An Accelerated Directional Derivative Method for Smooth Stochastic Convex Optimization

Eduard Gorbunov

Moscow Institute of Physics and Technology
13 June, 2018

The Problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\left\{f(x):=\mathbb{E}_{\xi}[F(x, \xi)]=\int_{\mathcal{X}} F(x, \xi) d P(x)\right\}, \tag{1}
\end{equation*}
$$

The Problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\left\{f(x):=\mathbb{E}_{\xi}[F(x, \xi)]=\int_{\mathcal{X}} F(x, \xi) d P(x)\right\} \tag{1}
\end{equation*}
$$

where ξ is a random vector with probability distribution $P(\xi), \xi \in \mathcal{X}$,

The Problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\left\{f(x):=\mathbb{E}_{\xi}[F(x, \xi)]=\int_{X} F(x, \xi) d P(x)\right\}, \tag{1}
\end{equation*}
$$

where ξ is a random vector with probability distribution $P(\xi), \xi \in \mathcal{X}$, and for P-almost every $\xi \in \mathcal{X}$, the function $F(x, \xi)$ is closed

The Problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\left\{f(x):=\mathbb{E}_{\xi}[F(x, \xi)]=\int_{X} F(x, \xi) d P(x)\right\}, \tag{1}
\end{equation*}
$$

where ξ is a random vector with probability distribution $P(\xi), \xi \in \mathcal{X}$, and for P-almost every $\xi \in \mathcal{X}$, the function $F(x, \xi)$ is closed and f is convex.

The Problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\left\{f(x):=\mathbb{E}_{\xi}[F(x, \xi)]=\int_{\mathcal{X}} F(x, \xi) d P(x)\right\} \tag{1}
\end{equation*}
$$

where ξ is a random vector with probability distribution $P(\xi), \xi \in \mathcal{X}$, and for P-almost every $\xi \in \mathcal{X}$, the function $F(x, \xi)$ is closed and f is convex. Moreover, we assume that, for P almost every ξ, the function $F(x, \xi)$ has gradient $g(x, \xi)$, which is $L(\xi)$-Lipschitz continuous with respect to the Euclidean norm

$$
\|g(x, \xi)-g(y, \xi)\|_{2} \leqslant L(\xi)\|x-y\|_{2}, \forall x, y \in \mathbb{R}^{n}, \text { a.s. in } \xi
$$

and $L_{2}:=\sqrt{\mathbb{E}_{\xi}\left[L(\xi)^{2}\right]}<+\infty$.

The Problem

Under this assumptions, $\mathbb{E}_{\xi}[g(x, \xi)]=\nabla f(x)$ and

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leqslant L_{2}\|x-y\|_{2}, \forall x, y \in \mathbb{R}^{n}
$$

The Problem

Under this assumptions, $\mathbb{E}_{\xi}[g(x, \xi)]=\nabla f(x)$ and

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leqslant L_{2}\|x-y\|_{2}, \forall x, y \in \mathbb{R}^{n}
$$

Also we assume that

$$
\begin{equation*}
\mathbb{E}_{\xi}\left[\|g(x, \xi)-\nabla f(x)\|_{2}^{2}\right] \leqslant \sigma^{2} \tag{2}
\end{equation*}
$$

The Problem

Finally, we assume that an optimization procedure, given a point $x \in \mathbb{R}^{n}$,

The Problem

Finally, we assume that an optimization procedure, given a point $x \in \mathbb{R}^{n}$, direction $e \in S_{2}(1)$

The Problem

Finally, we assume that an optimization procedure, given a point $x \in \mathbb{R}^{n}$, direction $e \in S_{2}(1)$ and ξ independently drawn from P,

The Problem

Finally, we assume that an optimization procedure, given a point $x \in \mathbb{R}^{n}$, direction $e \in S_{2}(1)$ and ξ independently drawn from P, can obtain a noisy stochastic approximation $\tilde{f}^{\prime}(x, \xi, e)$ for the directional derivative $\langle g(x, \xi), e\rangle$:

The Problem

Finally, we assume that an optimization procedure, given a point $x \in \mathbb{R}^{n}$, direction $e \in S_{2}(1)$ and ξ independently drawn from P, can obtain a noisy stochastic approximation $\tilde{f}^{\prime}(x, \xi, e)$ for the directional derivative $\langle g(x, \xi), e\rangle$:

$$
\begin{align*}
\tilde{f}^{\prime}(x, \xi, e) & =\langle g(x, \xi), e\rangle+\zeta(x, \xi, e)+\eta(x, \xi, e), \\
\mathbb{E}_{\xi}\left[\zeta(x, \xi, e)^{2}\right] & \leqslant \Delta_{\zeta}, \forall x \in \mathbb{R}^{n}, \forall e \in S_{2}(1), \\
|\eta(x, \xi, e)| & \leqslant \Delta_{\eta}, \forall x \in \mathbb{R}^{n}, \forall e \in S_{2}(1), \text { a.s. in } \xi \tag{3}
\end{align*}
$$

