An Accelerated Directional Derivative Method for Smooth Stochastic Convex Optimization

Eduard Gorbunov

Moscow Institute of Physics and Technology

13 June, 2018

Eduard Gorbunov (MIPT)

13 June, 2018 1 / 16

$$\min_{x\in\mathbb{R}^n}\left\{f(x):=\mathbb{E}_{\xi}[F(x,\xi)]=\int_{\mathcal{X}}F(x,\xi)dP(x)\right\},\qquad(1)$$

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) := \mathbb{E}_{\xi}[F(x,\xi)] = \int_{\mathcal{X}} F(x,\xi) dP(x) \right\},$$
(1)

where ξ is a random vector with probability distribution $P(\xi)$, $\xi \in \mathcal{X}$,

13 June, 2018 2 / 16

E 990

イロン 不聞と 不同と 不同と

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) := \mathbb{E}_{\xi}[F(x,\xi)] = \int_{\mathcal{X}} F(x,\xi) dP(x) \right\},$$
(1)

where ξ is a random vector with probability distribution $P(\xi)$, $\xi \in \mathcal{X}$, and for *P*-almost every $\xi \in \mathcal{X}$, the function $F(x,\xi)$ is closed

13 June, 2018 2 / 16

(日) (四) (三) (三) (三)

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) := \mathbb{E}_{\xi}[F(x,\xi)] = \int_{\mathcal{X}} F(x,\xi) dP(x) \right\},$$
(1)

where ξ is a random vector with probability distribution $P(\xi)$, $\xi \in \mathcal{X}$, and for *P*-almost every $\xi \in \mathcal{X}$, the function $F(x,\xi)$ is closed and *f* is convex.

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) := \mathbb{E}_{\xi}[F(x,\xi)] = \int_{\mathcal{X}} F(x,\xi) dP(x) \right\},$$
(1)

where ξ is a random vector with probability distribution $P(\xi)$, $\xi \in \mathcal{X}$, and for *P*-almost every $\xi \in \mathcal{X}$, the function $F(x,\xi)$ is closed and *f* is convex. Moreover, we assume that, for *P* almost every ξ , the function $F(x,\xi)$ has gradient $g(x,\xi)$, which is $L(\xi)$ -Lipschitz continuous with respect to the Euclidean norm

$$\|m{g}(x,\xi)-m{g}(y,\xi)\|_2\leqslant L(\xi)\|x-y\|_2,\,orall x,y\in\mathbb{R}^n,$$
 a.s. in $\xi,$

and $L_2 := \sqrt{\mathbb{E}_{\xi}[L(\xi)^2]} < +\infty.$

Under this assumptions, $\mathbb{E}_{\xi}[g(x,\xi)] = \nabla f(x)$ and

 $\|\nabla f(x) - \nabla f(y)\|_2 \leq L_2 \|x - y\|_2, \, \forall x, y \in \mathbb{R}^n.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Under this assumptions, $\mathbb{E}_{\xi}[g(x,\xi)] = \nabla f(x)$ and

$$\|
abla f(x) -
abla f(y)\|_2 \leqslant L_2 \|x - y\|_2, \, \forall x, y \in \mathbb{R}^n.$$

Also we assume that

$$\mathbb{E}_{\xi}\left[\|\boldsymbol{g}(\boldsymbol{x},\xi) - \nabla \boldsymbol{f}(\boldsymbol{x})\|_{2}^{2}\right] \leqslant \sigma^{2}.$$
 (2)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Finally, we assume that an optimization procedure, given a point $x \in \mathbb{R}^n$,

イロト イポト イヨト イヨト

Finally, we assume that an optimization procedure, given a point $x \in \mathbb{R}^n$, direction $e \in S_2(1)$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Finally, we assume that an optimization procedure, given a point $x \in \mathbb{R}^n$, direction $e \in S_2(1)$ and ξ independently drawn from P,

< □ > < □ > < □ > < □ > < □ > < □ >

Finally, we assume that an optimization procedure, given a point $x \in \mathbb{R}^n$, direction $e \in S_2(1)$ and ξ independently drawn from P, can obtain a noisy stochastic approximation $\tilde{f}'(x,\xi,e)$ for the directional derivative $\langle g(x,\xi), e \rangle$:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Finally, we assume that an optimization procedure, given a point $x \in \mathbb{R}^n$, direction $e \in S_2(1)$ and ξ independently drawn from P, can obtain a noisy stochastic approximation $\tilde{f}'(x,\xi,e)$ for the directional derivative $\langle g(x,\xi), e \rangle$:

$$f'(x,\xi,e) = \langle g(x,\xi), e \rangle + \zeta(x,\xi,e) + \eta(x,\xi,e),$$

$$\mathbb{E}_{\xi} \left[\zeta(x,\xi,e)^2 \right] \leqslant \Delta_{\zeta}, \ \forall x \in \mathbb{R}^n, \forall e \in S_2(1),$$

$$|\eta(x,\xi,e)| \leqslant \Delta_{\eta}, \ \forall x \in \mathbb{R}^n, \forall e \in S_2(1), \text{ a.s. in } \xi,$$
(3)

