

An Accelerated Directional Derivative Method for Smooth Stochastic Convex Optimization

 $Eduard\ Gorbunov^1,\ {\sf Pavel}\ {\sf Dvurechensky}^2,\ {\sf Alexander}\ {\sf Gasnikov}^1$

¹Moscow Institute of Physics and Technology, Moscow, Russia

²Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany

Introduction

Consider the following optimization problem

$$\min_{x\in\mathbb{R}^n}\left\{f(x):=\mathbb{E}_{\xi}[F(x,\xi)]=\int_{\mathcal{X}}F(x,\xi)dP(x)\right\},\qquad(1)$$

where ξ — random vector with probability distribution $P(\xi)$, $\xi \in \mathcal{X}$, $F(x,\xi)$ — closed a.s. in ξ , f — convex,

$$\|g(x,\xi)-g(y,\xi)\|_2\leqslant L(\xi)\|x-y\|_2,\,orall x,y\in\mathbb{R}^n,$$
 a.s. in $\xi,$

and $L_2 := \sqrt{\mathbb{E}_{\xi}[L(\xi)^2]} < +\infty$. Under this assumptions, $\mathbb{E}_{\xi}[g(x,\xi)] = \nabla f(x)$ and

$$\|\nabla f(x) - \nabla f(y)\|_2 \leq L_2 \|x - y\|_2, \forall x, y \in \mathbb{R}^n.$$

Also we assume that

$$\mathbb{E}_{\xi}\left[\|g(x,\xi)-\nabla f(x)\|_{2}^{2}\right] \leqslant \sigma^{2}.$$
(2)

Finally, we assume that an optimization procedure, given a point $x \in \mathbb{R}^n$, direction $e \in S_2(1)$ and ξ independently drawn from P, can obtain a noisy stochastic approximation $\tilde{f}'(x, \xi, e)$ for the directional derivative

Algorithm 2. Randomized Directional Derivative (RDD) method. **Input:** x_0 — starting point; $N \ge 1$ — number of iterations; m — batch size. **Output:** point \bar{x}_N . 1: for k = 0, ..., N - 1 do $\alpha \leftarrow \frac{1}{48n\rho_n L_2}$ 2: Generate $e_{k+1} \in RS_2(1)$ independently from previous iterations and ξ_i , i = 1, ..., m – independent realizations of ξ . Calculate $\widetilde{\nabla}^m f(x_{k+1}) = \frac{1}{m} \sum_{i=1}^m \widetilde{f}'(x_{k+1}, \boldsymbol{\xi}_i, \boldsymbol{e}_{k+1}) \boldsymbol{e}_{k+1}.$ $x_{k+1} \leftarrow \operatorname*{argmin}_{x \in \mathbb{R}^n} \left\{ \alpha n \left\langle \widetilde{\nabla}^m f(x_k), x - x_k \right\rangle + V[x_k](x) \right\}.$ 5: 6: end for **Theorem 2** [1]. Let RDD method be applied to solve problem (1). Then $\mathbb{E}[f(\bar{x}_N)] - f(x_*) \leq \frac{384n\rho_n L_2 \Theta_p}{N} + \frac{2}{L_2} \frac{\sigma^2}{m} + \frac{n}{12L_2} \Delta_{\zeta} + \frac{4n}{3L_2} \Delta_{\eta}^2$ $+\frac{8\sqrt{2n\Theta_p}}{N}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2\Delta_{\eta}\right)$

(6)

 $\langle g(x,\xi),e\rangle$:

 $\widetilde{f}'(x,\xi,e) = \langle g(x,\xi),e
angle + \zeta(x,\xi,e) + \eta(x,\xi,e), \ \mathbb{E}_{\xi}\left[\zeta(x,\xi,e)^2
ight] \leqslant \Delta_{\zeta}, \ orall x \in \mathbb{R}^n, orall e \in S_2(1), \ |\eta(x,\xi,e)| \leqslant \Delta_{\eta}, \ orall x \in \mathbb{R}^n, orall e \in S_2(1), \ a.s. \ in \ \xi.$

We choose a *prox-function* d(x) which is continuous, convex on \mathbb{R}^n and is **1**-strongly convex on \mathbb{R}^n with respect to $\|\cdot\|_p$, $p \in [1, 2]$. We define also the corresponding *Bregman divergence*

 $V[z](x) = d(x) - d(z) - \langle \nabla d(z), x - z \rangle, x, z \in \mathbb{R}^n$. Moreover,

$$\mathbb{E}_e \|e\|_q^2 \le \rho_n, \tag{3}$$

$$\mathbb{E}_e\left[\langle s, e \rangle^2 \|e\|_q^2\right] \le \frac{6\rho_n}{n} \|s\|_2^2, \quad \forall s \in \mathbb{R}^n, \tag{4}$$

where $\rho_n = \min\{q-1, 16 \ln n - 8\} n^{\frac{2}{q}-1}$, $n \ge 8$ and $s \in \mathbb{R}^n$.

New methods

Algorithm 1. Accelerated Randomized Directional Derivative (ARDD) method.

Input: x_0 — starting point; $N \ge 1$ — number of iterations; m — batch size.

