in 𝜉

4 L2 :=
√︀
E𝜉[L(𝜉)2] < +∞
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The Problem

Under this assumptions
1 E𝜉[g(x , 𝜉)] = ∇f (x)

2 ‖∇f (x)−∇f (y)‖2 6 L2‖x − y‖2, ∀x , y ∈ Rn

Also we assume that

E𝜉

[︀
‖g(x , 𝜉)−∇f (x)‖2

2
]︀
6 𝜎2. (2)
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The Problem

Finally, we assume that we have the following oracle.

1 Oracle:
x ∈ Rn, e ∈ S2(1) → ̃︀f ′(x , 𝜉, e) = ⟨g(x , 𝜉), e⟩+ 𝜁(x , 𝜉, e) + 𝜂(x , 𝜉, e)

2 E𝜉

[︀
𝜁(x , 𝜉, e)2

]︀
6 Δ𝜁 , ∀x ∈ Rn, ∀e ∈ S2(1)

3 |𝜂(x , 𝜉, e)| 6 Δ𝜂, ∀x ∈ Rn,∀e ∈ S2(1)
Further we will use random vector from uniform distribution over the
Euclidean sphere in Rn as e and denote it e ∈ RSn

2 (1).
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Preliminaries

1 Prox-function: differentiable 1-strongly convex w.r.t. lp-norm (where
1 6 p 6 2) function d : Rn → R.

2 Bregman divergence w.r.t. d is a function of two arguments:

V [z ](x)
def
= d(x)− d(z)− ⟨∇d(z), x − z⟩. (3)

Note that from strong convexity of d follows

V [z ](x) >
1
2
‖x − z‖2

p, x , z ∈ Rn.
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Key lemma

In our proofs of complexity bounds, we rely on the following lemma.

Lemma

Let e ∈ RS2(1), i.e be a random vector uniformly distributed on the surface
of the unit Euclidean sphere in Rn, p ∈ [1, 2] and q be given by
1
p + 1

q = 1. Then, for n > 8 and 𝜌n = min{q − 1, 16 ln n − 8}n
2
q
−1,

Ee‖e‖2
q ≤ 𝜌n, (4)

Ee

(︀
⟨s, e⟩2‖e‖2

q

)︀
≤ 6𝜌n

n
‖s‖2

2, ∀s ∈ Rn. (5)
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Key lemma: intuition

The last inequality for q = ∞ could be rewritten (without loss of generality
assume that ‖s‖2 = 1) as follows:

Ee

[︀
⟨s, e⟩2‖e‖2

∞
]︀
.

1
n
· ln n

n
∀s ∈ S2(1).

It could be obtained using phenomenon of concentration of measure. It
turns out (см. A. Blum, J. Hopcroft, R. Kannan, Foundations of Data Science; K. Ball, An

elementary introduction to modern convex geometry ; V. A. Zorich, Mathematical analysis in

natural science problems) that with probability > 1− 2
c e
− c2

2 the following
inequality holds |⟨l , e⟩| 6 c√

n−1 , where l — some arbitrary fixed vector.

Putting c = 10 and l = s we get that with big probability ⟨s, e⟩2 6 100
n ;

and putting c = 2
√
ln n and vectors l directed along coordinate axis one

can obtain that with probability > 1− 1
n
√
n
the following inequality holds

‖e‖2
∞ 6 4 ln n

n .
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Accelerated Randomized Directional Derivative Method

Algorithm 1 Accelerated Randomized Directional Derivative (ARDD)
method
Input: x0 — starting point; N > 1 — number of iterations; m — batch size.
Output: point yN
1: y0 ← x0, z0 ← x0
2: for k = 0, . . . , N − 1 do
3: 𝛼k+1 ← k+2

96n2𝜌nL2
, 𝜏k ← 1

48𝛼k+1n2𝜌nL2
= 2

k+2 .
4: Generate ek+1 ∈ RS2(1) independently from previous iterations and 𝜉i , i = 1, ...,m –

independent realizations of 𝜉.
5: xk+1 ← 𝜏kzk + (1− 𝜏k )yk .
6: Calculate ̃︀∇mf (xk+1) =

1
m

m∑︁
i=1

̃︀f ′(xk+1, 𝜉i , ek+1)ek+1.

7: yk+1 ← xk+1 − 1
2L2

̃︀∇mf (xk+1).

8: zk+1 ← argmin
z∈Rn

{︁
𝛼k+1n

⟨̃︀∇mf (xk+1), z − zk

⟩
+ V [zk ] (z)

}︁
.