 \sim

イロト イ理ト イヨト イヨト

Finally, we assume that an optimization procedure, given a point $x \in \mathbb{R}^n$, direction $e \in S_2(1)$ and ξ independently drawn from P, can obtain a noisy stochastic approximation $\tilde{f}'(x,\xi,e)$ for the directional derivative $\langle g(x,\xi), e \rangle$:

$$\begin{aligned} \widehat{f}'(x,\xi,e) &= \langle g(x,\xi), e \rangle + \zeta(x,\xi,e) + \eta(x,\xi,e), \\ \mathbb{E}_{\xi} \left[\zeta(x,\xi,e)^2 \right] &\leq \Delta_{\zeta}, \ \forall x \in \mathbb{R}^n, \forall e \in S_2(1), \\ \left| \eta(x,\xi,e) \right| &\leq \Delta_{\eta}, \ \forall x \in \mathbb{R}^n, \forall e \in S_2(1), \text{ a.s. in } \xi, \end{aligned}$$
(3)

where $S_2(1)$ is the Euclidean sphere or radius one with the center at the point zero

Finally, we assume that an optimization procedure, given a point $x \in \mathbb{R}^n$, direction $e \in S_2(1)$ and ξ independently drawn from P, can obtain a noisy stochastic approximation $\tilde{f}'(x,\xi,e)$ for the directional derivative $\langle g(x,\xi), e \rangle$:

$$\begin{aligned} \bar{f}'(x,\xi,e) &= \langle g(x,\xi), e \rangle + \zeta(x,\xi,e) + \eta(x,\xi,e), \\ \mathbb{E}_{\xi} \left[\zeta(x,\xi,e)^2 \right] &\leq \Delta_{\zeta}, \ \forall x \in \mathbb{R}^n, \forall e \in S_2(1), \\ &|\eta(x,\xi,e)| \leq \Delta_{\eta}, \ \forall x \in \mathbb{R}^n, \forall e \in S_2(1), \text{ a.s. in } \xi, \end{aligned}$$
(3)

13 June, 2018

4 / 16

where $S_2(1)$ is the Euclidean sphere or radius one with the center at the point zero and the values Δ_{ζ} , Δ_{η} are controlled and can be made as small as it is desired.

Finally, we assume that an optimization procedure, given a point $x \in \mathbb{R}^n$, direction $e \in S_2(1)$ and ξ independently drawn from P, can obtain a noisy stochastic approximation $\tilde{f}'(x,\xi,e)$ for the directional derivative $\langle g(x,\xi), e \rangle$:

$$\widetilde{f}'(x,\xi,e) = \langle g(x,\xi), e \rangle + \zeta(x,\xi,e) + \eta(x,\xi,e),$$

$$\mathbb{E}_{\xi} \left[\zeta(x,\xi,e)^2 \right] \leq \Delta_{\zeta}, \ \forall x \in \mathbb{R}^n, \forall e \in S_2(1),$$

$$|\eta(x,\xi,e)| \leq \Delta_{\eta}, \ \forall x \in \mathbb{R}^n, \forall e \in S_2(1), \text{ a.s. in } \xi,$$
(3)

where $S_2(1)$ is the Euclidean sphere or radius one with the center at the point zero and the values Δ_{ζ} , Δ_{η} are controlled and can be made as small as it is desired. Note that we use the smoothness of $F(\cdot,\xi)$ to write the directional derivative as $\langle g(x,\xi), e \rangle$, but we *do not assume* that the whole stochastic gradient $g(x,\xi)$ is available.

We choose a *prox-function* d(x) which is continuous, convex on \mathbb{R}^n

(日) (四) (三) (三) (三)

We choose a *prox-function* d(x) which is continuous, convex on \mathbb{R}^n and is 1-strongly convex on \mathbb{R}^n with respect to $\|\cdot\|_p$,

イロト 不得 とくき とくき とうき

We choose a *prox-function* d(x) which is continuous, convex on \mathbb{R}^n and is 1-strongly convex on \mathbb{R}^n with respect to $\|\cdot\|_p$, where $\|\cdot\|_p$ is a vector l_p -norm with $p \in [1, 2]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

We choose a *prox-function* d(x) which is continuous, convex on \mathbb{R}^n and is 1-strongly convex on \mathbb{R}^n with respect to $\|\cdot\|_p$, where $\|\cdot\|_p$ is a vector l_p -norm with $p \in [1,2]$. We define also the corresponding *Bregman* divergence $V[z](x) = d(x) - d(z) - \langle \nabla d(z), x - z \rangle$, $x, z \in \mathbb{R}^n$.

