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Introduction

Consider the following optimization problem
\

() i= Bl F(x, )] = [ F(x,€)dP(x)

X y,

~
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XERN

where & — random vector with probability distribution P(&), & € X,
F(x,&) — closed a.s. in &, f — convex,

lg(x,8&) — g(y,&)ll2 < L(&)|Ix — yll2, Vx, ¥y € R", as. in &,

and Ly := \/EE[L(S) ] < 4o0o. Under this assumptions,
Eelg(x, €)] = VF(x) and
IVE(x) = VE(y)ll2 <

Also we assume that
Ee [llg(x, &) — VF(x)l5] < o (2)

Finally, we assume that an optimization procedure, given a point x € R",
direction e € S(1) and £ independently drawn from P, can obtain a noisy

Lo|[x — yll2, ¥x,y € R".

stochastic approximation f’(x, &, e) for the directional derivative

(g(x,£),e):

f'(x, €, e) = (g(x,&),e) + ¢(x, & e) + n(x, &, e),
Ee [C(x, €&, e)?] < D¢, Vx € R, Ve € Sy(1),
In(x,&,e)| < A,, Vx € R",Ve € Sy(1), as. in&.

We choose a prox-function d(x) which is continuous, convex on R" and is
1-strongly convex on R" with respect to || - ||, p € [1,2]. We define also
the corresponding Bregman divergence

V([z](x) = d(x) — d(z) — (Vd(z),x — z), x,z € R". Moreover,

Eellell? < pn (3)
6p, .
Ee |(s€)llell?| < ="lsl3, Vs € R, (4)

where p, = min{g — 1, 16Inn — 8}n__1, > 8 and s € R".

New methods

Algorithm 1. Accelerated Randomized Directional Derivative
(ARDD) method.

Input: xo — starting point; N >
size.
Output: point yp
1: Yo < X0, Z0 < X0

1 — number of iterations: m — batch

22fork=0,..., N—1do
. . k+2 , 1 9
3. ak+1 ® 96n2an2’ Tk < 48ak+1n2an2 - k42
4: Generate exy1 € RS»(1) independently from previous iterations
and &;, 1 = 1, ..., m — independent realizations of &.
5: Calculate
Vmf(xl<+1) — Z f (Xk+19 619 el<+1)el<+1

i=1

6: Xk+1 < TkZk + (1 o Tk)yk
7: Yik+1 < Xik41 — V f(Xk_|_1)

Zi41 $— argmin {Oék+1n <%mf(xk+1), z — Zk> + V]z] (z)}

zeRn
9. end for
Theorem 1 [1]. Let ARDD method be applied to solve problem (1).
Then
E[f (yn)] — F(x) < Opomls 4 a0 2" 4 olv 1220
12, /2ne VA
N2 VvV B¢
+12nan2 ( 2 + 2 ) )
where ®, = V/|[z](x™) is defined by the chosen proximal setup and
E[.] — Eela°°°7eN7€1,17-"7€N,m[.]'

Algorithm 2. Randomized Directional Derivative (RDD) method.

Input: xo — starting point; N > 1 — number of iterations; m — batch
size.

Output: point Xxy.

1. fork=0,..., N—1do
, 1
2: < 48nan2'
3: Generate exy1 € RS»(1) independently from previous iterations
and &;, 1 = 1, ..., m — independent realizations of &.
4: Calculate
V7 (Xi41) = Z F'(Xkt15 &is €k+1)€k1-
i=1
5 Xk41 — argmin {an <me(xk), X — xk> + V[x«] (x)}
xeRn
6: end for

Theorem 2 [1]. Let RDD method be applied to solve problem (1). Then

E[f(%n)] — F(x) < 22000k 4 20 4 0
8 2n@

$V (V2 )
2

A/ A
+3lelpn( 2C+2 )9

= V/|[z)(x*) is defined by the chosen proximal setup and

(6)

where ©
E[] = E

el,...,eN,gl,l,...,EN,m['] 2

Method p=1

AROD 6 (max /45,5 ) O (mox /%= )

0D | O (max (22, 221)) O (max 52, 252 )
€ € €

g2

Table 1. ARDD and RDD complexities for p = 1 and p = 2

p=2

Derivative-Free Optimization

We assume that an optimization procedure, given a pair of points
(x,y) € R?" can obtain a pair of noisy stochastic realizations

(F(x,&),f(y,&)) of the objective value f, where

f(x,€) = F(x,€) + =(x,£), 0
IZ(x,€)| < A, Vx €R", as. in &,

and £ is independently drawn from P. Based on these observations of the
objective value, we form the following stochastic approximation of V f(x)

f: F(X-l‘te,éi)—f(xaéi)e

i=1 t
_ <<gm(x,gn), e> + ;(C(x,&-, e) +n(x, &, e))> (ZS)

where e € RS>(1), &, i = 1, ..., m are independent realizations of £, m
is the batch size, t is some small positive parameter which we call

% Z:lg(xa Si)' and

V7Tfi(x) = L

smoothing parameter, g™ (x, 5;7) 1=

C(Xa &is e) — F(x+te,£,-t)—F(x,£,-) — <g(X9€i)9 e)a r=1,...,m
n(X7 €I7 e) — E(X_I_te’g;_')_z(x’éi)’ i — 1’ ***9 m
By Lipschitz smoothness of F(-, &), we have |{(x, &, e)| < L(€ £ for all
x € R"and e € Sy(1). Hence, E¢(¢(x, &, e))? < LTt = AC for all

x € R" and e € S3(1). At the same time, from (7), we have that
In(x, &, e)| < ZA : A, forall x € R", e € S3(1) and as. in &. So,

We can recover results from [2] using this technique.
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