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Chapter 1

Annoranusa

OnruMuzanus sBJIeTCS OTHUM U3 KJIIOUEBBIX HHCTPYMEHTOB BO MHOTUX ITPUJIOKEHH-
gax. B gyacTHOCTH, 33/1a41 ONTUMU3BAIMN BO3HUKAIOT B OTPOMHOM YHUCJIE 3329 MAITUHHOIO
o0ydeHHUs W aHaJM3a JTaHHbIX. B mociie/inne rojibl 6e3rpaJiteHTHBIE METO/IbI OIITUMUBAIII
cTaji OCHOBHBIM MHCTPYMEHTOM B IPUJIOXKEHHUSX OOYUEeHUsI C IOJIKPEIJIEHHeM U OIITH-
MaJILHOTO yIIpaBjieHnsd. Kpome TOro, orpoMHBII MHTEpeC HCCJe/IoBaTesell IpUBIeKAeT
pacrpejie/IHHast ONTHMU3AIUs: 00ydeHne MHOIUX TIyOOKHX HEfpoceTeBbIX Mojieseil mpak-
THYIECKU HE BO3MOXKHO WJIU TPEOyeT CJUIMIKOM OOJIBIITUX BBIUYUC/TUTEIBHBIX U BPEMEHHbBIX
PECYPCOB, €CIi JiejiaTh 9TO He PACIIPEJIEIEHHO, a Ha OJIHOI KoMIIbIoTepe/cepepe. B aToit
JIUCCEPTAITIY TTPEJ/IAraloTCAd HOBbIe O€3rpaJIneHTHBIE CTOXaCTUIECKIE METO/IbI OIITUMU3a~
[IUH, & TaKKe HOBblE YCKOPEHHBbIE CTOXACTUIECKNE METOJIbI PACIIPEJIEJIEHHON ONTUMU3AIINN.

B nepBoit wacTu jiuccepraluy pacCMaTpUBaeTCs 3ajiada CTOXaCTHIECKON JTeTleHTpasIn-
30BaHHOil onTuMmm3aruu. [Ipemaraiorcss HOBbIe METOJIBI, UCIOJIB3YIONINE JEeTEPMUHUPOBAH-
HBII IPAMOI OpaKyJ/l U CTOXaCTUYECKU JBOMCTBEHHLIN OPaKyJl, a TaKxKe JI0Ka3bIBaITCA
OIIEHKM CKOPOCTHU CXOJUMOCTHU C OOJIBINON BEPOSITHOCTHIO Ha KJIACCAX BBIMYKJIBIX U CUJIBHO
BBIITYKJIBIX IVIaJakuX GyHkiuit. Ha nmpumepe Bbrauc/ieHus: oMy IgiimoHHOTO OapUIleHTPa
Baccepireitna cpaBHUBAIOTCA MPAMOI U JIBONCTBEHHBIH TIOJIX0/IBI K PEIICHUIO 9TOH 3a/1ade,
Ha OCHOBE HOBBIX PE3YJIbTATOB, MOJIYICHHBIX B JIAHHON padoTe.

Bo Bropoii yacTu Juccepraliiu mpejjiaraeTcst HoBbiit 6e3rpajuentaerii Mmeros (SMTP)
C MOMEHTHBIM YJIEHOM B (pOpME «Ts2KEJIOr0 IMapuKay M aHaJU3UPYeTCd €ro CKOPOCTD
CXO/IUMOCTHU II0 MATEMaTUYCCKOMY OXKUJIAHUIO JJIA HEBBIILYKJIBIX, BLIIYKJIBIX U CUJILHO
BBIMYKJIBIX yHKnuit. Kpome toro, npemiaraercs moaudukanus meroga (SMTP IS),
KOTOpagd UCHOJIb3yeT HEPABHOMEPHOE COMIIMPOBAHNE HAIIPABJICHNN ITIOUCKA, YINTHIBAIOIIEe
U3MEHEHNE CBOWCTB IVIAJKOCTU (PYHKIIMHM BJIOJb PA3HLIX HAITPABJICHUI, YTO TO3BOJISIET
YIIYYIIATH OLEHKU CKOPOCTU CXOJMMOCTH B IIPEIIOJIOZKEHUN ITOKOMIIOHEHTHOHR IJIaJIKOCTHU

1eJIeBOI (DYHKIIUN.