We choose a *prox-function* d(x) which is continuous, convex on \mathbb{R}^n and is 1-strongly convex on \mathbb{R}^n with respect to $\|\cdot\|_p$, where $\|\cdot\|_p$ is a vector l_p -norm with $p \in [1,2]$. We define also the corresponding *Bregman divergence* $V[z](x) = d(x) - d(z) - \langle \nabla d(z), x - z \rangle$, $x, z \in \mathbb{R}^n$. Note that, by the strong convexity of d,

$$V[z](x) \ge \frac{1}{2} ||x - z||_{p}^{2}, \quad x, z \in \mathbb{R}^{n}.$$
(4)

We choose a *prox-function* d(x) which is continuous, convex on \mathbb{R}^n and is 1-strongly convex on \mathbb{R}^n with respect to $\|\cdot\|_p$, where $\|\cdot\|_p$ is a vector l_p -norm with $p \in [1,2]$. We define also the corresponding *Bregman divergence* $V[z](x) = d(x) - d(z) - \langle \nabla d(z), x - z \rangle$, $x, z \in \mathbb{R}^n$. Note that, by the strong convexity of d,

$$V[z](x) \ge \frac{1}{2} ||x - z||_{p}^{2}, \quad x, z \in \mathbb{R}^{n}.$$
(4)

For the case p = 1, we choose the following prox-function

$$d(x) = \frac{e^{n(\kappa-1)(2-\kappa)/\kappa} \ln n}{2} ||x||_{\kappa}^{2}, \quad \kappa = 1 + \frac{1}{\ln n}$$
(5)

We choose a *prox-function* d(x) which is continuous, convex on \mathbb{R}^n and is 1-strongly convex on \mathbb{R}^n with respect to $\|\cdot\|_p$, where $\|\cdot\|_p$ is a vector l_p -norm with $p \in [1,2]$. We define also the corresponding *Bregman divergence* $V[z](x) = d(x) - d(z) - \langle \nabla d(z), x - z \rangle$, $x, z \in \mathbb{R}^n$. Note that, by the strong convexity of d,

$$V[z](x) \ge \frac{1}{2} ||x - z||_p^2, \quad x, z \in \mathbb{R}^n.$$
 (4)

For the case p = 1, we choose the following prox-function

$$d(x) = \frac{e^{n(\kappa-1)(2-\kappa)/\kappa} \ln n}{2} ||x||_{\kappa}^{2}, \quad \kappa = 1 + \frac{1}{\ln n}$$
(5)

and, for the case p = 2, we choose the prox-function to be the squared Euclidean norm

$$d(x) = \frac{1}{2} \|x\|_2^2.$$
 (6)

13 June, 2018

In our proofs of complexity bounds, we rely on the following lemma.

<ロト < 四ト < 回ト < 回ト < 回ト = 三日

In our proofs of complexity bounds, we rely on the following lemma.

Lemma

Let $e \in RS_2(1)$, i.e be a random vector uniformly distributed on the surface of the unit Euclidean sphere in \mathbb{R}^n ,

(日) (周) (日) (日)

Key lemma

In our proofs of complexity bounds, we rely on the following lemma.

Lemma

Let $e \in RS_2(1)$, i.e be a random vector uniformly distributed on the surface of the unit Euclidean sphere in \mathbb{R}^n , $p \in [1, 2]$ and q be given by $\frac{1}{p} + \frac{1}{q} = 1$.

< □ > < □ > < □ > < □ > < □ > < □ >

Key lemma

In our proofs of complexity bounds, we rely on the following lemma.

Let $e \in RS_2(1)$, i.e be a random vector uniformly distributed on the surface of the unit Euclidean sphere in \mathbb{R}^n , $p \in [1,2]$ and q be given by $\frac{1}{p} + \frac{1}{q} = 1$. Then, for $n \ge 8$ and $\rho_n = \min\{q - 1, 16 \ln n - 8\}n^{\frac{2}{q}-1}$,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Key lemma

In our proofs of complexity bounds, we rely on the following lemma.

Let $e \in RS_2(1)$, *i.e* be a random vector uniformly distributed on the surface of the unit Euclidean sphere in \mathbb{R}^n , $p \in [1,2]$ and q be given by $\frac{1}{p} + \frac{1}{q} = 1$. Then, for $n \ge 8$ and $\rho_n = \min\{q-1, 16 \ln n - 8\}n^{\frac{2}{q}-1}$, $\mathbb{E}_e ||e||_q^2 \le \rho_n$, (7)

< □ > < □ > < □ > < □ > < □ > < □ >

13 June, 2018

In our proofs of complexity bounds, we rely on the following lemma.

Let $e \in RS_2(1)$, i.e be a random vector uniformly distributed on the surface of the unit Euclidean sphere in \mathbb{R}^n , $p \in [1,2]$ and q be given by $\frac{1}{p} + \frac{1}{q} = 1$. Then, for $n \ge 8$ and $\rho_n = \min\{q - 1, 16 \ln n - 8\}n^{\frac{2}{q}-1}$, $\mathbb{E}_e ||e||_q^2 \le \rho_n$, (7) $\mathbb{E}_e \left(\langle s, e \rangle^2 ||e||_q^2\right) \le \frac{6\rho_n}{n} ||s||_2^2$, $\forall s \in \mathbb{R}^n$. (8)

Accelerated Randomized Directional Derivative Method

Algorithm 1 Accelerated Randomized Directional Derivative (ARDD) method

Input: x_0 — starting point; $N \ge 1$ — number of iterations; m — batch size. **Output:** point y_N 1: $y_0 \leftarrow x_0$, $z_0 \leftarrow x_0$

2: for k = 0, ..., N - 1 do

3:
$$\alpha_{k+1} \leftarrow \frac{k+2}{96n^2\rho_n L_2}, \tau_k \leftarrow \frac{1}{48\alpha_{k+1}n^2\rho_n L_2} = \frac{2}{k+2}.$$

4: Generate $e_{k+1} \in RS_2(1)$ independently from previous iterations and ξ_i , i = 1, ..., m - independent realizations of ξ .