The Problem

Finally, we assume that an optimization procedure, given a point $x \in \mathbb{R}^{n}$, direction $e \in S_{2}(1)$ and ξ independently drawn from P, can obtain a noisy stochastic approximation $\tilde{f}^{\prime}(x, \xi, e)$ for the directional derivative $\langle g(x, \xi), e\rangle$:

$$
\begin{align*}
\tilde{f}^{\prime}(x, \xi, e) & =\langle g(x, \xi), e\rangle+\zeta(x, \xi, e)+\eta(x, \xi, e), \\
\mathbb{E}_{\xi}\left[\zeta(x, \xi, e)^{2}\right] & \leqslant \Delta_{\zeta}, \forall x \in \mathbb{R}^{n}, \forall e \in S_{2}(1), \\
|\eta(x, \xi, e)| & \leqslant \Delta_{\eta}, \forall x \in \mathbb{R}^{n}, \forall e \in S_{2}(1), \text { a.s. in } \xi, \tag{3}
\end{align*}
$$

where $S_{2}(1)$ is the Euclidean sphere or radius one with the center at the point zero

The Problem

Finally, we assume that an optimization procedure, given a point $x \in \mathbb{R}^{n}$, direction $e \in S_{2}(1)$ and ξ independently drawn from P, can obtain a noisy stochastic approximation $\tilde{f}^{\prime}(x, \xi, e)$ for the directional derivative $\langle g(x, \xi), e\rangle$:

$$
\begin{align*}
\tilde{f}^{\prime}(x, \xi, e) & =\langle g(x, \xi), e\rangle+\zeta(x, \xi, e)+\eta(x, \xi, e), \\
\mathbb{E}_{\xi}\left[\zeta(x, \xi, e)^{2}\right] & \leqslant \Delta_{\zeta}, \forall x \in \mathbb{R}^{n}, \forall e \in S_{2}(1), \\
|\eta(x, \xi, e)| & \leqslant \Delta_{\eta}, \forall x \in \mathbb{R}^{n}, \forall e \in S_{2}(1), \text { a.s. in } \xi, \tag{3}
\end{align*}
$$

where $S_{2}(1)$ is the Euclidean sphere or radius one with the center at the point zero and the values $\Delta_{\zeta}, \Delta_{\eta}$ are controlled and can be made as small as it is desired.

The Problem

Finally, we assume that an optimization procedure, given a point $x \in \mathbb{R}^{n}$, direction $e \in S_{2}(1)$ and ξ independently drawn from P, can obtain a noisy stochastic approximation $\widetilde{f}^{\prime}(x, \xi, e)$ for the directional derivative $\langle g(x, \xi), e\rangle$:

$$
\begin{align*}
\tilde{f}^{\prime}(x, \xi, e) & =\langle g(x, \xi), e\rangle+\zeta(x, \xi, e)+\eta(x, \xi, e), \\
\mathbb{E}_{\xi}\left[\zeta(x, \xi, e)^{2}\right] & \leqslant \Delta_{\zeta}, \forall x \in \mathbb{R}^{n}, \forall e \in S_{2}(1), \\
|\eta(x, \xi, e)| & \leqslant \Delta_{\eta}, \forall x \in \mathbb{R}^{n}, \forall e \in S_{2}(1), \text { a.s. in } \xi, \tag{3}
\end{align*}
$$

where $S_{2}(1)$ is the Euclidean sphere or radius one with the center at the point zero and the values $\Delta_{\zeta}, \Delta_{\eta}$ are controlled and can be made as small as it is desired. Note that we use the smoothness of $F(\cdot, \xi)$ to write the directional derivative as $\langle g(x, \xi), e\rangle$, but we do not assume that the whole stochastic gradient $g(x, \xi)$ is available.

Preliminaries

We choose a prox-function $d(x)$ which is continuous, convex on \mathbb{R}^{n}

Preliminaries

We choose a prox-function $d(x)$ which is continuous, convex on \mathbb{R}^{n} and is 1 -strongly convex on \mathbb{R}^{n} with respect to $\|\cdot\|_{p}$,

Preliminaries

We choose a prox-function $d(x)$ which is continuous, convex on \mathbb{R}^{n} and is 1 -strongly convex on \mathbb{R}^{n} with respect to $\|\cdot\|_{p}$, where $\|\cdot\|_{p}$ is a vector I_{p}-norm with $p \in[1,2]$.

Preliminaries

We choose a prox-function $d(x)$ which is continuous, convex on \mathbb{R}^{n} and is 1 -strongly convex on \mathbb{R}^{n} with respect to $\|\cdot\|_{p}$, where $\|\cdot\|_{p}$ is a vector I_{p}-norm with $p \in[1,2]$. We define also the corresponding Bregman divergence $V[z](x)=d(x)-d(z)-\langle\nabla d(z), x-z\rangle, x, z \in \mathbb{R}^{n}$.

Preliminaries

We choose a prox-function $d(x)$ which is continuous, convex on \mathbb{R}^{n} and is 1 -strongly convex on \mathbb{R}^{n} with respect to $\|\cdot\|_{p}$, where $\|\cdot\|_{p}$ is a vector I_{p}-norm with $p \in[1,2]$. We define also the corresponding Bregman divergence $V[z](x)=d(x)-d(z)-\langle\nabla d(z), x-z\rangle, x, z \in \mathbb{R}^{n}$. Note that, by the strong convexity of d,

$$
\begin{equation*}
V[z](x) \geq \frac{1}{2}\|x-z\|_{p}^{2}, \quad x, z \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

Preliminaries

We choose a prox-function $d(x)$ which is continuous, convex on \mathbb{R}^{n} and is 1 -strongly convex on \mathbb{R}^{n} with respect to $\|\cdot\|_{p}$, where $\|\cdot\|_{p}$ is a vector I_{p}-norm with $p \in[1,2]$. We define also the corresponding Bregman divergence $V[z](x)=d(x)-d(z)-\langle\nabla d(z), x-z\rangle, x, z \in \mathbb{R}^{n}$. Note that, by the strong convexity of d,

$$
\begin{equation*}
V[z](x) \geq \frac{1}{2}\|x-z\|_{p}^{2}, \quad x, z \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