Chapter 2

Introduction

Optimization plays a central role in different applications. In particular, optimization
tasks appear in a huge number of machine learning problems. In recent years derivative-free
methods became a key tool in reinforcement learning. Moreover, distributed optimization
attracts a lot of attention from the machine learning community since the training of
deep neural networks is often impossible or takes prohibitively long time while training
is performed on a single machine. In this dissertation, we propose new derivative-free
methods, as well as novel accelerated stochastic distributed methods.

In Chapter 4 we focus on stochastic decentralized distributed optimization problems.
We propose new methods based on deterministic primal first-order oracle and stochastic
dual first-order oracle and derive optimal convergence rates with high probability for
smooth convex and strongly convex objectives. To illustrate the difference between the two
approaches, we consider the problem of the population Wasserstein barycenter calculation.

In Chapter 5, we focus on the problems when the objective function is available
only through the zeroth-order oracle. For this problem, we develop two new methods —
SMTP and SMTP_IS — and analyze their convergence for non-convex, convex, and strongly
convex objectives. Both methods are based on the heavy-ball method, and SMTP_IS uses
coordinate-wise smoothness of the objective function and importance sampling trick.

In both chapters, we provide a detailed introduction to the topic and literature review.
Full proofs of the proposed results are at the ends of the corresponding chapters as well
as technical lemmas and auxiliary results. All notations and definitions are introduced in

Chapter 3.



Chapter 3

Notations and Definitions

To denote standard inner product between two vectors x,y € R" we use (z,y) o

> wy;, where x; is i-th coordinate of vector z, ¢ = 1,...,n. Standard Euclidean norm

of vector x € R™ is defined as ||z||2 & (x,z) and we use || - ||, to define £,-norm of the

vector z € R%: ||z, & o, |xi|p)l/p for p > 1 and ||z~

to define the conjugate norm for the norm || - ||: [|z|* df max {(a,z) | a € R", |ja| < 1}.

By Amax(A) and AF

min

def
= maxe(q zi|. We use || - [|*

(A) we mean maximal and minimal positive eigenvalues of matrix
A € R™™ respectively and we use x(A) o Amax(4)/xF. (4) to denote condition number of A.
To define vector of ones we use 1, o (1,...,1)T € R™ and omit the subscript n when one
can recover the dimension from the context. Moreover, we use O(-), Q(-) and O(-) that
define exactly the same as O(-), Q(-) and ©(-) but besides constants factors they can hide
polylogarithmical factors of the parameters of the method or the problem. Operator E[]
denotes mathematical expectation with respect to all randomness and E; p[-] denotes
conditional expectation w.r.t. randomness coming from random vector s which is sampled
from probability distribution D on R™. Conditional mathematical expectation with respect
to all randomness coming from random variable £ is denoted by E¢[-]. We use B, (y) C R™ to
denote Euclidean ball centered at y € R"™ with radius r: B,.(y) &of {z eR" | ||z —ylls < r}.

The Kronecker product of two matrices A € R™*™ with elements A;;, ¢,7 =1,...,m and

B € R™"™ is such mn x mn matrix C' def A ® B that

AllB AlgB AlgB Ce AlmB
AnB ApB ApB ... AyB

c=|""" T B (3.1)
AmB AwsB ApB ... ApyB

By I,, we denote n x n identity matrix and omit the subscript when the size of the matrix
is obvious from the context.
Below we list some classical definitions for optimization (see, for example, [1] for the

details).

Definition 3.0.1 (L-smoothness). Function f is called L-smooth in (Q C R"™ with L > 0



when it is differentiable and its gradient is L-Lipschitz continuous in @), i.e.