5: Calculate

$$\widetilde{\nabla}^m f(x_{k+1}) = \frac{1}{m} \sum_{i=1}^m \widetilde{f}'(x_{k+1}, \xi_i, e_{k+1}) e_{k+1}.$$

$$\begin{aligned} 6: & x_{k+1} \leftarrow \tau_k z_k + (1 - \tau_k) y_k. \\ 7: & y_{k+1} \leftarrow x_{k+1} - \frac{1}{2L_2} \widetilde{\nabla}^m f(x_{k+1}). \\ 8: & z_{k+1} \leftarrow \operatorname*{argmin}_{z \in \mathbb{R}^n} \left\{ \alpha_{k+1} n \left\langle \widetilde{\nabla}^m f(x_{k+1}), z - z_k \right\rangle + V[z_k](z) \right\} \end{aligned}$$

9: end for

10: return y_N

Sac

イロト 不得下 イヨト イヨト 三日

Complexity of ARDD

Theorem

Let ARDD method be applied to solve problem (1).

イロト イポト イヨト イヨト

Theorem

Let ARDD method be applied to solve problem (1). Then

$$\mathbb{E}[f(y_N)] - f(x^*) \leqslant \frac{384\Theta_p n^2 \rho_n L_2}{N^2} + \frac{4N}{nL_2} \cdot \frac{\sigma^2}{m} + \frac{61N}{24L_2} \Delta_{\zeta} + \frac{122N}{3L_2} \Delta_{\eta}^2 + \frac{12\sqrt{2n\Theta_p}}{N^2} \left(\frac{\sqrt{\Delta_{\zeta}}}{2} + 2\Delta_{\eta}\right) + \frac{N^2}{12n\rho_n L_2} \left(\frac{\sqrt{\Delta_{\zeta}}}{2} + 2\Delta_{\eta}\right)^2,$$
(9)

13 June, 2018 8 / 16

- 2

イロト イポト イヨト イヨト

Eduard Gorbunov (MIPT)

Theorem

Let ARDD method be applied to solve problem (1). Then

$$\mathbb{E}[f(y_N)] - f(x^*) \leqslant \frac{384\Theta_p n^2 \rho_n L_2}{N^2} + \frac{4N}{nL_2} \cdot \frac{\sigma^2}{m} + \frac{61N}{24L_2} \Delta_{\zeta} + \frac{122N}{3L_2} \Delta_{\eta}^2 + \frac{12\sqrt{2n\Theta_p}}{N^2} \left(\frac{\sqrt{\Delta_{\zeta}}}{2} + 2\Delta_{\eta}\right) + \frac{N^2}{12n\rho_n L_2} \left(\frac{\sqrt{\Delta_{\zeta}}}{2} + 2\Delta_{\eta}\right)^2,$$
(9)

where $\Theta_p = V[z_0](x^*)$ is defined by the chosen proximal setup and $\mathbb{E}[\cdot] = \mathbb{E}_{e_1,\ldots,e_N,\xi_{1,1},\ldots,\xi_{N,m}}[\cdot].$

< □ > < □ > < □ > < □ > < □ > < □ >

Complexity of ARDD

	p = 1	p = 2
N	$O\left(\sqrt{\frac{n\ln nL_2\Theta_1}{\varepsilon}}\right)$	$O\left(\sqrt{\frac{n^2 L_2 \Theta_2}{\varepsilon}}\right)$
m	$O\left(\max\left\{1,\sqrt{\frac{\ln n}{n}}\cdot \frac{\sigma^{2}}{\varepsilon^{3/2}}\cdot\sqrt{\frac{\Theta_{1}}{L_{2}}} ight\} ight)$	$O\left(\max\left\{1, \frac{\sigma^2}{\varepsilon^{3/2}} \cdot \sqrt{\frac{\Theta_2}{L_2}} ight\} ight)$
Δ_{ζ}	$O\left(\min\left\{n(\ln n)^2 L_2^2\Theta_1, \frac{\varepsilon^2}{n\Theta_1}, \frac{\varepsilon^2}{\sqrt{n\ln n}} \cdot \sqrt{\frac{L_2}{\Theta_1}}\right\}\right)$	$O\left(\min\left\{n^{3}L_{2}^{2}\Theta_{2}, \frac{\varepsilon}{n\Theta_{2}}, \frac{\varepsilon^{\frac{3}{2}}}{n} \cdot \sqrt{\frac{L_{2}}{\Theta_{2}}}\right\}\right)$
Δ_{η}	$O\left(\min\left\{\sqrt{n}\ln nL_2\sqrt{\Theta_1}, \frac{\varepsilon}{\sqrt{n\Theta_1}}, \frac{\varepsilon^2}{\sqrt{n\Theta_1}}, \frac{4\sqrt{L_2}}{\sqrt{n}\ln n}\right\}\right)$	$O\left(\min\left\{n^{\frac{3}{2}}L_{2}\sqrt{\Theta_{2}}, \frac{\varepsilon}{\sqrt{n\Theta_{2}}}, \frac{\varepsilon^{\frac{3}{4}}}{\sqrt{n}} \cdot \sqrt[4]{\frac{L_{2}}{\Theta_{2}}}\right\}\right)$
O-le calls	$O\left(\max\left\{\sqrt{\frac{n\ln nL_2\Theta_1}{\varepsilon}}, \frac{\sigma^2\Theta_1\ln n}{\varepsilon^2}\right\}\right)$	$O\left(\max\left\{\sqrt{\frac{n^2 L_2 \Theta_2}{\varepsilon}}, \frac{\sigma^2 \Theta_2 n}{\varepsilon^2}\right\}\right)$

