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min {f(x) — Be[F(x, )] = /F(x,f)dP(x)}, (1)
X

© f(x) — convex function
@ F(x,&) — closed function of x P-almost surely in £

© For P almost every &, the function F(x, &) has gradient g(x, &), which
is L(&)-Lipschitz continuous with respect to the Euclidean norm

lg(x,€) =&y, Oll2 < LE)lIx = yll2, ¥x,y € R”, as.in &

O L2 := \/E[L(£)*] < +o0
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N
The Problem

Under this assumptions
0 E¢[g(x,{)] = Vf(x)
Q [[VF(x) = VI(y)ll2 < Laflx — yll2, Vx,y € R”
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N
The Problem

Under this assumptions

0 E.lg(x.6)] = VF(x)

Q [[VF(x) = VI(y)ll2 < Laflx — yll2, Vx,y € R”
Also we assume that

Ee [llg(x.€) = VF(x)II3] < o”. (2)
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N
The Problem

Finally, we assume that we have the following oracle.
@ Oracle: N
x €R" e € 5(1) = f(x, &, e) = (g(x.€), €) +((x, & e) +1(x, &, €)
Q E: [¢(x,& e)?] < A¢, Vx € R", Ve € Sy(1)
Q [n(x,&,e)] < Ay, Vx e R" Ve € 5(1)

Further we will use random vector from uniform distribution over the
Euclidean sphere in R” as e and denote it e € RSJ(1).
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Preliminaries

@ Prox-function: differentiable 1-strongly convex w.r.t. /,-norm (where
1 < p < 2) function d : R" — R.
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Preliminaries

@ Prox-function: differentiable 1-strongly convex w.r.t. /,-norm (where
1 < p < 2) function d : R" — R.

@ Bregman divergence w.r.t. d is a function of two arguments:

VI[z](x) & d(x) - d(z) — (Vd(2), x — 2). (3)
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Preliminaries

@ Prox-function: differentiable 1-strongly convex w.r.t. /,-norm (where
1 < p < 2) function d : R" — R.

@ Bregman divergence w.r.t. d is a function of two arguments:
def
Vlzl(x) = d(x) — d(z) = (Vd(2), x — 2). 3)

Note that from strong convexity of d follows

1
VIA() > Slx— 23, xze R
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Key lemma

In our proofs of complexity bounds, we rely on the following lemma.
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Key lemma

In our proofs of complexity bounds, we rely on the following lemma.

Lemma
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of the unit Euclidean sphere in R", p € [1,2] and q be given by

1 1 _
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Key lemma

In our proofs of complexity bounds, we rely on the following lemma.

Lemma

Let e € RSy(1), i.e be a random vector uniformly distributed on the surface

of the unit Euclidean sphere in R", p € [1,2] and q be given by

% + % =1. Then, forn>8 and p, = min{g—1, 16Inn — 8}n%_1,

Ecllel3 < pn, (4)
6p
Ee ((s,e)?[lel3) < n"HSH%, Vs € R". (5)
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Key lemma: intuition
The last inequality for g = co could be rewritten (without loss of generality
assume that ||s||2 = 1) as follows:

1 Inn

Ec [(s,€)2llell] S 5 -0 ¥s € Sy(1).

n
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Key lemma: intuition

The last inequality for g = co could be rewritten (without loss of generality
assume that ||s||2 = 1) as follows:

E. [(s, ¢)?]|e]%] <% '“T” Ws € So(1).

It could be obtained using phenomenon of concentration of measure. It
turns out (CM. A. Blum, J. Hopcroft, R. Kannan, Foundations of Data Science; K. Ball, An
elementary introduction to modern convex geometry; V. A. Zorich, I\/Iathemat:cal analysis in
natural science prob/ems) that Wlth probability > 1 — *e z the followmg
inequality holds |(/, e)| < \/ﬁ’ where | — some arbltrary fixed vector.
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Key lemma: intuition

The last inequality for g = co could be rewritten (without loss of generality
assume that ||s||2 = 1) as follows:

1 Inn
2 2
E. [(s, e) HeHoo] S—-— Vse S ().
n n
It could be obtained using phenomenon of concentration of measure. It
turns out (CM. A. Blum, J. Hopcroft, R. Kannan, Foundations of Data Science; K. Ball, An

elementary introduction to modern convex geometry; V. A. Zorich, I\/Iathemat:cal analysis in

natural science prob/ems) that Wlth probability > 1 — *e z the followmg
inequality holds |(/, e)| < \/7 where | — some arbltrary fixed vector.