For the case $p=1$, we choose the following prox-function

$$
\begin{equation*}
d(x)=\frac{\mathrm{e} n^{(\kappa-1)(2-\kappa) / \kappa} \ln n}{2}\|x\|_{\kappa}^{2}, \quad \kappa=1+\frac{1}{\ln n} \tag{5}
\end{equation*}
$$

Preliminaries

We choose a prox-function $d(x)$ which is continuous, convex on \mathbb{R}^{n} and is 1 -strongly convex on \mathbb{R}^{n} with respect to $\|\cdot\|_{p}$, where $\|\cdot\|_{p}$ is a vector I_{p}-norm with $p \in[1,2]$. We define also the corresponding Bregman divergence $V[z](x)=d(x)-d(z)-\langle\nabla d(z), x-z\rangle, x, z \in \mathbb{R}^{n}$. Note that, by the strong convexity of d,

$$
\begin{equation*}
V[z](x) \geq \frac{1}{2}\|x-z\|_{p}^{2}, \quad x, z \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

For the case $p=1$, we choose the following prox-function

$$
\begin{equation*}
d(x)=\frac{\mathrm{e} \mathrm{n}^{(\kappa-1)(2-\kappa) / \kappa} \ln n}{2}\|x\|_{\kappa}^{2}, \quad \kappa=1+\frac{1}{\ln n} \tag{5}
\end{equation*}
$$

and, for the case $p=2$, we choose the prox-function to be the squared Euclidean norm

$$
\begin{equation*}
d(x)=\frac{1}{2}\|x\|_{2}^{2} \tag{6}
\end{equation*}
$$

Key lemma

In our proofs of complexity bounds, we rely on the following lemma.

Key lemma

In our proofs of complexity bounds, we rely on the following lemma.
Lemma
Let $e \in R S_{2}(1)$, i.e be a random vector uniformly distributed on the surface of the unit Euclidean sphere in \mathbb{R}^{n},

Key lemma

In our proofs of complexity bounds, we rely on the following lemma.
Lemma
Let $e \in R S_{2}(1)$, i.e be a random vector uniformly distributed on the surface of the unit Euclidean sphere in $\mathbb{R}^{n}, \quad p \in[1,2]$ and q be given by $\frac{1}{p}+\frac{1}{q}=1$.

Key lemma

In our proofs of complexity bounds, we rely on the following lemma.
Lemma
Let $e \in R S_{2}(1)$, i.e be a random vector uniformly distributed on the surface of the unit Euclidean sphere in $\mathbb{R}^{n}, \quad p \in[1,2]$ and q be given by $\frac{1}{p}+\frac{1}{q}=1$. Then, for $n \geqslant 8$ and $\rho_{n}=\min \{q-1,16 \ln n-8\} n^{\frac{2}{q}-1}$,

Key lemma

In our proofs of complexity bounds, we rely on the following lemma.
Lemma
Let $e \in R S_{2}(1)$, i.e be a random vector uniformly distributed on the surface of the unit Euclidean sphere in $\mathbb{R}^{n}, \quad p \in[1,2]$ and q be given by $\frac{1}{p}+\frac{1}{q}=1$. Then, for $n \geqslant 8$ and $\rho_{n}=\min \{q-1,16 \ln n-8\} n^{\frac{2}{q}-1}$,

$$
\begin{equation*}
\mathbb{E}_{e}\|e\|_{q}^{2} \leq \rho_{n} \tag{7}
\end{equation*}
$$

Key lemma

In our proofs of complexity bounds, we rely on the following lemma.
Lemma
Let $e \in R S_{2}(1)$, i.e be a random vector uniformly distributed on the surface of the unit Euclidean sphere in $\mathbb{R}^{n}, \quad p \in[1,2]$ and q be given by $\frac{1}{p}+\frac{1}{q}=1$. Then, for $n \geqslant 8$ and $\rho_{n}=\min \{q-1,16 \ln n-8\} n^{\frac{2}{q}-1}$,

$$
\begin{gather*}
\mathbb{E}_{e}\|e\|_{q}^{2} \leq \rho_{n}, \tag{7}\\
\mathbb{E}_{e}\left(\langle s, e\rangle^{2}\|e\|_{q}^{2}\right) \leq \frac{6 \rho_{n}}{n}\|s\|_{2}^{2}, \quad \forall s \in \mathbb{R}^{n} . \tag{8}
\end{gather*}
$$

Accelerated Randomized Directional Derivative Method

 method

Input: x_{0} - starting point; $N \geqslant 1$ - number of iterations; m - batch size.
Output: point y_{N}
1: $y_{0} \leftarrow x_{0}, z_{0} \leftarrow x_{0}$
2: for $k=0, \ldots, N-1$ do
$\alpha_{k+1} \leftarrow \frac{k+2}{96 n^{2} \rho_{n} L_{2}}, \tau_{k} \leftarrow \frac{1}{48 \alpha_{k+1} n^{2} \rho_{n} L_{2}}=\frac{2}{k+2}$.
Generate $e_{k+1} \in R S_{2}(1)$ independently from previous iterations and $\xi_{i}, i=1, \ldots, m-$
Calculate

$$
\widetilde{\nabla}^{m} f\left(x_{k+1}\right)=\frac{1}{m} \sum_{i=1}^{m} \widetilde{f}^{\prime}\left(x_{k+1}, \xi_{i}, e_{k+1}\right) e_{k+1} .
$$