IVf(z) =Vl < Lz —yll2, Va,y € Q. (3.2)

From this definition one can obtain
L 2 d
[f(y) = f(2) = (Vf(@@)y —a)| < Slly — =z, Yo,y €RY (3.3)
and if additionally f is convex, i.e. f(y) > f(x) + (Vf(z),y — x), we have
IVf(@)I; < 2L(f(2) = f(27)), VzeR" (3.4)

Definition 3.0.2 (u-strong convexity). Differentiable function f is called p-strongly convex
m Q CR™ with up >0 of

F@) = ) + (Vi y)e =)+ Sl =yl vayeQ. (35)

If > 0 then there exists unique minimizer of f on ) which we denote by z*, except
the situations when we explicitly specify z* in a different way. In the case when pu = 0,
i.e. f is convex, we assume that there exists at least one minimizer z* of f on @ and in
the case when the set of minimizers of f on the set () is not a singleton we choose z* to
be either arbitrary or closest to the starting point of a method. When we consider some
optimization method with a starting point 2° we use R or Ry to denote the Euclidean

distance between x° and z*.



Chapter 4

Optimal Decentralized Distributed Algorithms for

Stochastic Convex Optimization

The results proposed in this chapter were obtained by the author of this thesis in [2].

4.1. Introduction

In this chapter we are interested in the convex optimization problem

min f(x), (4.1)

ze@QCR"?
where f is a convex function and (@) is closed and convex subset of R"™. More precisely, we

study particular case of (4.1) when the objective function f could be represented as a

mathematical expectation
f(@) = E¢ [f(z,8)], (4.2)

where ¢ is a random variable. Problems of this type play central role in a bunch of
applications of machine learning |3, 4] and mathematical statistics [5|. Typically = represents
feature vector defining the model, only samples of £ are available and the distribution of £
is unknown. One possible way to minimize generalization error (4.2) is to solve empirical
risk minimization or finite-sum minimization problem instead, i.e. solve (4.1) with the

objective
. 1 &
fl@)==> fl.&), (43)
i=1

where m should be sufficiently large to approximate the initial problem. Indeed, if
f(x, &) is convex and M-Lipschitz continuous for all £, @ has finite diameter D and

T = argmin, g f(x), then (see [6, 7]) with probability at least 1 — 3

z€EQ m

and if additionally f(z,&) is u-strongly convex for all £, then (see [8]) with probability at
least 1 — (8

TEQ um m

£(8) = min f(z) = O <M2D2 In(m) In (/s) \/M2D2 111(1/6)) | (45)
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In other words, to solve (4.1)+(4.2) with e functional accuracy via minimization of
empirical risk (4.3) it is needed to have m = Q (M?D*n/c2) in the convex case and m =
Q (max {M?D?/,c, M*D?/2}) in the p-strongly convex case where Q(-) hides a constant factor,
a logarithmic factor of /g and a polylogarithmic factor of /.

Stochastic first-order methods such as Stochastic Gradient Descent (SGD) [9-13] or
its accelerated variants like AC-SA [14] or Similar Triangles Method (STM) [15-17] are
very popular choice to solve either (4.1)+(4.2) or (4.1)+(4.3). In contrast with their
cheap iterations in terms of computational cost, these methods converge only to the
neighbourhood of the solution, i.e. to the ball centered at the optimality and radius
proportional to the standard deviation of the stochastic estimator. For the particular
case of finite-sum minimization problem one can solve this issue via variance-reduction
trick [18-21| and its accelerated variants [22-24]. Unfortunately, this technique is not
applicable in general for the problems of type (4.1)+(4.2). Another possible way to reduce
the variance is mini-batching. When the objective function is L-smooth one can accelerate
computations of batches using parallelization |16, 25-27| and it is one of the examples
where centralized distributed optimization appears naturally [28|.

In other words, in some situations, e.g. when the number of samples m is too big, it
is preferable in practice to split the data into ¢ blocks, assign each block to the separate
worker, e.g. processor, and organize computation of the gradient or stochastic gradient
in the parallel or distributed manner. Moreover, in view of (4.4)-(4.5) sometimes to solve
an expectation minimization problem it is needed to have such a big number of samples
that corresponding information (e.g. some objects like images, videos and etc.) cannot be
stored on 1 machine because of the memory limitations (see Section 4.8 for the detailed
example of such a situation). Then, we can rewrite the objective function in the following

form

f@) =23 fl@), fio) = B [f(w6)] or file) = -3~ flwn&y). (40

Here f; corresponds to the loss on the i-th data block and could be also represented as an
expectation or a finite sum. So, the general idea for parallel optimization is to compute
gradients or stochastic gradients by each worker, then aggregate the results by the master
node and broadcast new iterate or needed information to obtain the new iterate back to
the workers.

