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The Problem

min
x∈Rn

⎧⎨⎩f (x) := E𝜉[F (x , 𝜉)] =

∫︁
𝒳

F (x , 𝜉)dP(x)

⎫⎬⎭ , (1)

where 𝜉 is a random vector with probability distribution P(𝜉), 𝜉 ∈ 𝒳 , and
for P-almost every 𝜉 ∈ 𝒳 , the function F (x , 𝜉) is closed and f is convex.
Moreover, we assume that, for P almost every 𝜉, the function F (x , 𝜉) has
gradient g(x , 𝜉), which is L(𝜉)-Lipschitz continuous with respect to the
Euclidean norm

‖g(x , 𝜉)− g(y , 𝜉)‖2 6 L(𝜉)‖x − y‖2, ∀x , y ∈ Rn, a.s. in 𝜉,

and L2 :=
√︀

E𝜉[L(𝜉)2] < +∞.
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The Problem

Under this assumptions, E𝜉[g(x , 𝜉)] = ∇f (x) and

‖∇f (x)−∇f (y)‖2 6 L2‖x − y‖2, ∀x , y ∈ Rn.

Also we assume that

E𝜉

[︀
‖g(x , 𝜉)−∇f (x)‖2

2
]︀
6 𝜎2. (2)
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The Problem

Finally, we assume that an optimization procedure, given a point x ∈ Rn,

direction e ∈ S2(1) and 𝜉 independently drawn from P , can obtain a noisy
stochastic approximation ̃︀f ′(x , 𝜉, e) for the directional derivative
⟨g(x , 𝜉), e⟩:

̃︀f ′(x , 𝜉, e) = ⟨g(x , 𝜉), e⟩+ 𝜁(x , 𝜉, e) + 𝜂(x , 𝜉, e),

E𝜉

[︀
𝜁(x , 𝜉, e)2

]︀
6 Δ𝜁 , ∀x ∈ Rn,∀e ∈ S2(1),

|𝜂(x , 𝜉, e)| 6 Δ𝜂, ∀x ∈ Rn,∀e ∈ S2(1), a.s. in 𝜉, (3)

where S2(1) is the Euclidean sphere or radius one with the center at the
point zero and the values Δ𝜁 , Δ𝜂 are controlled and can be made as small
as it is desired. Note that we use the smoothness of F (·, 𝜉) to write the
directional derivative as ⟨g(x , 𝜉), e⟩, but we do not assume that the whole
stochastic gradient g(x , 𝜉) is available.

Eduard Gorbunov (MIPT) 13 June, 2018 4 / 16



The Problem

Finally, we assume that an optimization procedure, given a point x ∈ Rn,
direction e ∈ S2(1)

and 𝜉 independently drawn from P , can obtain a noisy
stochastic approximation ̃︀f ′(x , 𝜉, e) for the directional derivative
⟨g(x , 𝜉), e⟩:

̃︀f ′(x , 𝜉, e) = ⟨g(x , 𝜉), e⟩+ 𝜁(x , 𝜉, e) + 𝜂(x , 𝜉, e),

E𝜉

[︀
𝜁(x , 𝜉, e)2

]︀
6 Δ𝜁 , ∀x ∈ Rn,∀e ∈ S2(1),

|𝜂(x , 𝜉, e)| 6 Δ𝜂, ∀x ∈ Rn,∀e ∈ S2(1), a.s. in 𝜉, (3)

where S2(1) is the Euclidean sphere or radius one with the center at the
point zero and the values Δ𝜁 , Δ𝜂 are controlled and can be made as small
as it is desired. Note that we use the smoothness of F (·, 𝜉) to write the
directional derivative as ⟨g(x , 𝜉), e⟩, but we do not assume that the whole
stochastic gradient g(x , 𝜉) is available.

Eduard Gorbunov (MIPT) 13 June, 2018 4 / 16



The Problem

Finally, we assume that an optimization procedure, given a point x ∈ Rn,
direction e ∈ S2(1) and 𝜉 independently drawn from P ,

can obtain a noisy
stochastic approximation ̃︀f ′(x , 𝜉, e) for the directional derivative
⟨g(x , 𝜉), e⟩:

̃︀f ′(x , 𝜉, e) = ⟨g(x , 𝜉), e⟩+ 𝜁(x , 𝜉, e) + 𝜂(x , 𝜉, e),

E𝜉

[︀
𝜁(x , 𝜉, e)2

]︀
6 Δ𝜁 , ∀x ∈ Rn,∀e ∈ S2(1),

|𝜂(x , 𝜉, e)| 6 Δ𝜂, ∀x ∈ Rn,∀e ∈ S2(1), a.s. in 𝜉, (3)

where S2(1) is the Euclidean sphere or radius one with the center at the
point zero and the values Δ𝜁 , Δ𝜂 are controlled and can be made as small
as it is desired. Note that we use the smoothness of F (·, 𝜉) to write the
directional derivative as ⟨g(x , 𝜉), e⟩, but we do not assume that the whole
stochastic gradient g(x , 𝜉) is available.