Table: ARDD parameters for the cases p = 1 and p = 2.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Randomized Directional Derivative Method

Algorithm 2 Randomized Directional Derivative (RDD) method

Input: x_0 — starting point; $N \ge 1$ — number of iterations; m — batch size. **Output:** point \bar{x}_N .

1: for
$$k = 0, ..., N - 1$$
 do

2:
$$\alpha \leftarrow \frac{1}{48n\rho_n L_2}$$

- 3: Generate $e_{k+1} \in RS_2(1)$ independently from previous iterations and ξ_i , i = 1, ..., m independent realizations of ξ .
- 4: Calculate

$$\widetilde{\nabla}^m f(x_{k+1}) = \frac{1}{m} \sum_{i=1}^m \widetilde{f}'(x_{k+1}, \xi_i, e_{k+1}) e_{k+1}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

13 June, 2018

5:
$$x_{k+1} \leftarrow \operatorname*{argmin}_{x \in \mathbb{R}^n} \left\{ \alpha n \left\langle \widetilde{\nabla}^m f(x_k), x - x_k \right\rangle + V[x_k](x) \right\}.$$

- 6: end for
- 7: return $\bar{x}_N \leftarrow \frac{1}{N} \sum_{k=0}^{N-1} x_k$

Complexity of RDD

Theorem

Let RDD method be applied to solve problem (1).

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

Complexity of RDD

Theorem

Let RDD method be applied to solve problem (1). Then

$$\mathbb{E}[f(\bar{x}_{N})] - f(x_{*}) \leq \frac{384n\rho_{n}L_{2}\Theta_{p}}{N} + \frac{2}{L_{2}}\frac{\sigma^{2}}{m} + \frac{n}{12L_{2}}\Delta_{\zeta} + \frac{4n}{3L_{2}}\Delta_{\eta}^{2} + \frac{8\sqrt{2n\Theta_{p}}}{N}\left(\frac{\sqrt{\Delta_{\zeta}}}{2} + 2\Delta_{\eta}\right) + \frac{N}{3L_{2}\rho_{n}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2} + 2\Delta_{\eta}\right)^{2},$$
(10)

13 June, 2018 11 / 16

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

Eduard Gorbunov (MIPT)

Theorem

Let RDD method be applied to solve problem (1). Then

$$\mathbb{E}[f(\bar{x}_{N})] - f(x_{*}) \leq \frac{384n\rho_{n}L_{2}\Theta_{p}}{N} + \frac{2}{L_{2}}\frac{\sigma^{2}}{m} + \frac{n}{12L_{2}}\Delta_{\zeta} + \frac{4n}{3L_{2}}\Delta_{\eta}^{2} + \frac{8\sqrt{2n\Theta_{p}}}{N}\left(\frac{\sqrt{\Delta_{\zeta}}}{2} + 2\Delta_{\eta}\right) + \frac{N}{3L_{2}\rho_{n}}\left(\frac{\sqrt{\Delta_{\zeta}}}{2} + 2\Delta_{\eta}\right)^{2},$$
(10)

where $\Theta_p = V[z_0](x^*)$ is defined by the chosen proximal setup and $\mathbb{E}[\cdot] = \mathbb{E}_{e_1,\ldots,e_N,\xi_{1,1},\ldots,\xi_{N,m}}[\cdot].$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二 圖 … のへで