; — _ 2 _ 100.
Putting ¢ = 10 and / = s we get that with big probability (s,e)” < ==;
and putting ¢ = 2v/In n and vectors / directed along coordinate axis one
can obtain that with probability > 1 — 7 the following inequality holds

lell3e < *52.
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Accelerated Randomized Directional Derivative Method

Algorithm 1 Accelerated Randomized Directional Derivative (ARDD)
method

Input: xp — starting point; N > 1 — number of iterations; m — batch size.
Qutput: point yy

1: Yo < X0, Z0 < Xo

2: fork=0,...,N—1do

3 Q1 & geiat — 1 = 2

96n2pnla’ 'K ¥ ZBagiantpalz | k+2°
4: Generate ;.1 € RS2(1) independently from previous iterations and &, i = 1,....,m —

independent realizations of &.

5: X1 4 Tkzk + (1 — Ti) k-
6: Calculate
~ 1 I~
V7 (k1) = > F (et €ir 1) eira-
i=1
7: Yk+1 < Xk4+1 — i%mf(xk*_l).
8: Zj41 < argmin {ak+1n <§’"f(xk+1), z— zk> + V(z] (z)}
z€RN
9: end for

10: return yy
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Complexity of ARDD

Theorem

Let ARDD method be applied to solve problem (1).
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-
Complexity of ARDD

Theorem

Let ARDD method be applied to solve problem (1). Then

E[f(yN)] — f(x*) < 384@';\/# 4 4N o2 A + 122NA2

+

2n0, (a/Ag LA )
n

2

N2

N2 A
(V2 S 2A7,) ,

+ 12nppLa
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-
Complexity of ARDD

Theorem

Let ARDD method be applied to solve problem (1). Then

Elf(yn)] - f(x) < 3Caronte 4N . o2 | NN I2NA2

12,/200, (/
+ = <2< + 24,
5
N2 VA
+12np,,L2( 3 +2An) ;

where ©, = V[z](x*) is defined by the chosen proximal setup and

----- ens&1 1--»--§N,m[']-
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-
Complexity of ARDD

p=1 p=2
N o) (J@) ® <\/n2L§92
m o (max{l \/g}) o (max{l7 ;3"?2 . %22})
A O [ min < n(In n)2L @1, "91’ \/m a > fo) (mln{n3L§@2, %’ é %})
Ay O('"i”{ﬁ'""l-zx/@,\/%e—l,&%~ ‘é—i}) O<m|n n%Lz\/@,ﬁ,%A 4%})
| sl ) o (o] VP 5]

Table: ARDD parameters for the cases p =1 and p = 2.
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Randomized Directional Derivative Method

Algorithm 2 Randomized Directional Derivative (RDD) method

Input: xp — starting point; N > 1 — number of iterations; m — batch size.
Qutput: point Xp.
1: fork=0,..., N—1do
. 1
2: R T
3: Generate ;.1 € RS2(1) independently from previous iterations and &, i = 1,....m —
independent realizations of &.
4: Xk+1 — argmin {an <V”’f(xk) X — Xk> + V[xk] x)}
XERN
b: Calculate

~ 1 I~
VP (1) = — > F (et Eir 1) et
i1

6: end for
L N1
T: return Xy < 5 > Xk
k=0
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Complexity of RDD