Eduard Gorbunov (MIPT) 13 June, 2018 4 / 16



The Problem

Finally, we assume that an optimization procedure, given a point x ∈ Rn,
direction e ∈ S2(1) and 𝜉 independently drawn from P , can obtain a noisy
stochastic approximation ̃︀f ′(x , 𝜉, e) for the directional derivative
⟨g(x , 𝜉), e⟩:

̃︀f ′(x , 𝜉, e) = ⟨g(x , 𝜉), e⟩+ 𝜁(x , 𝜉, e) + 𝜂(x , 𝜉, e),

E𝜉

[︀
𝜁(x , 𝜉, e)2

]︀
6 Δ𝜁 , ∀x ∈ Rn,∀e ∈ S2(1),

|𝜂(x , 𝜉, e)| 6 Δ𝜂, ∀x ∈ Rn,∀e ∈ S2(1), a.s. in 𝜉, (3)

where S2(1) is the Euclidean sphere or radius one with the center at the
point zero and the values Δ𝜁 , Δ𝜂 are controlled and can be made as small
as it is desired. Note that we use the smoothness of F (·, 𝜉) to write the
directional derivative as ⟨g(x , 𝜉), e⟩, but we do not assume that the whole
stochastic gradient g(x , 𝜉) is available.

Eduard Gorbunov (MIPT) 13 June, 2018 4 / 16



The Problem

Finally, we assume that an optimization procedure, given a point x ∈ Rn,
direction e ∈ S2(1) and 𝜉 independently drawn from P , can obtain a noisy
stochastic approximation ̃︀f ′(x , 𝜉, e) for the directional derivative
⟨g(x , 𝜉), e⟩:

̃︀f ′(x , 𝜉, e) = ⟨g(x , 𝜉), e⟩+ 𝜁(x , 𝜉, e) + 𝜂(x , 𝜉, e),

E𝜉

[︀
𝜁(x , 𝜉, e)2

]︀
6 Δ𝜁 , ∀x ∈ Rn, ∀e ∈ S2(1),

|𝜂(x , 𝜉, e)| 6 Δ𝜂, ∀x ∈ Rn, ∀e ∈ S2(1), a.s. in 𝜉, (3)

where S2(1) is the Euclidean sphere or radius one with the center at the
point zero and the values Δ𝜁 , Δ𝜂 are controlled and can be made as small
as it is desired. Note that we use the smoothness of F (·, 𝜉) to write the
directional derivative as ⟨g(x , 𝜉), e⟩, but we do not assume that the whole
stochastic gradient g(x , 𝜉) is available.

Eduard Gorbunov (MIPT) 13 June, 2018 4 / 16



The Problem

Finally, we assume that an optimization procedure, given a point x ∈ Rn,
direction e ∈ S2(1) and 𝜉 independently drawn from P , can obtain a noisy
stochastic approximation ̃︀f ′(x , 𝜉, e) for the directional derivative
⟨g(x , 𝜉), e⟩:

̃︀f ′(x , 𝜉, e) = ⟨g(x , 𝜉), e⟩+ 𝜁(x , 𝜉, e) + 𝜂(x , 𝜉, e),

E𝜉

[︀
𝜁(x , 𝜉, e)2

]︀
6 Δ𝜁 , ∀x ∈ Rn, ∀e ∈ S2(1),

|𝜂(x , 𝜉, e)| 6 Δ𝜂, ∀x ∈ Rn, ∀e ∈ S2(1), a.s. in 𝜉, (3)

where S2(1) is the Euclidean sphere or radius one with the center at the
point zero

and the values Δ𝜁 , Δ𝜂 are controlled and can be made as small
as it is desired. Note that we use the smoothness of F (·, 𝜉) to write the
directional derivative as ⟨g(x , 𝜉), e⟩, but we do not assume that the whole
stochastic gradient g(x , 𝜉) is available.