Output: point
$$y_N$$

1:
$$y_0 \leftarrow x_0, z_0 \leftarrow x_0$$

2: for
$$k = 0, ..., N - 1$$
 do
3: $\alpha_{k+1} \leftarrow \frac{k+2}{96n^2\rho_nL_2}, \tau_k \leftarrow \frac{1}{48\alpha_{k+1}n^2\rho_nL_2} = \frac{2}{k+2}$
4: Generate $e_{k+1} \in RS_2(1)$ independently from previous iterations
and $\xi_i, i = 1, ..., m$ – independent realizations of ξ_i .
5: Calculate

$$\widetilde{\nabla}^{m} f(x_{k+1}) = \frac{1}{m} \sum_{i=1}^{m} \widetilde{f}'(x_{k+1}, \xi_{i}, e_{k+1}) e_{k+1}.$$

6: $x_{k+1} \leftarrow \tau_{k} z_{k} + (1 - \tau_{k}) y_{k}.$

7: $y_{k+1} \leftarrow x_{k+1} - \frac{1}{2L_{2}} \widetilde{\nabla}^{m} f(x_{k+1}).$

8: $z_{k+1} \leftarrow \operatorname*{argmin}_{z \in \mathbb{R}^{n}} \left\{ \alpha_{k+1} n \left\langle \widetilde{\nabla}^{m} f(x_{k+1}), z - z_{k} \right\rangle + V[z_{k}](z) \right\}$

9: end for

$$+\frac{N}{3L_2\rho_n}\left(\frac{\sqrt{\Delta_{\zeta}}}{2}+2\Delta_{\eta}\right)^2,$$

where $\Theta_p = V[z_0](x^*)$ is defined by the chosen proximal setup and $\mathbb{E}[\cdot] = \mathbb{E}_{e_1,...,e_N,\xi_{1,1},...,\xi_{N,m}}[\cdot]$.

Derivative-Free Optimization

We assume that an optimization procedure, given a pair of points $(x, y) \in \mathbb{R}^{2n}$, can obtain a pair of noisy stochastic realizations $(\tilde{f}(x,\xi), \tilde{f}(y,\xi))$ of the objective value f, where

$$\widetilde{f}(x,\xi) = F(x,\xi) + \Xi(x,\xi),$$

$$|\Xi(x,\xi)| \leq \Delta, \ \forall x \in \mathbb{R}^n, \text{ a.s. in } \xi,$$
(7)

and ξ is independently drawn from P. Based on these observations of the objective value, we form the following stochastic approximation of $\nabla f(x)$

$$\widetilde{\nabla}^{m} f^{t}(x) = \frac{1}{m} \sum_{i=1}^{m} \frac{\widetilde{f}(x+te,\xi_{i}) - \widetilde{f}(x,\xi_{i})}{t} e$$

$$= \left(\left\langle g^{m}(x,\vec{\xi_{m}}), e \right\rangle + \frac{1}{m} \sum_{i=1}^{m} (\zeta(x,\xi_{i},e) + \eta(x,\xi_{i},e)) \right) e,$$
(8)

where $e \in RS_2(1)$, ξ_i , i = 1, ..., m are independent realizations of ξ , m

Theorem 1 [1]. Let ARDD method be applied to solve problem (1). Then

$$\mathbb{E}[f(y_N)] - f(x^*) \leqslant \frac{384\Theta_p n^2 \rho_n L_2}{N^2} + \frac{4N}{nL_2} \cdot \frac{\sigma^2}{m} + \frac{61N}{24L_2} \Delta_{\zeta} + \frac{122N}{3L_2} \Delta_{\eta}^2 + \frac{12\sqrt{2n\Theta_p}}{N^2} \left(\frac{\sqrt{\Delta_{\zeta}}}{2} + 2\Delta_{\eta}\right) + \frac{N^2}{12n\rho_n L_2} \left(\frac{\sqrt{\Delta_{\zeta}}}{2} + 2\Delta_{\eta}\right)^2,$$
(5)
where $\Theta_p = V[z_0](x^*)$ is defined by the chosen proximal setup and
 $\mathbb{E}[\cdot] = \mathbb{E}_{e_1,\ldots,e_N,\xi_{1,1},\ldots,\xi_{N,m}}[\cdot].$

is the batch size, t is some small positive parameter which we call smoothing parameter, $g^m(x, \vec{\xi_m}) := \frac{1}{m} \sum_{i=1}^m g(x, \xi_i)$, and

$$\begin{aligned} \zeta(x,\xi_i,e) &= \frac{F(x+te,\xi_i)-F(x,\xi_i)}{t} - \langle g(x,\xi_i),e\rangle, \quad i = 1,...,m \\ \eta(x,\xi_i,e) &= \frac{\Xi(x+te,\xi_i)-\Xi(x,\xi_i)}{t}, \quad i = 1,...,m. \end{aligned}$$

By Lipschitz smoothness of $F(\cdot, \xi)$, we have $|\zeta(x, \xi, e)| \leq \frac{L(\xi)t}{2}$ for all $x \in \mathbb{R}^n$ and $e \in S_2(1)$. Hence, $\mathbb{E}_{\xi}(\zeta(x, \xi, e))^2 \leq \frac{L_2^2 t^2}{4} =: \Delta_{\zeta}$ for all $x \in \mathbb{R}^n$ and $e \in S_2(1)$. At the same time, from (7), we have that $|\eta(x, \xi, e)| \leq \frac{2\Delta}{t} =: \Delta_{\eta}$ for all $x \in \mathbb{R}^n$, $e \in S_2(1)$ and a.s. in ξ . So, we can recover results from [2] using this technique. Bibliography

- Pavel Dvurechensky, Alexander Gasnikov, and Eduard Gorbunov. An accelerated directional derivative method for smooth stochastic convex optimization. arXiv:1804.02394, 2018.
- [2] Pavel Dvurechensky, Alexander Gasnikov, and Eduard Gorbunov.
 An accelerated method for derivative-free smooth stochastic convex optimization. arXiv:1802.09022, 2018.