9: end for
10: return yN
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Complexity of ARDD

Theorem

Let ARDD method be applied to solve problem (1).

Then

E[f (yN)]− f (x*) 6 384Θpn2𝜌nL2
N2 + 4N

nL2
· 𝜎2

m + 61N
24L2

Δ𝜁 +
122N
3L2

Δ2
𝜂

+
12
√

2nΘp

N2

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂
+ N2

12n𝜌nL2

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂2

,

(6)

where Θp = V [z0](x
*) is defined by the chosen proximal setup and

E[·] = Ee1,...,eN ,𝜉1,1,...,𝜉N,m
[·].

Eduard Gorbunov (MIPT) 6 July, 2018 9 / 25



Complexity of ARDD

Theorem

Let ARDD method be applied to solve problem (1). Then

E[f (yN)]− f (x*) 6 384Θpn2𝜌nL2
N2 + 4N

nL2
· 𝜎2

m + 61N
24L2

Δ𝜁 +
122N
3L2

Δ2
𝜂

+
12
√

2nΘp

N2

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂
+ N2

12n𝜌nL2

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂2

,

(6)

where Θp = V [z0](x
*) is defined by the chosen proximal setup and

E[·] = Ee1,...,eN ,𝜉1,1,...,𝜉N,m
[·].

Eduard Gorbunov (MIPT) 6 July, 2018 9 / 25



Complexity of ARDD

Theorem

Let ARDD method be applied to solve problem (1). Then

E[f (yN)]− f (x*) 6 384Θpn2𝜌nL2
N2 + 4N

nL2
· 𝜎2

m + 61N
24L2

Δ𝜁 +
122N
3L2

Δ2
𝜂

+
12
√

2nΘp

N2

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂
+ N2

12n𝜌nL2

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂2

,

(6)

where Θp = V [z0](x
*) is defined by the chosen proximal setup and

E[·] = Ee1,...,eN ,𝜉1,1,...,𝜉N,m
[·].

Eduard Gorbunov (MIPT) 6 July, 2018 9 / 25



Complexity of ARDD

p = 1 p = 2

N O

(︂√︁
n ln nL2Θ1

𝜀

)︂
O

(︃√︂
n2L2Θ2

𝜀

)︃

m O

(︂
max

{︂
1,
√︁

ln n
n

· 𝜎2

𝜀3/2 ·
√︂

Θ1
L2

}︂)︂
O

(︂
max

{︂
1, 𝜎2

𝜀3/2 ·
√︂

Θ2
L2

}︂)︂
Δ𝜁 O

(︃
min

{︃
n(ln n)2L2

2Θ1,
𝜀2
nΘ1

, 𝜀
3
2√

n ln n
·
√︂

L2
Θ1

}︃)︃
O

(︃
min

{︃
n3L2

2Θ2,
𝜀

nΘ2
, 𝜀

3
2
n

·
√︂

L2
Θ2

}︃)︃

Δ𝜂 O

(︃
min

{︃
√

n ln nL2
√
Θ1,

𝜀√
nΘ1

, 𝜀
3
4

4√
n ln n

· 4
√︂

L2
Θ1

}︃)︃
O

(︃
min

{︃
n

3
2 L2

√
Θ2,

𝜀√
nΘ2

, 𝜀
3
4√
n

· 4
√︂

L2
Θ2

}︃)︃

O-le calls O

(︂
max

{︂√︁
n ln nL2Θ1

𝜀
,
𝜎2Θ1 ln n

𝜀2

}︂)︂
O

(︃
max

{︃√︂
n2L2Θ2

𝜀
,
𝜎2Θ2n

𝜀2

}︃)︃

Table: ARDD parameters for the cases p = 1 and p = 2.

Eduard Gorbunov (MIPT) 6 July, 2018 10 / 25



Randomized Directional Derivative Method

Algorithm 2 Randomized Directional Derivative (RDD) method
Input: x0 — starting point; N > 1 — number of iterations; m — batch size.
Output: point x̄N .
1: for k = 0, . . . , N − 1 do
2: 𝛼← 1

48n𝜌nL2
.

3: Generate ek+1 ∈ RS2(1) independently from previous iterations and 𝜉i , i = 1, ...,m –
independent realizations of 𝜉.

4: xk+1 ← argmin
x∈Rn

{︁
𝛼n

⟨̃︀∇mf (xk ), x − xk

⟩
+ V [xk ] (x)

}︁
.

