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N
The Problem

min $ £ = BlF(x. ) = [ FleOaPd . ()
X

where £ is a random vector with probability distribution P(¢), £ € X, and
for P-almost every £ € X, the function F(x,&) is closed and f is convex.
Moreover, we assume that, for P almost every &, the function F(x, &) has

gradient g(x, &), which is L(&)-Lipschitz continuous with respect to the
Euclidean norm

lg(x, &) =gy, Ol < LE)IIx = yll2, ¥x,y € R", as. in &,

and L, := \/EE[L(g)Q] < 400.
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The Problem

Under this assumptions, E¢[g(x,&)] = Vf(x) and
IVE(x) = VE(y)ll2 < Laflx = yll2, ¥x,y € R".

Also we assume that

Ee [llg(x,€) = VI(x)II3] < o*. (2)
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The Problem

Finally, we assume that an optimization procedure, given a point x € R”",
direction e € 5»(1) and ¢ independently drawn from P, can obtain a noisy
stochastic approximation f’(x, &, ) for the directional derivative

(g(x,€), €):

Fl(x, &) = (g(x.£), ) + ¢(x, &, &) +m(x, &, ),
Ee [¢(x, &, e)?] < A¢, ¥x € R™, Ve € Sy(1),
In(x, &, e)l , Vx € R" Ve € S5(1), as. in ¢, (3)

where S5(1) is the Euclidean sphere or radius one with the center at the
point zero and the values A, are controlled and can be made as small
as it is desired. Note that we use the smoothness of F(-,¢) to write the
directional derivative as (g(x, &), e), but we do not assume that the whole
stochastic gradient g(x, &) is available.
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We choose a prox-function d(x) which is continuous, convex on R" and is
1-strongly convex on R” with respect to || - ||, where || - ||, is a vector
l,-norm with p € [1,2]. We define also the corresponding Bregman
divergence V|z](x) = d(x) — d(z) — (Vd(z),x — z), x,z € R". Note
that, by the strong convexity of d,

1
V[Z(0) > Slx =2l xzeR" (4)

For the case p = 1, we choose the following prox-function

en(F=1)(2=r)/% |n 1

— 2 — =
d(x) = e LU Bt (5)

and, for the case p = 2, we choose the prox-function to be the squared
Euclidean norm

d(x) = 5 xIB. (6)

Eduard Gorbunov (MIPT) 13 June, 2018 5/ 16



Key lemma

In our proofs of complexity bounds, we rely on the following lemma.

Eduard Gorbunov (MIPT) 13 June, 2018 6 /16



Key lemma

In our proofs of complexity bounds, we rely on the following lemma.

Lemma

Let e € RSy(1), i.e be a random vector uniformly distributed on the surface
of the unit Euclidean sphere in R",

Eduard Gorbunov (MIPT)

13 June, 2018 6 /16



Key lemma

In our proofs of complexity bounds, we rely on the following lemma.

Lemma

Let e € RSy(1), i.e be a random vector uniformly distributed on the surface
of the unit Euclidean sphere in R", p € [1,2] and q be given by

1 1 _
Lyl

Eduard Gorbunov (MIPT) 13 June, 2018 6 /16



Key lemma

In our proofs of complexity bounds, we rely on the following lemma.

Lemma

Let e € RSy(1), i.e be a random vector uniformly distributed on the surface

of the unit Euclidean sphere in R", p € [1,2] and q be given by

% + % =1. Then, forn>8 and p, = min{g—1, 16Inn — 8}n%_1,

Eduard Gorbunov (MIPT) 13 June, 2018 6 /16



Key lemma

In our proofs of complexity bounds, we rely on the following lemma.
Lemma

Let e € RSy(1), i.e be a random vector uniformly distributed on the surface

of the unit Euclidean sphere in R", p € [1,2] and q be given by

% + % =1. Then, forn>8 and p, = min{g—1, 16Inn — 8}n%_1,

Eellel3 < pn, (7)

Eduard Gorbunov (MIPT) 13 June, 2018 6 /16



Key lemma

In our proofs of complexity bounds, we rely on the following lemma.