Complexity of RDD

	p = 1	p = 2
N	$O\left(\frac{L_2\Theta_1 \ln n}{\varepsilon}\right)$	$O\left(\frac{nL_2\Theta_2}{\varepsilon}\right)$
m	$O\left(\max\left\{1, \frac{\sigma^{2}}{\varepsilon L_{2}}\right\}\right)$	$O\left(\max\left\{1, \frac{\sigma^{2}}{\varepsilon L_{2}}\right\}\right)$
Δ_{ζ}	$O\left(\min\left\{\frac{(\ln n)^2}{n}L_2^2\Theta_1, \frac{\varepsilon^2}{n\Theta_1}, \frac{\varepsilon L_2}{n}\right\}\right)$	$O\left(\min\left\{nL_{2}^{2}\Theta_{2}, \frac{\varepsilon^{2}}{n\Theta_{2}}, \frac{\varepsilon L_{2}}{n}\right\}\right)$
Δ_η	$O\left(\min\left\{\frac{\ln n}{\sqrt{n}}L_{2}\sqrt{\Theta_{1}}, \frac{\varepsilon}{\sqrt{n\Theta_{1}}}, \sqrt{\frac{\varepsilon L_{2}}{n}}\right\}\right)$	$O\left(\min\left\{\sqrt{n}L_{2}\sqrt{\Theta_{2}}, \frac{\varepsilon}{\sqrt{n\Theta_{2}}}, \sqrt{\frac{\varepsilon L_{2}}{n}}\right\}\right)$
O-le calls	$O\left(\max\left\{\frac{L_{2}\Theta_{1}\ln n}{\varepsilon}, \frac{\sigma^{2}\Theta_{1}\ln n}{\varepsilon^{2}}\right\}\right)$	$O\left(\max\left\{\frac{nL_2\Theta_2}{\varepsilon}, \frac{n\sigma^2\Theta_2}{\varepsilon^2}\right\}\right)$

Table: RDD parameters for the cases p = 1 and p = 2.

13 June, 2018 12 / 16

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

$\mathsf{ARDD} \text{ and } \mathsf{RDD}$

Method	ho=1	<i>p</i> = 2
ARDD	$\tilde{O}\left(\max\left\{\sqrt{\frac{nL_2\Theta_1}{\varepsilon}}, \frac{\sigma^2\Theta_1}{\varepsilon^2}\right\}\right)$	$\tilde{O}\left(\max\left\{\sqrt{\frac{n^2L_2\Theta_2}{\varepsilon}}, \frac{\sigma^2\Theta_2 n}{\varepsilon^2} ight\} ight)$
RDD	$ ilde{O}\left(\max\left\{rac{L_{2}\Theta_{1}}{arepsilon},rac{\sigma^{2}\Theta_{1}}{arepsilon^{2}} ight\} ight)$	$\tilde{O}\left(\max\left\{\frac{nL_2\Theta_2}{\varepsilon}, \frac{n\sigma^2\Theta_2}{\varepsilon^2} ight\} ight)$

Table: ARDD and RDD complexities for p = 1 and p = 2

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

ARDD and RDD

Method	ho=1	<i>p</i> = 2
ARDD	$\tilde{O}\left(\max\left\{\sqrt{\frac{nL_2\Theta_1}{\varepsilon}}, \frac{\sigma^2\Theta_1}{\varepsilon^2}\right\}\right)$	$\tilde{O}\left(\max\left\{\sqrt{\frac{n^2L_2\Theta_2}{\varepsilon}}, \frac{\sigma^2\Theta_2 n}{\varepsilon^2} ight\} ight)$
RDD	$ ilde{O}\left(\max\left\{rac{L_{2}\Theta_{1}}{arepsilon},rac{\sigma^{2}\Theta_{1}}{arepsilon^{2}} ight\} ight)$	$\tilde{O}\left(\max\left\{\frac{nL_2\Theta_2}{\varepsilon}, \frac{n\sigma^2\Theta_2}{\varepsilon^2} ight\} ight)$

Table: ARDD and RDD complexities for p = 1 and p = 2

Remark

Note that for p = 1 RDD gives dimensional independent complexity bounds.

Eduard Gorbunov (MIPT)

13 June, 2018 13 / 16

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二 圖 … のへで

We assume that an optimization procedure, given a pair of points $(x, y) \in \mathbb{R}^{2n}$, can obtain a pair of noisy stochastic realizations $(\tilde{f}(x, \xi), \tilde{f}(y, \xi))$ of the objective value f, where

 $\widetilde{f}(x,\xi) = F(x,\xi) + \Xi(x,\xi), \quad |\Xi(x,\xi)| \leqslant \Delta, \ \forall x \in \mathbb{R}^n, \ \text{a.s. in } \xi, \quad (11)$

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

13 June, 2018

14 / 16

and ξ is independently drawn from *P*.

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

イロト 不得 とくき とくき とうき

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$\widetilde{\nabla}^{m} f^{t}(x) = \frac{1}{m} \sum_{i=1}^{m} \frac{\widetilde{f}(x+te,\xi_{i}) - \widetilde{f}(x,\xi_{i})}{t} e$$
$$= \left(\left\langle g^{m}(x,\xi_{m}), e \right\rangle + \frac{1}{m} \sum_{i=1}^{m} (\zeta(x,\xi_{i},e) + \eta(x,\xi_{i},e)) \right) e,$$
(12)

イロト 不得 とくき とくき とうき

13 June, 2018

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$\widetilde{\nabla}^{m} f^{t}(x) = \frac{1}{m} \sum_{i=1}^{m} \frac{\widetilde{f}(x+te,\xi_{i}) - \widetilde{f}(x,\xi_{i})}{t} e$$
$$= \left(\left\langle g^{m}(x,\vec{\xi_{m}}), e \right\rangle + \frac{1}{m} \sum_{i=1}^{m} (\zeta(x,\xi_{i},e) + \eta(x,\xi_{i},e)) \right) e,$$
(12)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