5: Calculate ̃︀∇mf (xk+1) =
1
m

m∑︁
i=1

̃︀f ′(xk+1, 𝜉i , ek+1)ek+1.

6: end for

7: return x̄N ← 1
N

N−1∑︀
k=0

xk
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Complexity of RDD

Theorem

Let RDD method be applied to solve problem (1).

Then

E[f (x̄N)]− f (x*) 6 384n𝜌nL2Θp

N + 2
L2

𝜎2

m + n
12L2

Δ𝜁 +
4n
3L2

Δ2
𝜂

+
8
√

2nΘp

N

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂
+ N

3L2𝜌n

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂2

,

(7)

where Θp = V [z0](x
*) is defined by the chosen proximal setup and

E[·] = Ee1,...,eN ,𝜉1,1,...,𝜉N,m
[·].
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Complexity of RDD

p = 1 p = 2

N O
(︁

L2Θ1 ln n
𝜀

)︁
O
(︁

nL2Θ2
𝜀

)︁
m O

(︁
max

{︁
1, 𝜎2

𝜀L2

}︁)︁
O
(︁
max

{︁
1, 𝜎2

𝜀L2

}︁)︁
Δ𝜁 O

(︂
min

{︂
(ln n)2

n
L2
2Θ1,

𝜀2
nΘ1

,
𝜀L2
n

}︂)︂
O
(︁
min

{︁
nL2

2Θ2,
𝜀2
nΘ2

,
𝜀L2
n

}︁)︁
Δ𝜂 O

(︂
min

{︂
ln n√

n
L2

√
Θ1,

𝜀√
nΘ1

,

√︁
𝜀L2
n

}︂)︂
O

(︂
min

{︂√
nL2

√
Θ2,

𝜀√
nΘ2

,

√︁
𝜀L2
n

}︂)︂
O-le calls O

(︂
max

{︂
L2Θ1 ln n

𝜀
,
𝜎2Θ1 ln n

𝜀2

}︂)︂
O

(︂
max

{︂
nL2Θ2

𝜀
,
n𝜎2Θ2

𝜀2

}︂)︂

Table: RDD parameters for the cases p = 1 and p = 2.
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ARDD and RDD

Method p = 1 p = 2

ARDD Õ

(︂
max

{︂√︁
nL2Θ1

𝜀
, 𝜎2Θ1

𝜀2

}︂)︂
Õ

(︂
max

{︂√︁
n2L2Θ2

𝜀
, 𝜎2Θ2n

𝜀2

}︂)︂
RDD Õ

(︁
max

{︁
L2Θ1

𝜀
, 𝜎2Θ1

𝜀2

}︁)︁
Õ

(︁
max

{︁
nL2Θ2

𝜀
, n𝜎2Θ2

𝜀2

}︁)︁
Table: ARDD and RDD complexities for p = 1 and p = 2

Remark
Note that for p = 1 RDD gives dimensional independent complexity
bounds.
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Strongly convex case

We will additionally assume two facts.
1 Function f (x) is 𝜇p-strongly convex w .r .t. lp-norm.

2 There is such a constant Ωp for our choice of prox-function d(·) that

x − such random point that Ex [‖x − x*‖2
p] 6 R2

p

=⇒ Exd
(︁
x−x*
Rp

)︁
6 Ωp

2
(8)
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ARDD method for strongly convex functions (ARDDsc)

Algorithm 3 Accelerated Randomized Directional Derivative method for strongly convex
functions (ARDDsc)

Input: x0 — starting point s.t. ‖x0 − x*‖2p ≤ R2
p ; K > 1 — number of iterations; 𝜇p – strong

convexity parameter.
Output: point uK .

1: Set N0 =

⌈︂√︂
8aL2Ωp

𝜇p

⌉︂
, where a = 384n2𝜌n

2: for k = 0, . . . , K − 1 do
3: Set

mk := max

{︃
1,

⌈︃
8b𝜎2N02k

L2𝜇pR2
p

⌉︃}︃
, R2

k := R2
p 2−k +

4Δ
𝜇p

(︁
1− 2−k

)︁
, where b =

4
n

(9)

4: Set dk (x) = R2
k d

(︁
x−uk
Rk

)︁
.

5: Run ARDD with starting point uk and prox-function dk (x) for N0 steps with batch size
mk .

6: Set uk+1 = yN0 , k = k + 1.
7: end for
8: return uK
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Complexity of ARDDsc

Theorem

Let f in problem (1) be 𝜇p-strongly convex and ARDDsc method be
applied to solve this problem.