Lemma

Let e € RSy(1), i.e be a random vector uniformly distributed on the surface

of the unit Euclidean sphere in R", p € [1,2] and q be given by

% + % =1. Then, forn>8 and p, = min{g—1, 16Inn — 8}n%_1,

Ecllel3 < pn, (7)
6p
Ee ((s,e)?[lel3) < n"HSH%, Vs € R". (8)



Accelerated Randomized Directional Derivative Method

Algorithm 1 Accelerated Randomized Directional Derivative (ARDD)
method

Input: xp — starting point; N > 1 — number of iterations; m — batch size.
Qutput: point yy

1: Yo < X0, Z0 < Xo

2: fork=0,...,N—1do

3 Qi1 4 geiatZ—, T 1 = 2

96n2p, 12 48a1n?ppla k+2°
4: Generate e, 1 € RS2(1) independently from previous iterations and &;, i = 1,...,m —
independent realizations of &.
5: Calculate

V7 (Xi1) = — Zf (Xk415 i €1) €t 1
i=1

6: Xkt+1  Tkzk + (1 - Tk)}’k

7 Yk+1 4 Xkg1 — 2L2 T (Xkt1)-

8: Zpi1 argmm {ak+1n <V f(Xk+1), zk> + V(z] (z)}
9: end for

10: return yy
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Complexity of ARDD

Theorem

Let ARDD method be applied to solve problem (1).
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Complexity of ARDD

Theorem

Let ARDD method be applied to solve problem (1). Then

Q,n%p,L 2
E[f(yn)] — f(x*) < Cenenle | N ooy SN A4 1220
12,/2n0, [ \/Ac¢
TN (2 +2 ) (9)
2

N2 VA
+12np,,L2( 2 +2 ) )
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Complexity of ARDD

Theorem

Let ARDD method be applied to solve problem (1). Then

3840 nl N 2 N N
E[f (yn)] — f(x*) <—"sz 24 AL SN+

2n@p<@+2 ) o)

N2

2
N2 A¢
(#2)

+ 12nppLa

where ©, = V[z](x*) is defined by the chosen proximal setup and

E[] =E. y€N581,15058N, m[ ]
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-
Complexity of ARDD

p=1 p=2
N o) (J@) ® <\/n2L§92
m o (max{l \/g}) o (max{l7 ;3"?2 . %22})
A O [ min < n(In n)2L @1, "91’ \/m a > fo) (mln{n3L§@2, %’ é %})
Ay O('"i”{ﬁ'""l-zx/@,\/%e—l,&%~ ‘é—i}) O<m|n n%Lz\/@,ﬁ,%A 4%})
| sl ) o (o] VP 5]

Table: ARDD parameters for the cases p =1 and p = 2.
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Randomized Directional Derivative Method

Algorithm 2 Randomized Directional Derivative (RDD) method

Input: xp — starting point; N > 1 — number of iterations; m — batch size.
Qutput: point Xp.
1: fork=0,..., N—1do

2: o e
nppla
3: Generate e, 1 € RSz(1) independently from previous iterations and &;, i = 1,...,m —
independent realizations of &.

4: Calculate

~ 1 I~

V(1) = — > F (et Eir 1) et

i=1

5: Xk+1 4— argmin {an <§mf(xk), X — Xk> + V[x«] (x)}

xERN

(o))

. end for
L N=t
T: return Xy < 5 > Xk
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Theorem

Let RDD method be applied to solve problem (1). Then

_ 384npnL2©
E[f (xn)] — f(x) < =522 + L2 m S+ 115, D¢ + 3

2n© \/
79 <2 +2

N
2
/A

3L2pn
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-
Complexity of RDD

Theorem

Let RDD method be applied to solve problem (1). Then

_ 384npnL2©
E[f(xn)] — f(x) < % + L2 m S+ 115, D¢ + 3
e (7

2
N VA
T30, (2 +2 ) ;

where ©, = V[z](x*) is defined by the chosen proximal setup and

[N B S T P §N m[]

(10)
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Complexity of RDD

p=1 p=2
L3OqInn nLy©p
G o(=2) o(%%%)
m O(max{l, o) ) O(max{l, o) )
2 .2
A¢ o (m‘"{(‘"") 1301, 57 #}) © (’"i" {”Lz@z’ 703 #})
3 I el - el
Ay O(mm{%sz/@l, ﬁ, \/Tz}) O(mln{ﬁLz\/ez, \/%, \/Tz})
2 2
O-le calls o (max {7Lze€1‘n”, Z =100 21“‘ @ }) (0] (max {7""2562 s ‘2—"1 O2 })

Table: RDD parameters for the cases p =1 and p = 2.
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ARDD and RDD

Method

p=1

p=2

ARDD | O <max{,/@,

2@1

€

)

O max n2L0, 0'2@22n
5 e

RDD (0] (max{

201 530,
€ b

#})

~ 2
10) (max { anaez , nagzez })