13 June, 2018

15 / 16

where $e \in RS_2(1)$,

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$\widetilde{\nabla}^{m} f^{t}(x) = \frac{1}{m} \sum_{i=1}^{m} \frac{\widetilde{f}(x+te,\xi_{i}) - \widetilde{f}(x,\xi_{i})}{t} e$$

$$= \left(\left\langle g^{m}(x,\xi_{m}), e \right\rangle + \frac{1}{m} \sum_{i=1}^{m} (\zeta(x,\xi_{i},e) + \eta(x,\xi_{i},e)) \right) e,$$
(12)

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

13 June, 2018

15 / 16

where $e \in RS_2(1)$, ξ_i , i = 1, ..., m are independent realizations of ξ ,

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

イロト 不得 とくき とくき とうき

13 June, 2018

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$\widetilde{\nabla}^{m} f^{t}(x) = \frac{1}{m} \sum_{i=1}^{m} \frac{\widetilde{f}(x+te,\xi_{i}) - \widetilde{f}(x,\xi_{i})}{t} e$$
$$= \left(\left\langle g^{m}(x,\xi_{m}), e \right\rangle + \frac{1}{m} \sum_{i=1}^{m} (\zeta(x,\xi_{i},e) + \eta(x,\xi_{i},e)) \right) e,$$
(12)

where $e \in RS_2(1)$, ξ_i , i = 1, ..., m are independent realizations of ξ , m is the *batch size*, t is some small positive parameter which we call *smoothing parameter*,

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二 圖 … のへで

13 June, 2018

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$\widetilde{\nabla}^{m} f^{t}(x) = \frac{1}{m} \sum_{i=1}^{m} \frac{\widetilde{f}(x+te,\xi_{i}) - \widetilde{f}(x,\xi_{i})}{t} e$$
$$= \left(\left\langle g^{m}(x,\vec{\xi_{m}}), e \right\rangle + \frac{1}{m} \sum_{i=1}^{m} (\zeta(x,\xi_{i},e) + \eta(x,\xi_{i},e)) \right) e,$$
(12)

where $e \in RS_2(1)$, ξ_i , i = 1, ..., m are independent realizations of ξ , m is the batch size, t is some small positive parameter which we call smoothing parameter, $\vec{g}^m(x, \vec{\xi_m}) := \frac{1}{m} \sum_{i=1}^m g(x, \xi_i)$

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

13 June, 2018

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$\widetilde{\nabla}^{m} f^{t}(x) = \frac{1}{m} \sum_{i=1}^{m} \frac{\widetilde{f}(x+te,\xi_{i}) - \widetilde{f}(x,\xi_{i})}{t} e$$
$$= \left(\left\langle g^{m}(x,\xi_{m}), e \right\rangle + \frac{1}{m} \sum_{i=1}^{m} (\zeta(x,\xi_{i},e) + \eta(x,\xi_{i},e)) \right) e,$$
(12)

where $e \in RS_2(1)$, ξ_i , i = 1, ..., m are independent realizations of ξ , m is the batch size, t is some small positive parameter which we call smoothing parameter, $g^m(x, \vec{\xi_m}) := \frac{1}{m} \sum_{i=1}^m g(x, \xi_i)$, and

$$\zeta(x,\xi_i,e) = \frac{F(x+te,\xi_i)-F(x,\xi_i)}{t} - \langle g(x,\xi_i),e\rangle, \quad i=1,...,m$$

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$\widetilde{\nabla}^{m} f^{t}(x) = \frac{1}{m} \sum_{i=1}^{m} \frac{\widetilde{f}(x+te,\xi_{i}) - \widetilde{f}(x,\xi_{i})}{t} e$$
$$= \left(\left\langle g^{m}(x,\xi_{m}), e \right\rangle + \frac{1}{m} \sum_{i=1}^{m} (\zeta(x,\xi_{i},e) + \eta(x,\xi_{i},e)) \right) e,$$
(12)

where $e \in RS_2(1)$, ξ_i , i = 1, ..., m are independent realizations of ξ , m is the batch size, t is some small positive parameter which we call smoothing parameter, $g^m(x, \vec{\xi_m}) := \frac{1}{m} \sum_{i=1}^m g(x, \xi_i)$, and

$$\begin{aligned} \zeta(x,\xi_{i},e) &= \frac{F(x+te,\xi_{i})-F(x,\xi_{i})}{t} - \langle g(x,\xi_{i}),e\rangle, \quad i = 1,...,m\\ \eta(x,\xi_{i},e) &= \frac{\Xi(x+te,\xi_{i})-\Xi(x,\xi_{i})}{t}, \quad i = 1,...,m. \end{aligned}$$