6: $\quad x_{k+1} \leftarrow \tau_{k} z_{k}+\left(1-\tau_{k}\right) y_{k}$.
7: $\quad y_{k+1} \leftarrow x_{k+1}-\frac{1}{2 L_{2}} \widetilde{\nabla}^{m} f\left(x_{k+1}\right)$.
8: $\quad z_{k+1} \leftarrow \underset{z \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\alpha_{k+1} n\left\langle\widetilde{\nabla}^{m} f\left(x_{k+1}\right), z-z_{k}\right\rangle+V\left[z_{k}\right](z)\right\}$.
9: end for
10: return y_{N}

Complexity of ARDD

Theorem
Let $A R D D$ method be applied to solve problem (1).

Complexity of ARDD

Theorem

Let $A R D D$ method be applied to solve problem (1). Then

$$
\begin{align*}
\mathbb{E}\left[f\left(y_{N}\right)\right]-f\left(x^{*}\right) & \leqslant \frac{384 \Theta_{\rho} n^{2} \rho_{n} L_{2}}{N^{2}}+\frac{4 N}{n L_{2}} \cdot \frac{\sigma^{2}}{m}+\frac{61 N}{24 L_{2}} \Delta_{\zeta}+\frac{122 N}{3 L_{2}} \\
& +\frac{12 \sqrt{2 n \Theta_{p}}}{N^{2}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \triangle_{\eta}\right) \tag{9}\\
& +\frac{N^{2}}{12 n \rho_{n} L_{2}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \triangle_{\eta}\right)^{2}
\end{align*}
$$

Complexity of ARDD

Theorem
Let $A R D D$ method be applied to solve problem (1). Then

$$
\begin{align*}
\mathbb{E}\left[f\left(y_{N}\right)\right]-f\left(x^{*}\right) & \leqslant \frac{384 \Theta_{\rho} n^{2} \rho_{n} L_{2}}{N^{2}}+\frac{4 N}{n L_{2}} \cdot \frac{\sigma^{2}}{m}+\frac{61 N}{24 L_{2}} \Delta_{\zeta}+\frac{122 N}{3 L_{2}} \\
& +\frac{12 \sqrt{2 n \Theta_{\rho}}}{N^{2}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \triangle_{\eta}\right) \tag{9}\\
& +\frac{N^{2}}{12 n \rho_{n} L_{2}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \triangle_{\eta}\right)^{2},
\end{align*}
$$

where $\Theta_{p}=V\left[z_{0}\right]\left(x^{*}\right)$ is defined by the chosen proximal setup and $\mathbb{E}[\cdot]=\mathbb{E}_{e_{1}, \ldots, e_{N}, \xi_{1,1}, \ldots, \xi_{N, m}}[\cdot]$.

Complexity of ARDD

	$p=1$	$p=2$
N	$O\left(\sqrt{\frac{n \ln n \mathbf{L}_{\mathbf{2}} \Theta_{\mathbf{1}}}{\varepsilon}}\right)$	$O\left(\sqrt{\frac{n^{2} L_{2} \Theta_{2}}{\varepsilon}}\right)$
m	$O\left(\max \left\{1, \sqrt{\frac{\ln n}{n}} \cdot \frac{\sigma^{2}}{\varepsilon^{3 / 2}} \cdot \sqrt{\frac{\Theta_{1}}{L_{2}}}\right\}\right)$	$O\left(\max \left\{1, \frac{\sigma^{2}}{\varepsilon^{3 / 2}} \cdot \sqrt{\frac{\theta_{2}}{L_{2}}}\right\}\right)$
Δ_{ζ}	$O\left(\min \left\{n(\ln n)^{2} L_{2}^{2} \Theta_{1}, \frac{\varepsilon^{2}}{n \Theta_{1}}, \frac{\varepsilon^{\frac{3}{2}}}{\sqrt{n \ln n}} \cdot \sqrt{\frac{L_{2}}{\Theta_{1}}}\right\}\right)$	$O\left(\min \left\{n^{3} L_{2}^{2} \Theta_{2}, \frac{\varepsilon}{n \Theta_{2}}, \frac{\varepsilon^{\frac{3}{2}}}{n} \cdot \sqrt{\frac{L_{2}}{\theta_{2}}}\right\}\right)$
Δ_{η}	$O\left(\min \left\{\sqrt{n} \ln n L_{\mathbf{2}} \sqrt{\Theta_{1}}, \frac{\varepsilon}{\sqrt{n \Theta_{1}}}, \frac{\varepsilon^{\frac{3}{4}}}{\sqrt[4]{n \ln n}} \cdot \sqrt[4]{\frac{L_{2}}{\Theta_{1}}}\right\}\right)$	$O\left(\min \left\{n^{\frac{3}{2}} L_{2} \sqrt{\Theta_{2}}, \frac{\varepsilon}{\sqrt{n \theta_{2}}}, \frac{\varepsilon^{\frac{3}{4}}}{\sqrt{n}} \cdot \sqrt[4]{\frac{L_{2}}{\theta_{2}}}\right\}\right)$
O-le calls	$O\left(\max \left\{\sqrt{\frac{n \ln n L_{\mathbf{2}} \Theta_{\mathbf{1}}}{\varepsilon}}, \frac{\sigma^{2} \Theta_{\mathbf{1}} \ln n}{\varepsilon^{2}}\right\}\right)$	$O\left(\max \left\{\sqrt{\frac{n^{2} L_{2} \Theta_{2}}{\varepsilon}}, \frac{\sigma^{2} \Theta_{2} n}{\varepsilon^{2}}\right\}\right)$

Table: ARDD parameters for the cases $p=1$ and $p=2$.