Eduard Gorbunov (MIPT) 13 June, 2018 4 / 16



The Problem

Finally, we assume that an optimization procedure, given a point x ∈ Rn,
direction e ∈ S2(1) and 𝜉 independently drawn from P , can obtain a noisy
stochastic approximation ̃︀f ′(x , 𝜉, e) for the directional derivative
⟨g(x , 𝜉), e⟩:

̃︀f ′(x , 𝜉, e) = ⟨g(x , 𝜉), e⟩+ 𝜁(x , 𝜉, e) + 𝜂(x , 𝜉, e),

E𝜉

[︀
𝜁(x , 𝜉, e)2

]︀
6 Δ𝜁 , ∀x ∈ Rn, ∀e ∈ S2(1),

|𝜂(x , 𝜉, e)| 6 Δ𝜂, ∀x ∈ Rn, ∀e ∈ S2(1), a.s. in 𝜉, (3)

where S2(1) is the Euclidean sphere or radius one with the center at the
point zero and the values Δ𝜁 , Δ𝜂 are controlled and can be made as small
as it is desired.

Note that we use the smoothness of F (·, 𝜉) to write the
directional derivative as ⟨g(x , 𝜉), e⟩, but we do not assume that the whole
stochastic gradient g(x , 𝜉) is available.

Eduard Gorbunov (MIPT) 13 June, 2018 4 / 16



The Problem

Finally, we assume that an optimization procedure, given a point x ∈ Rn,
direction e ∈ S2(1) and 𝜉 independently drawn from P , can obtain a noisy
stochastic approximation ̃︀f ′(x , 𝜉, e) for the directional derivative
⟨g(x , 𝜉), e⟩:

̃︀f ′(x , 𝜉, e) = ⟨g(x , 𝜉), e⟩+ 𝜁(x , 𝜉, e) + 𝜂(x , 𝜉, e),

E𝜉

[︀
𝜁(x , 𝜉, e)2

]︀
6 Δ𝜁 , ∀x ∈ Rn, ∀e ∈ S2(1),

|𝜂(x , 𝜉, e)| 6 Δ𝜂, ∀x ∈ Rn, ∀e ∈ S2(1), a.s. in 𝜉, (3)

where S2(1) is the Euclidean sphere or radius one with the center at the
point zero and the values Δ𝜁 , Δ𝜂 are controlled and can be made as small
as it is desired. Note that we use the smoothness of F (·, 𝜉) to write the
directional derivative as ⟨g(x , 𝜉), e⟩, but we do not assume that the whole
stochastic gradient g(x , 𝜉) is available.

Eduard Gorbunov (MIPT) 13 June, 2018 4 / 16



Preliminaries

We choose a prox-function d(x) which is continuous, convex on Rn

and is
1-strongly convex on Rn with respect to ‖ · ‖p, where ‖ · ‖p is a vector
lp-norm with p ∈ [1, 2]. We define also the corresponding Bregman
divergence V [z ](x) = d(x)− d(z)− ⟨∇d(z), x − z⟩, x , z ∈ Rn. Note
that, by the strong convexity of d ,

V [z ](x) ≥ 1
2
‖x − z‖2

p, x , z ∈ Rn. (4)

For the case p = 1, we choose the following prox-function

d(x) =
en(𝜅−1)(2−𝜅)/𝜅 ln n

2
‖x‖2

𝜅, 𝜅 = 1+
1
ln n

(5)

and, for the case p = 2, we choose the prox-function to be the squared
Euclidean norm

d(x) =
1
2
‖x‖2

2. (6)
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Key lemma

In our proofs of complexity bounds, we rely on the following lemma.

Lemma

Let e ∈ RS2(1), i.e be a random vector uniformly distributed on the surface
of the unit Euclidean sphere in Rn, p ∈ [1, 2] and q be given by
1
p + 1

q = 1. Then, for n > 8 and 𝜌n = min{q − 1, 16 ln n − 8}n
2
q
−1,

Ee‖e‖2
q ≤ 𝜌n, (7)

Ee

(︀
⟨s, e⟩2‖e‖2

q

)︀
≤ 6𝜌n

n
‖s‖2

2, ∀s ∈ Rn. (8)
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Accelerated Randomized Directional Derivative Method

Algorithm 1 Accelerated Randomized Directional Derivative (ARDD)
method
Input: x0 — starting point; N > 1 — number of iterations; m — batch size.
Output: point yN
1: y0 ← x0, z0 ← x0
2: for k = 0, . . . , N − 1 do
3: 𝛼k+1 ← k+2

96n2𝜌nL2
, 𝜏k ← 1

48𝛼k+1n2𝜌nL2
= 2

k+2 .
4: Generate ek+1 ∈ RS2(1) independently from previous iterations and 𝜉i , i = 1, ...,m –

independent realizations of 𝜉.
5: Calculate ̃︀∇mf (xk+1) =

1
m

m∑︁
i=1

̃︀f ′(xk+1, 𝜉i , ek+1)ek+1.