Then

Ef (uK )− f * 6
𝜇pR2

p

2 · 2−K + 2Δ, (10)

where Δ =

61N0
24L2

Δ𝜁+
122N0
3L2

Δ𝜂
2+

12
√

2nR2
pΩp

N2
0

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂
+

N2
0

12n𝜌nL2

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂2

.

Moreover, under an appropriate choice of Δ𝜁 and Δ𝜂 s.t. 2Δ 6 𝜀/2, the
oracle complexity to achieve 𝜀-accuracy of the solution is

̃︀O (︃max

{︃
n

1
2+

1
q

√︃
L2Ωp

𝜇p
log2

𝜇pR
2
p

𝜀
,
n

2
q 𝜎2Ωp

𝜇p𝜀

}︃)︃
.
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Complexity of ARDDsc

p = 1

Δ𝜁 O
(︁
min

{︁
𝜀
√︁

L2𝜇1
n ln nΩ1

, 𝜀2 nL2
2Ω1

R2
1𝜇

2
1
, 𝜀 · 𝜇1

nΩ1

}︁)︁
Δ𝜂 O

(︁
min

{︁√
𝜀 4
√︁

L2𝜇1
n ln nΩ1

, 𝜀
√
n ln nL2

√
Ω1

R1𝜇1
,
√
𝜀 ·

√︁
𝜇1
nΩ1

}︁)︁
O-le calls ̃︀O (︁

max
{︁
n

1
2

√︁
L2Ω1
𝜇1

log2
𝜇1R

2
1

𝜀
, 𝜎2Ω1

𝜇1𝜀

}︁)︁
p = 2

Δ𝜁 O
(︁
min

{︁
𝜀
√︁

L2𝜇2
n2Ω2

, 𝜀2 rn3L2
2Ω2

R2
2𝜇

2
2

, 𝜀 · 𝜇2
nΩ2

}︁)︁
Δ𝜂 O

(︁
min

{︁√
𝜀 4
√︁

L2𝜇2
n2Ω2

, 𝜀
√
n3L2

√
Ω2

R2𝜇2
,
√
𝜀 ·

√︁
𝜇2
nΩ2

}︁)︁
O-le calls ̃︀O (︁

max
{︁
n
√︁

L2Ω2
𝜇2

log2
𝜇2R

2
2

𝜀
, n𝜎2Ω2

𝜇2𝜀

}︁)︁
Table: Algorithm 3 parameters for the cases p = 1 and p = 2.
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RDD for strongly convex functions

Algorithm 4 Randomized Directional Derivative method for strongly convex functions
(RDDsc)

Input: x0 — starting point s.t. ‖x0 − x*‖2p ≤ R2
p ; K > 1 — number of iterations; 𝜇p – strong

convexity parameter.
Output: point uK .
1: Set N0 =

⌈︁
8aL2Ωp

𝜇p

⌉︁
, where a = 384n𝜌n.

2: for k = 0, . . . , K − 1 do
3: Set

mk := max

{︃
1,

⌈︃
8b𝜎22k

L2𝜇pR2
p

⌉︃}︃
, R2

k := R2
p 2−k +

4Δ
𝜇p

(︁
1− 2−k

)︁
, where b = 2 (11)

4: Set dk (x) = R2
k d

(︁
x−uk
Rk

)︁
.

5: Run RDD with starting point uk and prox-function dk (x) for N0 steps with batch size
mk .

6: Set uk+1 = yN0 , k = k + 1.
7: end for
8: return uK
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Complexity of RDDsc

Theorem

Let f in problem (1) be 𝜇p-strongly convex and RDDsc method be applied
to solve this problem.

Then

Ef (uK )− f * 6
𝜇pR2

p

2 · 2−K + 2Δ, (12)

where

Δ = n
12L2

Δ𝜁+
4n
3L2

Δ𝜂
2+

8
√

2nR2
pΩp

N0

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂
+ N0

3L2𝜌n

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂2

.

Moreover, under an appropriate choice of Δ𝜁 and Δ𝜂 s.t. 2Δ 6 𝜀/2, the
oracle complexity to achieve 𝜀-accuracy of the solution is

̃︀O (︃max

{︃
n

2
q L2Ωp

𝜇p
log2

𝜇pR
2
p

𝜀
,
n

2
q 𝜎2Ωp

𝜇p𝜀

}︃)︃
.
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to solve this problem. Then

Ef (uK )− f * 6
𝜇pR2

p

2 · 2−K + 2Δ, (12)

where

Δ = n
12L2

Δ𝜁+
4n
3L2

Δ𝜂
2+

8
√

2nR2
pΩp

N0

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂
+ N0

3L2𝜌n

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂2

.