Table: ARDD and RDD complexities for p =1 and p = 2
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|
ARDD and RDD

Method

p=1

p=2

ARDD | 6 <max{,/@, @})

O max n2L0, 0'2@22n
5 e

RDD (0]

(max {—Lzel
£

20, })
y T o2

~ 2
10) (max { anaez , no‘gz@z })

Table: ARDD and RDD complexities for p =1 and p = 2

Remark

Note that for p = 1 RDD gives dimensional independent complexity

bounds.
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Derivative-Free Optimization

We assume that an optimization procedure, given a pair of points
(x,y) € R?" , can obtain a pair of noisy stochastic realizations

(f(x,€), f(y,&)) of the objective value f, where

F(x,€) = F(x,&) + =(x,€), [Z(x,€)| <A, ¥x€R" as. in¢, (11)

and ¢ is independently drawn from P.
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Derivative-Free Optimization

Based on these observations of the objective value, we form the following
stochastic approximation of V£ (x)
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Based on these observations of the objective value, we form the following
stochastic approximation of V£ (x)

M) = i Cette &) =Flxs) o

1
( T 6a)e) + A 3¢ (x,f,-,e)+n(x,s,-,e)>)e,
(12)
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Derivative-Free Optimization

Based on these observations of the objective value, we form the following
stochastic approximation of V£ (x)

%mft(x) :%i X+t87§) f(X,EI)
( " 6a)e) + 5 3 (x,g,-,e)+n(x,s,-,e))> ‘.

(12)
where e € RS>(1),
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(12)
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Derivative-Free Optimization

Based on these observations of the objective value, we form the following
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Derivative-Free Optimization

Based on these observations of the objective value, we form the following
stochastic approximation of V£ (x)

M) = i Cette &) =Flxs) o

1
:( o) + 4 S0 e+ nlx )

(12)
where e € RSy(1), &, i =1,...,m are independent realizations of £, m is
the batch size, t is some small positive parameter which we call smoothing

m

parameter, g™(x,&n) = =3 g(x, &)
i=1
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Derivative-Free Optimization

Based on these observations of the objective value, we form the following
stochastic approximation of V£ (x)
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:E o) + 4 S0 e+ nlx )

(12)
where e € RSy(1), &, i =1,...,m are independent realizations of £, m is
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Derivative-Free Optimization

((x, &) = FOHBETFIG) _(g(x ¢))e), i=1,..,m

— t _
T](X, €i7 6‘) _ :(X+te,£it)—:(X,§i), i = 1’ ey .
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Derivative-Free Optimization

((x, &) = FOHBETFIG) _(g(x ¢))e), i=1,..,m

— t _
T](X, €i7 6‘) _ :(X+te,£it)—:(X,§i), i = 1’ ey .

By Lipschitz smoothness of F(+, &), we have |((x, ¢, e)| < @ for all
x € R" and e € S3(1).
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Derivative-Free Optimization

C(x,E,e) = F(X+te,f/) F(x,&i) — (g(x, &), > i=1,...m

T,(Xa €I'7 6‘) = (X+te’£lt) =(xé; ), i = 1, veuy

By Lipschitz smoothness of F(-, &), we have ]((X, e)] < @ for all

x € R"and e € Sy(1). Hence, E¢(¢(x, &, €))? < bBf = A¢ for all x € R”
and e € S5(1).

N
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Derivative-Free Optimization

((x,&pe) = FUHRATFOb) _g(x ¢y ), i=1,..,m
n(x,&,e) = E(XHe’g"t)_E(X’g’), i=1,.. m.
By Lipschitz smoothness of F(+, &), we have |((x, ¢, e)| < L(g)t for all
x € R"and e € S3(1). Hence, E¢(¢(x,&,¢€))? < L§4t2 =: A¢ forall x € R”
and e € S5(1). At the same time, from (11), we have that
In(x, & e)| <22 =/ forall x eR", e € S5(1) and a.s. in &.
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Derivative-Free Optimization

((x, &) = FOHBETFIG) _(g(x ¢))e), i=1,..,m

=(x e .t_:X .
n(x, & e) = ZCHtel) =)

= : , =1 ..,m.

By Lipschitz smoothness of F(+, &), we have |((x, ¢, e)| < @ for all

x € R"and e € S3(1). Hence, E¢(¢(x,&,¢€))? < % =: A¢ forall x € R”
and e € S5(1). At the same time, from (11), we have that

In(x, & e)| <22 =/ forall x eR", e € S5(1) and a.s. in &.

So, we can use the same methods and analyze such problems in the same

way.
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