The visual simplicity of the parallel scheme hides synchronization drawback and high



11

requirement to master node [29]. The big line of works is aimed to solve this issue via
periodical synchronization [30-33], error-compensation [34, 35|, quantization [36-40| or
combination of these techniques [41, 42].

However, in this chapter we mainly focus on another approach to deal with aforementioned
drawbacks — decentralized distributed optimization |28, 43]. It is based on two basic
principles: every node communicates only with its neighbours and communications are
performed simultaneously. Moreover, this architecture is more robust, e.g. it can be applied

to time-varying (wireless) communication networks [44].

4.1.1. Contributions

One can consider this chapter as a continuation of work [45] where authors mentioned
the key ideas that form a basis of this work. However, in this chapter we provide formal
proofs of some results announced in [45] together with couple of new results that were not

mentioned. Our contributions include:

e Accelerated primal-dual method with biased stochastic dual oracle for
convex and smooth dual problem. We extent the result from the recent work
[46] to the case when we have an access to the biased stochastic gradients. We
emphasize that our analysis works for the minimization on whole space and we do
not assume that the sequence generated by the method is bounded. It creates extra
difficulties in the analysis, but we handle it via advanced technique for estimating

recurrences (see also [46, 47]).

e Two accelerated methods with stochastic dual oracle for strongly convex
and smooth dual problem. For the case when the dual function is strongly convex
with Lipschitz continuous gradient we analyze two methods: one is R-RRMA-AC-SA?
and another is SSTM_sc. The first one was described in [46], but in this dissertation
we formally state the method and prove high probability bounds for its convergence
rate. The second method is also well-known, but to the best of our knowledge there
were no convergence results for it in such generality that we handle. That is, we
consider SSTM_sc with biased stochastic oracle applied to the unconstrained smooth
and strongly convex minimization problem and prove high probability bounds for its
convergence rate together with the bound for the noise level. As for the convex case,

we also do not assume that the sequence generated by the method is bounded. Then
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we show how it can be applied to solve stochastic optimization problem with affine

constraints using dual oracle.

e Analysis of STM applied to convex smooth minimization problem with
smooth convex composite term and inexact proximal step for unconstrained
minimization. Surprisingly, but before this work there were no analysis for STM in
this case. The closest work to ours in this topic is [48], but in [48] authors considered

optimization problems on bounded sets.

4.2. Optimal Bounds for Stochastic Convex Optimization

In this section our goal is to present the overview of the optimal methods and their
convergence rates for the stochastic convex optimization problem (4.1)+(4.2) in the case
when the gradient of the objective function is available only through (possibly biased)
stochastic estimators with “light tails” or, equivalently, with o?-subgaussian variance. That
is, we are interested in the situation when for an arbitrary = € () one can get such

stochastic gradient V f(z,§) that

|Be [V (@, 0] - V@), < o (4.7)
. eXp(IIW(%S)—f;[vf(x,f)ﬂlrz) < ep(l) (48)

where 6 > 0 and o > 0. If o = 0, let us suppose that Vf(z,£) = E¢ [V f(z,§)] almost
surely in & When o = § = 0 we get that Vf(z,{) = V f(x) almost surely in & which is
equivalent to the deterministic first-order oracle. For clarity, we start with this simplest
case of stochastic oracle and provide an overview of the state-of-the-art results for this
particular case in Table 4.1. Note that for the methods mentioned in the table number of
oracle calls and number of iterations are identical. In the case when the gradient of f is
bounded it is often enough to assume this only in some ball centered at the optimality
point x* with radius proportional to R [17, 49, 50].