Moreover, under an appropriate choice of Δ𝜁 and Δ𝜂 s.t. 2Δ 6 𝜀/2, the
oracle complexity to achieve 𝜀-accuracy of the solution is

̃︀O (︃max

{︃
n

2
q L2Ωp

𝜇p
log2

𝜇pR
2
p

𝜀
,
n

2
q 𝜎2Ωp

𝜇p𝜀

}︃)︃
.
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Complexity of RDDsc

p = 1

Δ𝜁 O
(︁
min

{︁
𝜀L2
n
, 𝜀2 (ln n)2L2

2
nR2

1𝜇
2
1
, 𝜀 𝜇1

nΩ1

}︁)︁
Δ𝜂 O

(︂
min

{︂√︁
𝜀L2
n
, 𝜀 ln nL2√

nR1𝜇1
,
√︁

𝜀 𝜇1
nΩ1

}︂)︂
O-le calls ̃︀O (︁

max
{︁

L2Ω1
𝜇1

log2
𝜇1R

2
1

𝜀
, 𝜎2Ω1

𝜇1𝜀

}︁)︁
p = 2

Δ𝜁 O
(︁
min

{︁
𝜀L2
n
, 𝜀2 nL2

2
R2
2𝜇

2
2
, 𝜀 𝜇2

nΩ2

}︁)︁
Δ𝜂 O

(︂
min

{︂√︁
𝜀L2
n
, 𝜀

√
nL2

R2𝜇2
,
√︁

𝜀 𝜇2
nΩ2

}︂)︂
O-le calls ̃︀O (︁

max
{︁

nL2Ω2
𝜇2

log2
𝜇2R

2
2

𝜀
, n𝜎2Ω2

𝜇2𝜀

}︁)︁
Table: Algorithm 4 parameters for the cases p = 1 and p = 2.
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Derivative-Free Optimization

Consider the following zeroth-order oracle.

1 Oracle: (x , y) → (̃︀f (x , 𝜉), ̃︀f (y , 𝜉)), where
̃︀f (x , 𝜉) = F (x , 𝜉) + Ξ(x , 𝜉)

2 |Ξ(x , 𝜉)| 6 Δ, ∀x ∈ Rn, a.s. in 𝜉
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Derivative-Free Optimization

Based on these observations of the objective value, we form the following
stochastic approximation of ∇f (x)

̃︀∇mf t(x) = 1
m

m∑︀
i=1

̃︀f (x+te,𝜉i )−̃︀f (x ,𝜉i )
t e

=

(︂⟨
gm(x , 𝜉m), e

⟩
+ 1

m

m∑︀
i=1

(𝜁(x , 𝜉i , e) + 𝜂(x , 𝜉i , e))

)︂
e,

(13)

1 gm(x , 𝜉m) :=
1
m

m∑︀
i=1

g(x , 𝜉i )

2 𝜁(x , 𝜉i , e) =
F (x+te,𝜉i )−F (x ,𝜉i )

t − ⟨g(x , 𝜉i ), e⟩, i = 1, ...,m

3 𝜂(x , 𝜉i , e) =
Ξ(x+te,𝜉i )−Ξ(x ,𝜉i )

t , i = 1, ...,m
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Derivative-Free Optimization

𝜁(x , 𝜉i , e) = F (x+te,𝜉i )−F (x ,𝜉i )
t − ⟨g(x , 𝜉i ), e⟩, i = 1, ...,m

𝜂(x , 𝜉i , e) = Ξ(x+te,𝜉i )−Ξ(x ,𝜉i )
t , i = 1, ...,m.

By Lipschitz smoothness of F (·, 𝜉), we have |𝜁(x , 𝜉, e)| 6 L(𝜉)t
2 for all

x ∈ Rn and e ∈ S2(1). Hence,

E𝜉

[︀
𝜁(x , 𝜉, e)2

]︀
6

L2
2t

2

4
=: Δ𝜁 , ∀x ∈ Rn, e ∈ S2(1).

At the same time, from |Ξ(x , 𝜉)| 6 Δ, we have that

|𝜂(x , 𝜉, e)| 6 2Δ
t

=: Δ𝜂, ∀x ∈ Rn, e ∈ S2(1), a.s. in 𝜉
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Thank you for your attention!
Questions?
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