Theorem
Let RDD method be applied to solve problem (1). Then

_ 120
E[f(xn)] — f(x) < % + L2 m S+ RO+ 3n A2

2n©
(42

N

2
N VA
+3L2pn< 2 +2An) )
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-
Complexity of RDD

Theorem

Let RDD method be applied to solve problem (1). Then

E[f(xn)] — f(x) < W + L2 m S+ RO+ 3n A7
2n© v/ A
N < 3 +2An>

2
N VA
+3L2pn< 3 +2An) )

where ©, = V[z](x*) is defined by the chosen proximal setup and

[N B S T P §N m[]
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Complexity of RDD

p=1 p=2
L3OqInn nLy©p
G o(=2) o(%%%)
m O(max{l, o) ) O(max{l, o) )
2 .2
A¢ o (m‘"{(‘"") 1301, 57 #}) © (’"i" {”Lz@z’ 703 #})
3 I el - el
Ay O(mm{%sz/@l, ﬁ, \/Tz}) O(mln{ﬁLz\/ez, \/%, \/Tz})
2 2
O-le calls o (max {7Lze€1‘n”, Z =100 21“‘ @ }) (0] (max {7""2562 s ‘2—"1 O2 })

Table: RDD parameters for the cases p =1 and p = 2.
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ARDD and RDD

Method

p=1

p=2

ARDD | O <max{,/@,

2@1

€

)

O max n2L0, 0'2@22n
5 e

RDD (0] (max{

201 530,
€ b

#})

~ 2
10) (max { anaez , nagzez })

Table: ARDD and RDD complexities for p =1 and p = 2
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|
ARDD and RDD

Method

p=1

p=2

ARDD | 6 <max{,/@, @})

O max n2L0, 0'2@22n
5 e

RDD (0]

(max {—Lzel
£

20, })
y T o2

~ 2
10) (max { anaez , no‘gz@z })

Table: ARDD and RDD complexities for p =1 and p = 2

Remark

Note that for p = 1 RDD gives dimensional independent complexity

bounds.
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Strongly convex case

We will additionally assume two facts.

@ Function f(x) is pp-strongly convex w.r.t. l,-norm.
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Strongly convex case

We will additionally assume two facts.
@ Function f(x) is pp-strongly convex w.r.t. l,-norm.

@ There is such a constant 2, for our choice of prox-function d(-) that

x — such random point that E,[||x — X*Hf,] < Rg

— Ed (52) <% (8)
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|
ARDD method for strongly convex functions (ARDDsc)

Algorithm 3 Accelerated Randomized Directional Derivative method for strongly convex
functions (ARDDsc)

Input: xo — starting point s.t. ||xo — x«[|2 < R%; K > 1 — number of iterations; y, — strong
convexity parameter.
Qutput: point uk.

1: Set Np = % , where a = 384n2p,
2: fork=0,..., K—1do
3: Set
8ba2 N2k 4A 4
my = max< 1, 0702 , Rf = R§27k + — (1 - 2*“) , where b= - (9)
LoppR3 p n
4 Set dy(x) = R2d (X;:k).
5: Run ARDD with starting point uj, and prox-function di(x) for No steps with batch size
my.
6: Set w41 = ¥YNo» k=k+1.
7: end for
8: return uk
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Complexity of ARDDsc
Theorem

Let f in problem (1) be jp-strongly convex and ARDDsc method be
applied to solve this problem.

y
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Complexity of ARDDsc
Theorem

Let f in problem (1) be jp-strongly convex and ARDDsc method be
applied to solve this problem. Then

2
Ef(uk) — F* < 2% . 2=K 4 oA, (10)
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Complexity of ARDDsc

Theorem

Let f in problem (1) be jp-strongly convex and ARDDsc method be
applied to solve this problem. Then
2
Ef(uk) — F* < 2% . 2=K 4 oA, (10)

where A\ =

2
61N, 122Ng A 2, 124/2nR3Q, [ \/A¢ N3 VA
24L§ Ac+ 3L20 Ap+ NZ = ( 7t 2An) + 12npo,,L2 — +20,) .

v
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-
Complexity of ARDDsc

Theorem

Let f in problem (1) be jp-strongly convex and ARDDsc method be
applied to solve this problem. Then

Ef(ug) — F* < 27K 124, (10)

where A = )
2nR2Q A 2 A

S A+t 24 2 N"w(v 2 )t (Y7 2)

Moreover, under an appropriate choice of A; and A, s.t. 2A < ¢/2, the
oracle complexity to achieve e-accuracy of the solut/on is

v
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Complexity of ARDDsc

Theorem

Let f in problem (1) be jp-strongly convex and ARDDsc method be
applied to solve this problem. Then