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

$$\begin{aligned} \zeta(x,\xi_i,e) &= \frac{F(x+te,\xi_i)-F(x,\xi_i)}{t} - \langle g(x,\xi_i),e\rangle, \quad i=1,...,m\\ \eta(x,\xi_i,e) &= \frac{\Xi(x+te,\xi_i)-\Xi(x,\xi_i)}{t}, \quad i=1,...,m. \end{aligned}$$

13 June, 2018 16 / 16

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

$$\begin{aligned} \zeta(x, \boldsymbol{\xi}_i, e) &= \frac{F(x + te, \boldsymbol{\xi}_i) - F(x, \boldsymbol{\xi}_i)}{t} - \langle g(x, \boldsymbol{\xi}_i), e \rangle, \quad i = 1, ..., m \\ \eta(x, \boldsymbol{\xi}_i, e) &= \frac{\Xi(x + te, \boldsymbol{\xi}_i) - \Xi(x, \boldsymbol{\xi}_i)}{t}, \quad i = 1, ..., m. \end{aligned}$$

By Lipschitz smoothness of $F(\cdot, \xi)$, we have $|\zeta(x, \xi, e)| \leq \frac{L(\xi)t}{2}$ for all $x \in \mathbb{R}^n$ and $e \in S_2(1)$.

13 June, 2018 16 / 16

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

$$\begin{aligned} \zeta(x, \boldsymbol{\xi}_i, e) &= \frac{F(x + te, \boldsymbol{\xi}_i) - F(x, \boldsymbol{\xi}_i)}{t} - \langle g(x, \boldsymbol{\xi}_i), e \rangle, \quad i = 1, ..., m \\ \eta(x, \boldsymbol{\xi}_i, e) &= \frac{\Xi(x + te, \boldsymbol{\xi}_i) - \Xi(x, \boldsymbol{\xi}_i)}{t}, \quad i = 1, ..., m. \end{aligned}$$

By Lipschitz smoothness of $F(\cdot, \xi)$, we have $|\zeta(x, \xi, e)| \leq \frac{L(\xi)t}{2}$ for all $x \in \mathbb{R}^n$ and $e \in S_2(1)$. Hence, $\mathbb{E}_{\xi}(\zeta(x, \xi, e))^2 \leq \frac{L_2^2 t^2}{4} =: \Delta_{\zeta}$ for all $x \in \mathbb{R}^n$ and $e \in S_2(1)$.

13 June, 2018 16 / 16

(日) (周) (日) (日) (日) (0) (0)

$$\begin{aligned} \zeta(x, \boldsymbol{\xi}_i, e) &= \frac{F(x + te, \boldsymbol{\xi}_i) - F(x, \boldsymbol{\xi}_i)}{t} - \langle g(x, \boldsymbol{\xi}_i), e \rangle, \quad i = 1, ..., m \\ \eta(x, \boldsymbol{\xi}_i, e) &= \frac{\Xi(x + te, \boldsymbol{\xi}_i) - \Xi(x, \boldsymbol{\xi}_i)}{t}, \quad i = 1, ..., m. \end{aligned}$$

By Lipschitz smoothness of $F(\cdot, \xi)$, we have $|\zeta(x, \xi, e)| \leq \frac{L(\xi)t}{2}$ for all $x \in \mathbb{R}^n$ and $e \in S_2(1)$. Hence, $\mathbb{E}_{\xi}(\zeta(x, \xi, e))^2 \leq \frac{L_2^2 t^2}{4} =: \Delta_{\zeta}$ for all $x \in \mathbb{R}^n$ and $e \in S_2(1)$. At the same time, from (11), we have that $|\eta(x, \xi, e)| \leq \frac{2\Delta}{t} =: \Delta_{\eta}$ for all $x \in \mathbb{R}^n$, $e \in S_2(1)$ and a.s. in ξ .

13 June, 2018 16 / 16

$$\begin{aligned} \zeta(x, \boldsymbol{\xi}_i, e) &= \frac{F(x + te, \boldsymbol{\xi}_i) - F(x, \boldsymbol{\xi}_i)}{t} - \langle g(x, \boldsymbol{\xi}_i), e \rangle, \quad i = 1, ..., m \\ \eta(x, \boldsymbol{\xi}_i, e) &= \frac{\Xi(x + te, \boldsymbol{\xi}_i) - \Xi(x, \boldsymbol{\xi}_i)}{t}, \quad i = 1, ..., m. \end{aligned}$$

By Lipschitz smoothness of $F(\cdot, \xi)$, we have $|\zeta(x, \xi, e)| \leq \frac{L(\xi)t}{2}$ for all $x \in \mathbb{R}^n$ and $e \in S_2(1)$. Hence, $\mathbb{E}_{\xi}(\zeta(x, \xi, e))^2 \leq \frac{L_2^2 t^2}{4} =: \Delta_{\zeta}$ for all $x \in \mathbb{R}^n$ and $e \in S_2(1)$. At the same time, from (11), we have that $|\eta(x, \xi, e)| \leq \frac{2\Delta}{t} =: \Delta_{\eta}$ for all $x \in \mathbb{R}^n$, $e \in S_2(1)$ and a.s. in ξ . So, we can use the same methods and analyze such problems in the same way.

13 June, 2018 16 / 16