In this chapter we are mainly focus on smooth optimization problems and use different
modifications of Similar Triangles Method (STM) since it gives optimal rates in this case
and it is easy enough to analyze at least in the deterministic case. For convenience, we
state the method in this section as Algorithm 1. Interestingly, if we run STM with u > 0 to

solve (4.1) with p-strongly convex and L-smooth objective, it will return % such that
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Assumptions on f | Method | Citation | # of oracle calls

-strongly convex, 16
pratronly rsm | L0 [0 /E ()

L-smooth
16] ( s
19) &)
17 :

L-smooth STM

-strongl : ol 2
p-strongly convex D | 0 < % )
IVf()]l2 <M 52]
ol 22
Vi@l <M | W o)
[52]

Table 4.1: Optimal number N of deterministic first-order oracle calls in order to get such
a point 2 that f(z") — f(x*) < e. First column contains assumptions on f in addition

to the convexity. MD states for Mirror Descent.

Algorithm 1 Similar Triangles Methods (STM), the case when @) = R

Require: 7° = 2° = 2% number of iterations N. ag = Ay = 0
) y (X0 0

1: for k=0,...,N do

20 Set apyr = (+Awmfar + /Ut A)far2 + AO+A/L, Ay = Ag + Qg
3, P = (At tariazh)/a,
g M= ok (VF(ERL) — pdh ) ann /()
5. LR — (Agatarp1zH) /4,
6: end for
Ensure: z?V

f(@™) — f(z*) < ¢ after N = O (MIH(LRZ/5)> iterations which is not optimal, see!
Table 4.1. To match the optimal bound in this case one should use classical restart of STM
which is run with g = 0 [16].

We notice that another highly widespread in machine learning applications type of
problems is regularized or composite optimization problem

rmréi(rgl f(x) + h(z), (4.9)

! In some places we put references not to the first work where this bound was shown but to the
works where this complexity bound was shown for either more convenient or more relevant to our work

method.



14

where h is a convex proximable function. For this case STM can be generalized via modifying

the update rule in the following way [16, 17]:
kt1

PANE argmln {—||z — 25+ Zozl (<Vf 2 — )+ h(z) + gHz — il||§>} . (4.10)

1=0
We address such problems with Lj-smooth composite term in the Appendix, see Section 4.3

for the details.
Next, we go back to the problem (4.1)+(4.2) and consider more general case when

§ = 0 and o2 > 0. In this case one can construct unbiased estimator
Yz {&}io) Zwm

where &;,. .., & are i.i.d. samples and V f(z, {&}i:l) has r times smaller variance than

Vf(z,&): 2
77777 . lexp (va, &) - wmu)] < exp(1).

o /r
Then in order to get such a point ¥ that f(z") — f(z*) < e with probability at least

1 — B where 5 € (0,1) and f is p-strongly convex (u > 0) and L-smooth one can run STM

v-o . [2u (1)) »”

iterations with small modification: instead of using V f(#¥+1) the method uses mini-batched

for

stochastic approximation V f(z*"1,{&}:51") where the batch size is

2oy In Y
_ 1, s L) 4.12
7,kJrl @ (max{ ) (1 + Ak+1/~0)5 ( )

The total number of oracle calls is

. for (JTPL\ o (LR N
;m—0<N+m1n{ = ln< 3 ),'ugln< g )ln( 3 )}) (4.13)

which is optimal up to logarithmic factors. We call this modification Stochastic STM (SSTM).

As for the deterministic case we summarize the state-of-the-art results for this case in

Table 4.2.

4.3. Similar Triangles Method with Inexact Proximal Step

In this section we focus on the composite optimization problem. i.e. problems of the
type
min F(z) = f(x) + h(z), (4.14)

reR™
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Assumptions on f | Method | Citation # of oracle calls
-strongly convex, [16] - ‘
a 5y R-SSTM (53] O (max { \/%ln (“Tj%z), Z—Z})
L-smooth [17]
[16] _ = s
L-smooth SSTM [53] O (max {\/ Lf : "Ef? })
[17]
p-strongly convex, D [51] 0 ( M2 )
Be [IVf(z,6)[3] < M 152 "
B [IV/@. O3 <M? | MD o 0 (22)

Table 4.2: Optimal (up to logarithmic factors) number of stochastic unbiased first-order
oracle calls in order to get such a point ¥V that f(z") — f(2*) < e with probability at
least 1 — 3, f € (0,1) and f is defined in (4.2). First column contains assumptions on f
in addition to the convexity. Blue terms in the last column correspond to the number of

iterations of the method.

where f(x) is convex and L-smooth and h(z) is convex and Lj-smooth. Before we present

our method, let us introduce new notation.