Ef(ug) — F* < 27K 124, (10)

where A = )
2nR2Q A 2 A

o a4 N"w(v o e (Y 2)

Moreover, under an appropriate choice of A; and A, s.t. 2A < ¢/2, the
oracle complexity to achieve e-accuracy of the solut/on is

2
~ 11 [0 RS nio2Q
O max{nzta, /2 P log, fe p?nqa ol
Hp € Hp&
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Complexity of ARDDsc

=1
Lopy 2"’-291 e
AC (mln { ninnQy R2 2 ? nQy
a/ Lopg ﬁ'"nl-zvﬂl . I
An (mln { nlinnQy ? Ryp1 ? \/g nQy
1 LGl p1RE 5204
O-le calls (max{ 2 log, =7, 22
p=2
3,2
i Lapp 27 L5%%0 . B2
Ac¢ (0] (mm {a e € RELZ € 165
a/Llap2 Vn3L2\/Qz . B2
An (mln {\[\/ n?Qz Rap2 ﬁ nQa
R2 2
O-le calls O (max LzQZ log, 4282 no~Sz
2 & ) puze

Table: Algorithm 3 parameters for the cases p =1 and p =2
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RDD for strongly convex functions

Algorithm 4 Randomized Directional Derivative method for strongly convex functions
(RDDsc)

Input: xo — starting point s.t. ||xo — x«[|2 < R%; K > 1 — number of iterations; y, — strong
convexity parameter.
Qutput: point uk.
. _ [8aL29p _
1: Set Np = = where a = 384np,.
P
2: fork=0,...,K—1do
3: Set

8bo22k 4A
my := max< 1, 072 s Rf = R§27k + — (1 - 2’k> , where b=2  (11)
LZ:U'PRp Hp

4 Setdi(x) = R2d (5).

5: Run RDD with starting point uy and prox-function di(x) for Np steps with batch size
my.

6: Set Uk+1 = YNg» k=k+1.

7: end for

8: return uyx
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-
Complexity of RDDsc
Theorem

Let f in problem (1) be pp-strongly convex and RDDsc method be applied
to solve this problem.

v
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Complexity of RDDsc

Theorem

Let f in problem (1) be pp-strongly convex and RDDsc method be applied
to solve this problem. Then

2
Ef (ui) — F* < "8 . 0=K L oA, (12)

y
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Complexity of RDDsc

Theorem

Let f in problem (1) be pp-strongly convex and RDDsc method be applied
to solve this problem. Then

Ef(ux) — f* < 27K oA, (12)

where

2
1/2nR 0, [ /Be VA
A = A3 Ay 247 ’ ( 3 +2An> 3L2p ( ) +2An> :

v
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-
Complexity of RDDsc

Theorem

Let f in problem (1) be pp-strongly convex and RDDsc method be applied
to solve this problem. Then

Ef(ux) — f* < 27K oA, (12)
where
2nR Q (/A 1/A
A= 12L2AC+3L2A 2"‘ ( +2A +3L2p : + 24,

Moreover, under an appropr/ate choice of A¢ and A, s.t. 2A < €/2, the
oracle complexity to achieve e-accuracy of the solut/on is

2

v
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-
Complexity of RDDsc

Theorem

Let f in problem (1) be pp-strongly convex and RDDsc method be applied
to solve this problem. Then

Ef(ux) — f* < 27K oA, (12)
where
2nR Q (/A 1/A
A= 12L2AC+3L2A 2"‘ ( +2A +3L2p : + 24,

Moreover, under an appropr/ate choice of A¢ and A, s.t. 2A < €/2, the
oracle complexity to achieve e-accuracy of the solut/on is

2 2 2
O | max ne Lo, log, 'upRp, n1o*Q, .
Hp € HpE
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-
Complexity of RDDsc

p=1
. L In n)212
A; (0} (mm A, 62(:,%)#57 ek })

. el In nL M1
A, O(mln{,/ nz’gﬁleu’ Y on }>

~ R2 2
O-le calls 0] (max{% log, £19 o })

€ H1e

p=2

2 nL§

ind gLk K2
A¢ O(mm{ =2 R_‘%#%,snﬂz}

Ay, o(min{./%ﬁ@; ,/s;;;ZD

R2 2
O-le calls (0] (max {"L:% log, 272 w})

€ H2E

Table: Algorithm 4 parameters for the cases p =1 and p = 2.
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Derivative-Free Optimization

Consider the following zeroth-order oracle.
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Derivative-Free Optimization

Consider the following zeroth-order oracle.