Randomized Directional Derivative Method

Algorithm 2 Randomized Directional Derivative (RDD) method

Input: $x_{0}-$ starting point; $N \geqslant 1$ - number of iterations; m - batch size.
Output: point \bar{x}_{N}.
1: for $k=0, \ldots, N-1$ do
2: $\quad \alpha \leftarrow \frac{1}{48 \pi \rho_{n} L_{2}}$.
Generate $e_{k+1} \in R S_{2}(1)$ independently from previous iterations and $\xi_{i}, i=1, \ldots, m-$ independent realizations of ξ.
4: Calculate

$$
\widetilde{\nabla}^{m} f\left(x_{k+1}\right)=\frac{1}{m} \sum_{i=1}^{m} \widetilde{f}^{\prime}\left(x_{k+1}, \xi_{i}, e_{k+1}\right) e_{k+1} .
$$

5: $\quad x_{k+1} \leftarrow \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\alpha n\left\langle\widetilde{\nabla}^{m} f\left(x_{k}\right), x-x_{k}\right\rangle+V\left[x_{k}\right](x)\right\}$.
6: end for
7: return $\bar{x}_{N} \leftarrow \frac{1}{N} \sum_{k=0}^{N-1} x_{k}$

Complexity of RDD

Theorem
Let RDD method be applied to solve problem (1).

Complexity of RDD

Theorem
Let RDD method be applied to solve problem (1). Then

$$
\begin{align*}
\mathbb{E}\left[f\left(\bar{x}_{N}\right)\right]-f\left(x_{*}\right) & \leqslant \frac{384 n \rho_{n} L_{2} \Theta_{p}}{N}+\frac{2}{L_{2}} \frac{\sigma^{2}}{m}+\frac{n}{12 L_{2}} \Delta_{\zeta}+\frac{4 n}{3 L_{2}} \\
& +\frac{8 \sqrt{2 n \Theta_{p}}}{N}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \triangle_{\eta}\right)^{2} \tag{10}\\
& +\frac{N}{3 L_{2} \rho_{n}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \triangle_{\eta}\right)^{2},
\end{align*}
$$

Complexity of RDD

Theorem
Let RDD method be applied to solve problem (1). Then

$$
\begin{align*}
\mathbb{E}\left[f\left(\bar{x}_{N}\right)\right]-f\left(x_{*}\right) & \leqslant \frac{384 n \rho_{n} L_{2} \Theta_{p}}{N}+\frac{2}{L_{2}} \frac{\sigma^{2}}{m}+\frac{n}{12 L_{2}} \Delta_{\zeta}+\frac{4 n}{3 L_{2}} \\
& +\frac{8 \sqrt{2 n \Theta_{p}}}{N}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \triangle_{\eta}\right)^{2} \tag{10}\\
& +\frac{N}{3 L_{2} \rho_{n}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2 \triangle_{\eta}\right)^{2},
\end{align*}
$$

where $\Theta_{p}=V\left[z_{0}\right]\left(x^{*}\right)$ is defined by the chosen proximal setup and $\mathbb{E}[\cdot]=\mathbb{E}_{e_{1}, \ldots, e_{N}, \xi_{1,1}, \ldots, \xi_{N, m}}[\cdot]$.

Complexity of RDD

	$p=1$	$p=2$
N	$O\left(\frac{L_{2} \Theta_{1} \ln n}{\varepsilon}\right)$	$O\left(\frac{n L_{\mathbf{2}} \Theta_{\mathbf{2}}}{\varepsilon}\right)$
m	$O\left(\max \left\{1, \frac{\sigma^{2}}{\varepsilon L_{2}}\right\}\right)$	$O\left(\max \left\{1, \frac{\sigma^{2}}{\varepsilon L_{\mathbf{2}}}\right\}\right)$
Δ_{ζ}	$O\left(\min \left\{\frac{(\ln n)^{2}}{n} L_{\mathbf{2}}^{\mathbf{2}} \Theta_{1}, \frac{\varepsilon^{2}}{n \Theta_{1}}, \frac{\varepsilon L_{\mathbf{2}}}{n}\right\}\right)$	$O\left(\min \left\{n L_{2}^{2} \Theta_{\mathbf{2}}, \frac{\varepsilon^{2}}{n \Theta_{\mathbf{2}}}, \frac{\varepsilon L_{\mathbf{2}}}{n}\right\}\right)$
Δ_{η}	$O\left(\min \left\{\frac{\ln n}{\sqrt{n}} L_{\mathbf{2}} \sqrt{\Theta_{1}}, \frac{\varepsilon}{\sqrt{n \Theta_{1}}}, \sqrt{\frac{\varepsilon L_{\mathbf{2}}}{n}}\right\}\right)$	$O\left(\min \left\{\sqrt{n} L_{\mathbf{2}} \sqrt{\Theta_{\mathbf{2}}}, \frac{\varepsilon}{\left.\left.\sqrt{n \Theta_{\mathbf{2}}}, \sqrt{\frac{\varepsilon L_{\mathbf{2}}}{n}}\right\}\right)}\right.\right.$
O-le calls	$O\left(\max \left\{\frac{L_{2} \Theta_{1} \ln n}{\varepsilon}, \frac{\sigma^{2} \Theta_{1} \ln n}{\varepsilon^{2}}\right\}\right)$	$O\left(\max \left\{\frac{n L_{\mathbf{2}} \Theta_{\mathbf{2}}}{\varepsilon}, \frac{n \sigma^{2} \Theta_{\mathbf{2}}}{\varepsilon^{2}}\right\}\right)$

Table: RDD parameters for the cases $p=1$ and $p=2$.