Definition 4.3.1. Assume that function g(x) defined on R™ is such that there exists
(possibly non-unique) x* satisfying g(z*) = mingegn g(x). Then for arbitrary § > 0 we
say that @ is §-solution of the problem g(z) — mingegn and write & = argmind _g. g(z) if

9(&) —g(z*) < 0.

Note that d-solution could be non-unique, but for our purposes in such cases it is
enough to use any point from the set of d-solutions. In the analysis we will need the

following result.

Lemma 4.3.1 (See also Theorem 9 from [48]). Let g(z) be convex, L-smooth, x* is such

that g(x*) = mingegn g(x) and & = argmin’ g, g(x) for some 6 > 0. Then for all v € R™

(Vg(2),2 — x) < V2L||& — zf». (4.15)

The main method of this section is stated as Algorithm 2. In the STM_IPS we use

functions gx41(2z) which are defined for all k = 0,1, ... as follows:

Gr1(2) = 51 = 2B+ apar (FEH) 4 (VAE), 2 = 7 4 h()) . (416)
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Algorithm 2 Similar Triangles Methods with Inexact Proximal Step (STM_IPS)

Require: 7° = 2" = 2% — starting point, N — number of iterations

1: Set ag = Ay =0
2: for k=0,1,...,N —1do

3: Choose ay 1 such that A, + agyq = 2Lai+1, Api1 = Ap + ag
4 Fhtl — (AkackJrckarl,z’“)/Ak_~_1
5: PARRIES argming’éﬁn gri1(2), where ggy1(2) is defined in (4.16) and & = §||2% —
P
6: k= (Ak$k+ak+1zk+1)/Ak+1
7: end for
Ensure: 2V

Each gry1(2) is 1-strongly convex function with, as a consequence, unique minimizer
LS argmin, cpn i (2).

Let us discuss a little bit the proposed method. First of all, if we slightly modify the
method and choose 011 = 0, then we will get STM which is well-studied in the literature.
Secondly, it may seem that in order to run the method we need to know ||z% — 2¥1(|,, but
in fact we do not need it. If gxy1(2) is Lgi1-smooth and 4 1-strongly convex, then one
can run STP for 7' = O (M In Lk+1/5> iterations with z* as a starting point to solve

b — argminilgﬁgn gr+1(2). Note that in this case

the problem gx,1(z) — min,cg» and get z
we do not need to know 2**!. Moreover, we do not assume that iterates of STM_IPS are
bounded and instead of assuming it we prove such result which makes the analysis a little
bit more technical then ones for STP. Finally, we notice that one can prove the results we
present below even with such ayyy that Ay = Ay, + ax1 = Lag +1- It improves numerical
constants in the upper bounds a little bit, but for simplicity we use the same choice of

a4 as for the stochastic case.

We start our analysis with the following lemma.

Lemma 4.3.2 (see also Theorem 1 from [54]). Assume that f(z) is convexr and L-smooth,
h(z) is convex and Ly-smooth and 6 < % Then after N > 1 iterations of Algorithm 2 we

have

N—-1
1 1 ) -
Ay (F(z™) = F(z") < 533 — §R?V +0> Vk+2R;,, (4.17)
k=0

where x* is the solution of (4.14) closest to the starting point 2°, Ry o [ | P Ry f
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de de,
o |lz* — 2°|2, Rk+1 = max{Rk,RkH} fork=0,1,....N =1 and § = = %.

Below we state our main result of this section.