6: xk+1 ← 𝜏kzk + (1− 𝜏k )yk .
7: yk+1 ← xk+1 − 1

2L2
̃︀∇mf (xk+1).

8: zk+1 ← argmin
z∈Rn

{︁
𝛼k+1n

⟨̃︀∇mf (xk+1), z − zk

⟩
+ V [zk ] (z)

}︁
.

9: end for
10: return yN
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Complexity of ARDD

Theorem

Let ARDD method be applied to solve problem (1).

Then

E[f (yN)]− f (x*) 6 384Θpn2𝜌nL2
N2 + 4N

nL2
· 𝜎2

m + 61N
24L2

Δ𝜁 +
122N
3L2

Δ2
𝜂

+
12
√

2nΘp

N2

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂
+ N2

12n𝜌nL2

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂2

,

(9)

where Θp = V [z0](x
*) is defined by the chosen proximal setup and

E[·] = Ee1,...,eN ,𝜉1,1,...,𝜉N,m
[·].
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Complexity of ARDD

p = 1 p = 2

N O

(︂√︁
n ln nL2Θ1

𝜀

)︂
O

(︃√︂
n2L2Θ2

𝜀

)︃

m O

(︂
max

{︂
1,
√︁

ln n
n

· 𝜎2

𝜀3/2 ·
√︂

Θ1
L2

}︂)︂
O

(︂
max

{︂
1, 𝜎2

𝜀3/2 ·
√︂

Θ2
L2

}︂)︂
Δ𝜁 O

(︃
min

{︃
n(ln n)2L2

2Θ1,
𝜀2
nΘ1

, 𝜀
3
2√

n ln n
·
√︂

L2
Θ1

}︃)︃
O

(︃
min

{︃
n3L2

2Θ2,
𝜀

nΘ2
, 𝜀

3
2
n

·
√︂

L2
Θ2

}︃)︃

Δ𝜂 O

(︃
min

{︃
√

n ln nL2
√
Θ1,

𝜀√
nΘ1

, 𝜀
3
4

4√
n ln n

· 4
√︂

L2
Θ1

}︃)︃
O

(︃
min

{︃
n

3
2 L2

√
Θ2,

𝜀√
nΘ2

, 𝜀
3
4√
n

· 4
√︂

L2
Θ2

}︃)︃

O-le calls O

(︂
max

{︂√︁
n ln nL2Θ1

𝜀
,
𝜎2Θ1 ln n

𝜀2

}︂)︂
O

(︃
max

{︃√︂
n2L2Θ2

𝜀
,
𝜎2Θ2n

𝜀2

}︃)︃

Table: ARDD parameters for the cases p = 1 and p = 2.
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Randomized Directional Derivative Method

Algorithm 2 Randomized Directional Derivative (RDD) method
Input: x0 — starting point; N > 1 — number of iterations; m — batch size.
Output: point x̄N .
1: for k = 0, . . . , N − 1 do
2: 𝛼← 1

48n𝜌nL2
.

3: Generate ek+1 ∈ RS2(1) independently from previous iterations and 𝜉i , i = 1, ...,m –
independent realizations of 𝜉.

4: Calculate ̃︀∇mf (xk+1) =
1
m

m∑︁
i=1

̃︀f ′(xk+1, 𝜉i , ek+1)ek+1.

5: xk+1 ← argmin
x∈Rn

{︁
𝛼n

⟨̃︀∇mf (xk ), x − xk

⟩
+ V [xk ] (x)

}︁
.

6: end for

7: return x̄N ← 1
N

N−1∑︀
k=0

xk
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Complexity of RDD

Theorem

Let RDD method be applied to solve problem (1).