ARDD and RDD

Method	$p=1$	$p=2$
ARDD	$\tilde{O}\left(\max \left\{\sqrt{\frac{n L_{2} \Theta_{1}}{\varepsilon}}, \frac{\sigma^{2} \Theta_{1}}{\varepsilon^{2}}\right\}\right)$	$\tilde{O}\left(\max \left\{\sqrt{\frac{n^{2} L_{2} \Theta_{2}}{\varepsilon}}, \frac{\sigma^{2} \Theta_{2} n}{\varepsilon^{2}}\right\}\right)$
RDD	$\tilde{O}\left(\max \left\{\frac{L_{2} \Theta_{1}}{\varepsilon}, \frac{\sigma^{2} \Theta_{1}}{\varepsilon^{2}}\right\}\right)$	$\tilde{O}\left(\max \left\{\frac{n L_{2} \Theta_{2}}{\varepsilon}, \frac{n \sigma^{2} \Theta_{2}}{\varepsilon^{2}}\right\}\right)$

Table: ARDD and RDD complexities for $p=1$ and $p=2$

ARDD and RDD

Method	$p=1$	$p=2$
ARDD	$\tilde{O}\left(\max \left\{\sqrt{\frac{n L_{2} \theta_{1}}{\varepsilon}}, \frac{\sigma^{2} \theta_{1}}{\varepsilon^{2}}\right\}\right)$	$\tilde{O}\left(\max \left\{\sqrt{\frac{n^{2} L_{2} \theta_{2}}{\varepsilon}}, \frac{\sigma^{2} \theta_{2} n}{\varepsilon^{2}}\right\}\right)$
RDD	$\tilde{O}\left(\max \left\{\frac{L_{2} \Theta_{1}}{\varepsilon}, \frac{\sigma^{2} \theta_{1}}{\varepsilon^{2}}\right\}\right)$	$\tilde{O}\left(\max \left\{\frac{n L_{2} \theta_{2}}{\varepsilon}, \frac{n \sigma^{2} \theta_{2}}{\varepsilon^{2}}\right\}\right)$

Table: ARDD and RDD complexities for $p=1$ and $p=2$

Remark

Note that for $p=1$ RDD gives dimensional independent complexity bounds.

Derivative-Free Optimization

We assume that an optimization procedure, given a pair of points $(x, y) \in \mathbb{R}^{2 n}$, can obtain a pair of noisy stochastic realizations $(\widetilde{f}(x, \xi), \widetilde{f}(y, \xi))$ of the objective value f, where

$$
\begin{equation*}
\widetilde{f}(x, \xi)=F(x, \xi)+\equiv(x, \xi), \quad|\equiv(x, \xi)| \leqslant \Delta, \forall x \in \mathbb{R}^{n}, \text { a.s. in } \xi \tag{11}
\end{equation*}
$$

and ξ is independently drawn from P.

Derivative-Free Optimization

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

Derivative-Free Optimization

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$
\begin{align*}
\widetilde{\nabla}^{m} f^{t}(x) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\tilde{f}\left(x+t e, \xi_{i}\right)-\widetilde{f}\left(x, \xi_{i}\right)}{t} e \\
& =\left(\left\langle g^{m}\left(x, \overrightarrow{\xi_{m}}\right), e\right\rangle+\frac{1}{m} \sum_{i=1}^{m}\left(\zeta\left(x, \xi_{i}, e\right)+\eta\left(x, \xi_{i}, e\right)\right)\right) e, \tag{12}
\end{align*}
$$

Derivative-Free Optimization

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$
\begin{align*}
\widetilde{\nabla}^{m} f^{t}(x) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\tilde{f}\left(x+t e, \xi_{i}\right)-\widetilde{f}\left(x, \xi_{i}\right)}{t} e \\
& =\left(\left\langle g^{m}\left(x, \overrightarrow{\xi_{m}}\right), e\right\rangle+\frac{1}{m} \sum_{i=1}^{m}\left(\zeta\left(x, \xi_{i}, e\right)+\eta\left(x, \xi_{i}, e\right)\right)\right) e, \tag{12}
\end{align*}
$$

where $e \in R S_{2}(1)$,

Derivative-Free Optimization

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$
\begin{align*}
\widetilde{\nabla}^{m} f^{t}(x) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\tilde{f}\left(x+t e, \xi_{i}\right)-\widetilde{f}\left(x, \xi_{i}\right)}{t} e \\
& =\left(\left\langle g^{m}\left(x, \overrightarrow{\xi_{m}}\right), e\right\rangle+\frac{1}{m} \sum_{i=1}^{m}\left(\zeta\left(x, \xi_{i}, e\right)+\eta\left(x, \xi_{i}, e\right)\right)\right) e, \tag{12}
\end{align*}
$$

where $e \in R S_{2}(1), \quad \xi_{i}, i=1, \ldots, m$ are independent realizations of ξ,