Theorem 4.3.1. Let f(x) be convex and L-smooth, h(x) be conver and Ly-smooth and

0 < 1. Assume that for a given number of iterations N > 1 the number 5% 9 ((IL_’LJFTQJL);(SL

satisfies 0 < —3/2 with some positive constant C' € (0,Y/1). Then after N iteration of

+1)
Algorithm 2 we have

Fa™) — F(a) < 200

. 4.1
— 2Ay (4.18)

Corollary 4.3.1. Under assumptions of Theorem 4.3.1 we get that for an arbitrary € > 0

N:O(H%ﬁ) (4.19)

iterations of Algorithm 2 we have F(zV) — F(2*) < e. Moreover, we get that & should

after

satisfy

5:O(U;£%ﬁﬁ). (4.20)

That is, if the auxiliary problem gxi1(z) — min,cg» is solved with good enough
accuracy, then STM_IPS requires the same number of iterations as STM to achieve F(z) —
mingepn F(x) < e.

Finally, we notice that one can set d;,; in Algorithm 2 in a different way in order to
get the same convergence guarantees, e.g. one can use 041 = 5@2 41 and the order of ¢

given by (4.20) will be the same. In this case inequalities (4.128) and (4.130) transform to

(Vg (1), 21 = \/2 (psr L+ 1ORZ, - |25 — 2
and
(= 25+ e VAEY) + e VA, 2 — %) < 0VE+2RE

respectively, where 5 24/ w. Then the remaining part of the proof remains the

same and gives the same result up to small changes in the numerical constants.
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4.4. Stochastic Convex Optimization with Affine Constraints:
Primal Approach

Now, we are going to make the next step towards decentralized distributed optimization

and consider convex optimization problem with affine constraints:

i 4.91
i f(z), (4.21)

where A > 0 and KerA # {0}. Up to a sign we can define the dual problem in the following

way
manb(y), where (4.22)
ply) = max{(y,z) - f@)}, (4.23)

U(y) = w(Aly) = max {(y, Az) — f(z)} = (ATy, a(ATy)) — fz(ATy))4.24)

where x(y) &of argmax,cqo {(y, ) — f(x)}. Since KerA # {0} the solution of the dual
problem (4.22) is not unique. We use y* to denote the solution of (4.22) with the smallest
y-norm R, & ||y* ||,

However, in this section we are interested only in primal approaches to solve (4.21)
and, in particular, the main goal of this section is to present first-order methods that are
optimal both in terms of Vf(z) and AT Az calculations. Before we start our analysis let
us notice that typically in decentralized optimization matrix A from (4.21) is chosen as a
square root of Laplacian matrix W of communication network [29] (see Section 4.6 for the
details). In asynchronous case the square root VW is replaced by incidence matrix M [55]
(W = MTM). Then in asynchronous case instead of accelerated methods for (4.22) one
should use accelerated block-coordinate descent methods [15, 55-57].

To solve problem (4.21) we use the following trick [45, 49]: instead of (4.21) we

consider penalized problem

R2
in F(z) = )| Az||3, 4.25
min F(z) = f(z) + [ Azll; (4.25)
where € > 0 is the desired accuracy of the solution in terms of f(z) that we want to

achieve. The motivation behind this trick is revealed in the following theorem.

Theorem 4.4.1 (See also Remark 4.3 from [49]). Assume that 2V € Q is such that

F(2™) — Ixrgg F(z) <e. (4.26)
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Then

2e
Ny . < N < £
f@™) Amr:r%){gle(x) <e, |JAzV]2 < R, (4.27)

We start with the analysis of the case when f is L-smooth and convex.

Theorem 4.4.2. Let f be convex and L-smooth, Q = R™ and h(z) = EjlA«l/-. Assume
that full gradients of f and h are available. Then STM_IPS (see Algorithm 2, Section 4.3)

applied to solve problem (4.25) requires

2
O ( LR ) calculations of V f(x), (4.28)
£
@) - X(ATA) calculations of A" Ax (4.29)

to produce point ™ such that (4.26) holds.

That is, number of AT Az calculations matches the optimal bound for deterministic
convex and L-smooth problems of type (4.1) multiplied by /X (ATA) up to logarithmic
factors (see Table 4.1).