Then

E[f (x̄N)]− f (x*) 6 384n𝜌nL2Θp

N + 2
L2

𝜎2

m + n
12L2

Δ𝜁 +
4n
3L2

Δ2
𝜂

+
8
√

2nΘp

N

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂
+ N

3L2𝜌n

(︂√
Δ𝜁

2 + 2Δ𝜂

)︂2

,

(10)

where Θp = V [z0](x
*) is defined by the chosen proximal setup and

E[·] = Ee1,...,eN ,𝜉1,1,...,𝜉N,m
[·].
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Complexity of RDD

p = 1 p = 2

N O
(︁

L2Θ1 ln n
𝜀

)︁
O
(︁

nL2Θ2
𝜀

)︁
m O

(︁
max

{︁
1, 𝜎2

𝜀L2

}︁)︁
O
(︁
max

{︁
1, 𝜎2

𝜀L2

}︁)︁
Δ𝜁 O

(︂
min

{︂
(ln n)2

n
L2
2Θ1,

𝜀2
nΘ1

,
𝜀L2
n

}︂)︂
O
(︁
min

{︁
nL2

2Θ2,
𝜀2
nΘ2

,
𝜀L2
n

}︁)︁
Δ𝜂 O

(︂
min

{︂
ln n√

n
L2

√
Θ1,

𝜀√
nΘ1

,

√︁
𝜀L2
n

}︂)︂
O

(︂
min

{︂√
nL2

√
Θ2,

𝜀√
nΘ2

,

√︁
𝜀L2
n

}︂)︂
O-le calls O

(︂
max

{︂
L2Θ1 ln n

𝜀
,
𝜎2Θ1 ln n

𝜀2

}︂)︂
O

(︂
max

{︂
nL2Θ2

𝜀
,
n𝜎2Θ2

𝜀2

}︂)︂

Table: RDD parameters for the cases p = 1 and p = 2.
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ARDD and RDD

Method p = 1 p = 2

ARDD Õ

(︂
max

{︂√︁
nL2Θ1

𝜀
, 𝜎2Θ1

𝜀2

}︂)︂
Õ

(︂
max

{︂√︁
n2L2Θ2

𝜀
, 𝜎2Θ2n

𝜀2

}︂)︂
RDD Õ

(︁
max

{︁
L2Θ1

𝜀
, 𝜎2Θ1

𝜀2

}︁)︁
Õ

(︁
max

{︁
nL2Θ2

𝜀
, n𝜎2Θ2

𝜀2

}︁)︁
Table: ARDD and RDD complexities for p = 1 and p = 2

Remark
Note that for p = 1 RDD gives dimensional independent complexity
bounds.
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Derivative-Free Optimization

We assume that an optimization procedure, given a pair of points
(x , y) ∈ R2n , can obtain a pair of noisy stochastic realizations
(̃︀f (x , 𝜉), ̃︀f (y , 𝜉)) of the objective value f , where

̃︀f (x , 𝜉) = F (x , 𝜉) + Ξ(x , 𝜉), |Ξ(x , 𝜉)| 6 Δ, ∀x ∈ Rn, a.s. in 𝜉, (11)

and 𝜉 is independently drawn from P .
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Derivative-Free Optimization

Based on these observations of the objective value, we form the following
stochastic approximation of ∇f (x)

̃︀∇mf t(x) = 1
m

m∑︀
i=1

̃︀f (x+te,𝜉i )−̃︀f (x ,𝜉i )
t e

=

(︂⟨
gm(x , 𝜉m), e

⟩
+ 1

m

m∑︀
i=1

(𝜁(x , 𝜉i , e) + 𝜂(x , 𝜉i , e))

)︂
e,

(12)
where e ∈ RS2(1), 𝜉i , i = 1, ...,m are independent realizations of 𝜉, m is
the batch size, t is some small positive parameter which we call smoothing

parameter, gm(x , 𝜉m) :=
1
m

m∑︀
i=1

g(x , 𝜉i ), and

𝜁(x , 𝜉i , e) = F (x+te,𝜉i )−F (x ,𝜉i )
t − ⟨g(x , 𝜉i ), e⟩, i = 1, ...,m

𝜂(x , 𝜉i , e) = Ξ(x+te,𝜉i )−Ξ(x ,𝜉i )
t , i = 1, ...,m.
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𝜂(x , 𝜉i , e) = Ξ(x+te,𝜉i )−Ξ(x ,𝜉i )
t , i = 1, ...,m.

By Lipschitz smoothness of F (·, 𝜉), we have |𝜁(x , 𝜉, e)| 6 L(𝜉)t
2 for all

x ∈ Rn and e ∈ S2(1). Hence, E𝜉(𝜁(x , 𝜉, e))
2 6 L2

2t
2

4 =: Δ𝜁 for all x ∈ Rn

and e ∈ S2(1). At the same time, from (11), we have that
|𝜂(x , 𝜉, e)| 6 2Δ

t =: Δ𝜂 for all x ∈ Rn, e ∈ S2(1) and a.s. in 𝜉.
So, we can use the same methods and analyze such problems in the same
way.
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