Derivative-Free Optimization

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$
\begin{align*}
\widetilde{\nabla}^{m} f^{t}(x) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\tilde{f}\left(x+t e, \xi_{i}\right)-\widetilde{f}\left(x, \xi_{i}\right)}{t} e \\
& =\left(\left\langle g^{m}\left(x, \overrightarrow{\xi_{m}}\right), e\right\rangle+\frac{1}{m} \sum_{i=1}^{m}\left(\zeta\left(x, \xi_{i}, e\right)+\eta\left(x, \xi_{i}, e\right)\right)\right) e, \tag{12}
\end{align*}
$$

where $e \in R S_{2}(1), \xi_{i}, i=1, \ldots, m$ are independent realizations of ξ, m is the batch size,

Derivative-Free Optimization

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$
\begin{align*}
\widetilde{\nabla}^{m} f^{t}(x) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\tilde{f}\left(x+t e, \xi_{i}\right)-\widetilde{f}\left(x, \xi_{i}\right)}{t} e \\
& =\left(\left\langle g^{m}\left(x, \overrightarrow{\xi_{m}}\right), e\right\rangle+\frac{1}{m} \sum_{i=1}^{m}\left(\zeta\left(x, \xi_{i}, e\right)+\eta\left(x, \xi_{i}, e\right)\right)\right) e, \tag{12}
\end{align*}
$$

where $e \in R S_{2}(1), \quad \xi_{i}, i=1, \ldots, m$ are independent realizations of ξ, m is the batch size, t is some small positive parameter which we call smoothing parameter,

Derivative-Free Optimization

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$
\begin{align*}
\widetilde{\nabla}^{m} f^{t}(x) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\tilde{f}\left(x+t e, \xi_{i}\right)-\widetilde{f}\left(x, \xi_{i}\right)}{t} e \\
& =\left(\left\langle g^{m}\left(x, \overrightarrow{\xi_{m}}\right), e\right\rangle+\frac{1}{m} \sum_{i=1}^{m}\left(\zeta\left(x, \xi_{i}, e\right)+\eta\left(x, \xi_{i}, e\right)\right)\right) e, \tag{12}
\end{align*}
$$

where $e \in R S_{2}(1), \xi_{i}, i=1, \ldots, m$ are independent realizations of ξ, m is the batch size, t is some small positive parameter which we call smoothing parameter, $g^{m}\left(x, \overrightarrow{\xi_{m}}\right):=\frac{1}{m} \sum_{i=1}^{m} g\left(x, \xi_{i}\right)$

Derivative-Free Optimization

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$
\begin{align*}
\widetilde{\nabla}^{m} f^{t}(x) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\tilde{f}\left(x+t e, \xi_{i}\right)-\widetilde{f}\left(x, \xi_{i}\right)}{t} e \\
& =\left(\left\langle g^{m}\left(x, \overrightarrow{\xi_{m}}\right), e\right\rangle+\frac{1}{m} \sum_{i=1}^{m}\left(\zeta\left(x, \xi_{i}, e\right)+\eta\left(x, \xi_{i}, e\right)\right)\right) e, \tag{12}
\end{align*}
$$

where $e \in R S_{2}(1), \xi_{i}, i=1, \ldots, m$ are independent realizations of ξ, m is the batch size, t is some small positive parameter which we call smoothing parameter, $g^{m}\left(x, \overrightarrow{\xi_{m}}\right):=\frac{1}{m} \sum_{i=1}^{m} g\left(x, \xi_{i}\right)$, and

$$
\zeta\left(x, \xi_{i}, e\right)=\frac{F\left(x+t e, \xi_{i}\right)-F\left(x, \xi_{i}\right)}{t}-\left\langle g\left(x, \xi_{i}\right), e\right\rangle, \quad i=1, \ldots, m
$$

Derivative-Free Optimization

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$
\begin{align*}
\widetilde{\nabla}^{m} f^{t}(x) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\tilde{f}\left(x+t e, \xi_{i}\right)-\widetilde{f}\left(x, \xi_{i}\right)}{t} e \\
& =\left(\left\langle g^{m}\left(x, \overrightarrow{\xi_{m}}\right), e\right\rangle+\frac{1}{m} \sum_{i=1}^{m}\left(\zeta\left(x, \xi_{i}, e\right)+\eta\left(x, \xi_{i}, e\right)\right)\right) e, \tag{12}
\end{align*}
$$

where $e \in R S_{2}(1), \xi_{i}, i=1, \ldots, m$ are independent realizations of ξ, m is the batch size, t is some small positive parameter which we call smoothing parameter, $g^{m}\left(x, \overrightarrow{\xi_{m}}\right):=\frac{1}{m} \sum_{i=1}^{m} g\left(x, \xi_{i}\right)$, and

$$
\begin{aligned}
\zeta\left(x, \xi_{i}, e\right) & =\frac{F\left(x+t e, \xi_{i}\right)-F\left(x, \xi_{i}\right)}{{ }_{t}^{t}}-\left\langle g\left(x, \xi_{i}\right), e\right\rangle, \quad i=1, \ldots, m \\
\eta\left(x, \xi_{i}, e\right) & =\frac{\equiv\left(x+t e, \xi_{i}\right)-\equiv\left(x, \xi_{i}\right)}{t}, \quad i=1, \ldots, m .
\end{aligned}
$$

