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Introduction
Consider the following optimization problem

min
x∈Rn

f (x) := Eξ[F (x, ξ)] =

∫
X

F (x, ξ)dP(x)

 , (1 )

where ξ — random vector with probability distribution P(ξ), ξ ∈ X ,
F (x, ξ) — closed a.s. in ξ, f — convex,

‖g(x, ξ)− g(y , ξ)‖2 6 L(ξ)‖x − y‖2, ∀x, y ∈ Rn, a.s. in ξ,

and L2 :=
√
Eξ[L(ξ)2] < +∞. Under this assumptions,

Eξ[g(x, ξ)] = ∇f (x) and

‖∇f (x)−∇f (y)‖2 6 L2‖x − y‖2, ∀x, y ∈ Rn.

Also we assume that

Eξ
[
‖g(x, ξ)−∇f (x)‖2

2

]
6 σ2. (2)

Finally, we assume that an optimization procedure, given a point x ∈ Rn,
direction e ∈ S2(1) and ξ independently drawn from P, can obtain a noisy

stochastic approximation f̃ ′(x, ξ, e) for the directional derivative
〈g(x, ξ), e〉:

f̃ ′(x, ξ, e) = 〈g(x, ξ), e〉+ ζ(x, ξ, e) + η(x, ξ, e),

Eξ
[
ζ(x, ξ, e)2

]
6 ∆ζ, ∀x ∈ Rn, ∀e ∈ S2(1),

|η(x, ξ, e)| 6 ∆η, ∀x ∈ Rn, ∀e ∈ S2(1), a.s. in ξ.

We choose a prox-function d(x) which is continuous, convex on Rn and is
1-strongly convex on Rn with respect to ‖ · ‖p, p ∈ [1, 2]. We define also
the corresponding Bregman divergence
V [z](x) = d(x)− d(z)− 〈∇d(z), x − z〉, x, z ∈ Rn. Moreover,

Ee‖e‖2
q ≤ ρn, (3 )

Ee

[
〈s, e〉2‖e‖2

q

]
≤

6ρn

n
‖s‖2

2, ∀s ∈ Rn, (4 )

where ρn = min{q − 1, 16 ln n − 8}n
2
q−1, n > 8 and s ∈ Rn.

New methods
Algorithm 1. Accelerated Randomized Directional Derivative
(ARDD) method.

Input: x0 — starting point; N > 1 — number of iterations; m — batch
size.

Output: point yN
1: y0 ← x0, z0 ← x0

2: for k = 0, . . . , N − 1 do
3: αk+1 ← k+2

96n2ρnL2
, τk ← 1

48αk+1n2ρnL2
= 2

k+2

4: Generate ek+1 ∈ RS2(1) independently from previous iterations
and ξi , i = 1, ...,m – independent realizations of ξ.

5: Calculate

∇̃mf (xk+1) =
1

m

m∑
i=1

f̃ ′(xk+1, ξi, ek+1)ek+1.

6: xk+1 ← τkzk + (1− τk)yk .

7: yk+1 ← xk+1 − 1
2L2
∇̃mf (xk+1).

8:

zk+1 ← argmin
z∈Rn

{
αk+1n

〈
∇̃mf (xk+1), z − zk

〉
+ V [zk] (z)

}
.

9: end for

Theorem 1 [1]. Let ARDD method be applied to solve problem (1).
Then

E[f (yN)]− f (x∗) 6 384Θpn2ρnL2

N2 + 4N
nL2
· σ2

m + 61N
24L2

∆ζ + 122N
3L2

∆2
η

+
12
√

2nΘp

N2

(√
∆ζ

2
+ 2∆η

)
+ N2

12nρnL2

(√
∆ζ

2
+ 2∆η

)2

,

(5 )

where Θp = V [z0](x∗) is defined by the chosen proximal setup and
E[·] = Ee1,...,eN,ξ1,1,...,ξN,m[·].

Algorithm 2. Randomized Directional Derivative (RDD) method.

Input: x0 — starting point; N > 1 — number of iterations; m — batch
size.

Output: point x̄N.
1: for k = 0, . . . , N − 1 do
2: α← 1

48nρnL2
.

3: Generate ek+1 ∈ RS2(1) independently from previous iterations
and ξi , i = 1, ...,m – independent realizations of ξ.

4: Calculate

∇̃mf (xk+1) =
1

m

m∑
i=1

f̃ ′(xk+1, ξi, ek+1)ek+1.

5: xk+1 ← argmin
x∈Rn

{
αn
〈
∇̃mf (xk), x − xk

〉
+ V [xk] (x)

}
.

6: end for

Theorem 2 [1]. Let RDD method be applied to solve problem (1). Then

E[f (x̄N)]− f (x∗) 6 384nρnL2Θp

N + 2
L2

σ2

m + n
12L2

∆ζ + 4n
3L2

∆2
η

+
8
√

2nΘp

N

(√
∆ζ

2
+ 2∆η

)
+ N

3L2ρn

(√
∆ζ

2
+ 2∆η

)2

,

(6 )

where Θp = V [z0](x∗) is defined by the chosen proximal setup and
E[·] = Ee1,...,eN,ξ1,1,...,ξN,m[·].

Method p = 1 p = 2

ARDD Õ
(

max

{√
nL2Θ1

ε
, σ

2Θ1

ε2

})
Õ
(

max

{√
n2L2Θ2

ε
, σ

2Θ2n
ε2

})
RDD Õ

(
max

{
L2Θ1

ε
, σ

2Θ1

ε2

})
Õ
(

max
{

nL2Θ2

ε
, nσ2Θ2

ε2

})
Table 1. ARDD and RDD complexities for p = 1 and p = 2

Derivative-Free Optimization
We assume that an optimization procedure, given a pair of points
(x, y) ∈ R2n , can obtain a pair of noisy stochastic realizations

(f̃ (x, ξ), f̃ (y , ξ)) of the objective value f , where

f̃ (x, ξ) = F (x, ξ) + Ξ(x, ξ),
|Ξ(x, ξ)| 6 ∆, ∀x ∈ Rn, a.s. in ξ,

(7)

and ξ is independently drawn from P. Based on these observations of the
objective value, we form the following stochastic approximation of ∇f (x)

∇̃mf t(x) = 1
m

m∑
i=1

f̃ (x+te,ξi)−f̃ (x,ξi)
t e

=

(〈
gm(x, ~ξm), e

〉
+ 1

m

m∑
i=1

(ζ(x, ξi, e) + η(x, ξi, e))

)
e,

(8)
where e ∈ RS2(1), ξi , i = 1, ...,m are independent realizations of ξ, m

is the batch size, t is some small positive parameter which we call

smoothing parameter, gm(x, ~ξm) := 1
m

m∑
i=1

g(x, ξi), and

ζ(x, ξi, e) = F (x+te,ξi)−F (x,ξi)
t − 〈g(x, ξi), e〉, i = 1, ...,m

η(x, ξi, e) = Ξ(x+te,ξi)−Ξ(x,ξi)
t , i = 1, ...,m.

By Lipschitz smoothness of F (·, ξ), we have |ζ(x, ξ, e)| 6 L(ξ)t
2

for all

x ∈ Rn and e ∈ S2(1). Hence, Eξ(ζ(x, ξ, e))2 6 L2
2t

2

4
=: ∆ζ for all

x ∈ Rn and e ∈ S2(1). At the same time, from (7), we have that
|η(x, ξ, e)| 6 2∆

t =: ∆η for all x ∈ Rn, e ∈ S2(1) and a.s. in ξ. So,
we can recover results from [2] using this technique.
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