@ Oracle: (x,y) — (f(x,£),f(y,£)), where

f(x,€) = F(x,8) +=(x,€)

Eduard Gorbunov (MIPT) 6 July, 2018 22 /25



Derivative-Free Optimization

Consider the following zeroth-order oracle.

@ Oracle: (x,y) — (f(x,£),f(y,£)), where

f(x,€) = F(x,8) +=(x,€)

Q |=(x,&)| <A, VxeR" as. in
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Derivative-Free Optimization

Based on these observations of the objective value, we form the following
stochastic approximation of V£ (x)
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Derivative-Free Optimization

Based on these observations of the objective value, we form the following
stochastic approximation of V£ (x)

TmFt(x) = 1 30 Frtet) e
i=1

1
( (6o e) + A B¢ (x,f,-,e)+n(x,f,-,e)))e,
(13)
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Derivative-Free Optimization

Based on these observations of the objective value, we form the following
stochastic approximation of V£ (x)

~ m

vmf‘t(x) — Z X+tevf) f-(X7£I)

1
( ")) + 2(mma+m&@@0a
(13)

ogw&&rz;ia&m
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Derivative-Free Optimization

Based on these observations of the objective value, we form the following
stochastic approximation of V£ (x)
f:l Flctte ) =Fati) o

1
( (6o e) + A B¢ (x,f,-,e)+n(x,f,-,e)))e,
(13)

VTt(x) =

0 g"(x,Em) =L ; g(x, &)
@ ((x,&,e) = FLAel)TFE) _ g(x ¢),e), i=1,..,m
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Derivative-Free Optimization

Based on these observations of the objective value, we form the following
stochastic approximation of V£ (x)

1
0 ¢"(x.6) =1 il g(x.&)

2] C(X7€f7 e) = F(X+te7€it)_F(X7§i) - <g(X7§i)’ €‘>, i=1..,m

o 77(X7£i7 e) _ E(x+1re7-€ft)—E(x,ff)7 i = 17 ym

m

Z f(XJ"tevf) f—(X7£I)
:1

VTt(x) =

(&a).e) + 5 55(¢ (x,f,-,e)+n(x,s,-,e))) e
(13)
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Derivative-Free Optimization

((x, &) = FOHBETFIG) _(g(x ¢))e), i=1,..,m

— o _
n(x,&e) = :(x—i—te,E;)—:(x,Si), i=1,.. m
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Derivative-Free Optimization

((x, &) = FOHBETFIG) _(g(x ¢))e), i=1,..,m

— o _
n(x,&e) = :(x—i—te,E;)—:(x,Si), i=1,.. m

By Lipschitz smoothness of F(+, &), we have |((x, ¢, e)| < @ for all
x € R" and e € S3(1).
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Derivative-Free Optimization

((x, &) = FOHBETFIG) _(g(x ¢))e), i=1,..,m

— o _
n(x,&e) = :(x—i—te,E;)—:(x,ﬁi)’ i=1,.. m

By Lipschitz smoothness of F(+, &), we have |((x, ¢, e)| < @ for all
x € R" and e € S>(1). Hence,

L2 2
Ee [C(x,€, e)?] < 2Tt — A, YxER"ee S(1).
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Derivative-Free Optimization

C(x,E,e) = F(X+te,f/) F(x.,&i) —(g(x,&),e), i=1,...m
NGy e) = St =)

= T s

By Lipschitz smoothness of F(+, &), we have |((x, ¢, e)| < @ for all
x € R" and e € S>(1). Hence,

L3t2

Ee [¢(x, €, e)?] < == A, Yx €R" e € Sy(1).

At the same time, from |=(x,&)| < A, we have that

2A

In(x,&,e)| < - = A,, YxeR" eeS5(1), as. in¢&
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Thank you for your attention!
Questions?
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