Derivative-Free Optimization

$$
\begin{aligned}
\zeta\left(x, \xi_{i}, e\right) & =\frac{F\left(x+t e, \xi_{i}\right)-F\left(x, \xi_{i}\right)}{E_{t}^{t}}-\left\langle g\left(x, \xi_{i}\right), e\right\rangle, \quad i=1, \ldots, m \\
\eta\left(x, \xi_{i}, e\right) & =\frac{\equiv\left(x+t e, \xi_{i}\right)-\equiv\left(x, \xi_{i}\right)}{t}, \quad i=1, \ldots, m .
\end{aligned}
$$

Derivative-Free Optimization

$$
\begin{aligned}
& \zeta\left(x, \xi_{i}, e\right)=\frac{F\left(x+t e, \xi_{i}\right)-F\left(x, \xi_{i}\right)}{t}-\left\langle g\left(x, \xi_{i}\right), e\right\rangle, \quad i=1, \ldots, m \\
& \eta\left(x, \xi_{i}, e\right)=\frac{\Xi\left(x+t e, \xi_{i}\right)-\Xi\left(x, \xi_{i}\right)}{t}, \quad i=1, \ldots, m .
\end{aligned}
$$

By Lipschitz smoothness of $F(\cdot, \xi)$, we have $|\zeta(x, \xi, e)| \leqslant \frac{L(\xi) t}{2}$ for all $x \in \mathbb{R}^{n}$ and $e \in S_{2}(1)$.

Derivative-Free Optimization

$$
\begin{aligned}
& \zeta\left(x, \xi_{i}, e\right)=\frac{F\left(x+t e, \xi_{i}\right)-F\left(x\left(x, \xi_{i}\right)\right.}{\Xi(\langle x(t)}-\left\langle g\left(x, \xi_{i}\right), e\right\rangle, \quad i=1, \ldots, m \\
& \eta\left(x, \xi_{i}, e\right)=\frac{\Xi\left(x+t, \xi_{i}\right)-\Xi\left(x, \xi_{i}\right)}{t}, \quad i=1, \ldots, m .
\end{aligned}
$$

By Lipschitz smoothness of $F(\cdot, \xi)$, we have $|\zeta(x, \xi, e)| \leqslant \frac{L(\xi) t}{2}$ for all $x \in \mathbb{R}^{n}$ and $e \in S_{2}(1)$. Hence, $\mathbb{E}_{\xi}(\zeta(x, \xi, e))^{2} \leqslant \frac{L_{2}^{2} t^{2}}{4}=: \Delta_{\zeta}$ for all $x \in \mathbb{R}^{n}$ and $e \in S_{2}(1)$.

Derivative-Free Optimization

$$
\begin{aligned}
& \zeta\left(x, \xi_{i}, e\right)=\frac{F\left(x+t e, \xi_{i}\right)-F\left(x, \xi_{i}\right)}{\Xi\left(x_{i}^{t}\right)}-\left\langle g\left(x, \xi_{i}\right), e\right\rangle, \quad i=1, \ldots, m \\
& \eta\left(x, \xi_{i}, e\right)=\frac{\left(x+t e, \xi_{i}\right)-\equiv\left(x, \xi_{i}\right)}{t}, \quad i=1, \ldots, m .
\end{aligned}
$$

By Lipschitz smoothness of $F(\cdot, \xi)$, we have $|\zeta(x, \xi, e)| \leqslant \frac{L(\xi) t}{2}$ for all $x \in \mathbb{R}^{n}$ and $e \in S_{2}(1)$. Hence, $\mathbb{E}_{\xi}(\zeta(x, \xi, e))^{2} \leqslant \frac{L_{2}^{2} t^{2}}{4}=: \Delta_{\zeta}$ for all $x \in \mathbb{R}^{n}$ and $e \in S_{2}(1)$. At the same time, from (11), we have that $|\eta(x, \xi, e)| \leqslant \frac{2 \Delta}{t}=: \Delta_{\eta}$ for all $x \in \mathbb{R}^{n}, e \in S_{2}(1)$ and a.s. in ξ.

Derivative-Free Optimization

$$
\begin{aligned}
& \zeta\left(x, \xi_{i}, e\right)=\frac{F\left(x+t e, \xi_{i}\right)-F\left(x\left(x, \xi_{i}\right)\right.}{\Xi(\langle)}-\left\langle g\left(x, \xi_{i}\right), e\right\rangle, \quad i=1, \ldots, m \\
& \eta\left(x, \xi_{i}, e\right)=\frac{\Xi\left(x+t e, \xi_{i}\right)-\equiv\left(x, \xi_{i}\right)}{t}, \quad i=1, \ldots, m .
\end{aligned}
$$

By Lipschitz smoothness of $F(\cdot, \xi)$, we have $|\zeta(x, \xi, e)| \leqslant \frac{L(\xi) t}{2}$ for all $x \in \mathbb{R}^{n}$ and $e \in S_{2}(1)$. Hence, $\mathbb{E}_{\xi}(\zeta(x, \xi, e))^{2} \leqslant \frac{L_{2}^{2} t^{2}}{4}=: \Delta_{\zeta}$ for all $x \in \mathbb{R}^{n}$ and $e \in S_{2}(1)$. At the same time, from (11), we have that $|\eta(x, \xi, e)| \leqslant \frac{2 \Delta}{t}=: \Delta_{\eta}$ for all $x \in \mathbb{R}^{n}, e \in S_{2}(1)$ and a.s. in ξ. So, we can use the same methods and analyze such problems in the same way.