We believe that using the same recurrence technique that we use in Sections 4.3
and 4.5 one can generalize this result for the case when instead of V f(z) only stochastic
gradient V f(x, &) (see inequalities (4.7)-(4.8)) is available. To the best of our knowledge it
is not done in the literature for the case when ) = R"™. Moreover, it is also possible to
extend our approach to handle strongly convex case via variants of STM.

We conjecture that the same technique in the case when f is p-strongly convex
and L-smooth gives the method that requires such number of AT Az calculations that
matches the second rows of Tables 4.1 and 4.2 in the corresponding cases with additional
factor \/m and logarithmic factors. Recently such bounds were shown in [58] for
the distributed version of Multistage Accelerated Stochastic Gradient method from [59].
However, this bounds were shown for the case when the stochastic gradient is unbiased.

Next, we assume that @) is closed and convex and f is p-strongly convex, but possibly
non-smooth function with bounded gradients: |V f(x)||s < M for all x € Q. Let us start
with the case p = 0. Then, to achieve (4.26) one can run Sliding method from [53, 60|

considering f(z) as a composite term. In this case S1iding requires

Amax (AT A)R2R?
@) (\/ ( il ) calculations of A" Ax, (4.30)

e2
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2 2
@) (Mgf ) calculations of V f(z). (4.31)

In the case when @) is a compact set and V f(z) is not available and unbiased stochastic
gradient V f(x,&) is used instead (see inequalities (4.7)-(4.8) with § = 0) one can show
[53, 60| that Stochastic S1iding (S-Sliding) method can achieve (4.26) with probability
at least 1 — 3, 8 € (0,1), and it requires the same number of calculations of AT Az as in

(4.30) up to logarithmic factors and

~ ((M2 + %) R?

O ) calculations of V f(z,&). (4.32)

o2
When g > 0 one can apply restarts technique on top of S-Sliding (RS-Sliding)

[45, 61] and get that to guarantee (4.26) with probability at least 1 — 3, § € (0,1)
RS-Sliding requires

~ Amax(ATA)R2
@) \/ % calculations of A" Az, (4.33)
0
. M2 2
@ (%) calculations of V f(z,&). (4.34)

We notice that bounds presented above for the non-smooth case are proved only for
the case when () is bounded. For the case of unbounded () the convergence results with
such rates were proved only in expectation. Moreover, it would be interesting to study
S-Sliding and RS-Sliding in the case when 6 > 0, i.e. stochastic gradient is biased, but

we leave these questions for future works.

4.5. Stochastic Convex Optimization with Affine Constraints:

Dual Approach

In this section we assume that one can construct a dual problem for (4.21). If f is
p-strongly convex in fo-norm, then ¥ and ¢ have L,—Lipschitz continuous and L,—Lipschitz
continuous in fo-norm gradients respectively [62, 63|, where L, = Amax(AT4)/, and L, = /.

In our proofs we often use Demyanov-Danskin theorem [63| which states that

Vi(y) = Ax(A'y),  Ve(y) = z(y). (4.35)

We notice that in this section we do not assume that A is symmetric or positive semidefinite.
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Below we propose a primal-dual method for the case when f is additionally Lipschitz
continuous on some ball and two methods for the problems when the primal function is
also L-smooth and Lipschitz continuous on some ball. In the subsections below we assume

that Q = R"™.

4.5.1. Convex Dual Function

In this section we assume that the dual function ¢(y) could be rewritten as an
expectation, i.e. ¢(y) = E¢ [p(y, )], where stochastic realisations ¢(y, §) are differentiable
in y functions almost surely in . Then, we can also represent 1(y) as an expectation:
Y(y) = E¢ [¥(y, €)]. Consider the stochastic function f(z,&) which is defined implicitly as

follows:

S
Similarly to the deterministic case we introduce z(y, &) dof argmax,cpn { (v, ) — f(,€)}
which satisfies Vi (y, &) = x(y, ) due to Demyanov-Danskin theorem, where the gradient
is taken w.r.t. y. As a simple corollary, we get Vi(y, &) = Az(A"y). Finally, introduced
notations and obtained relations imply that z(y) = E¢[z(y, )] and Vi (y) = E¢ [V (y, €)].
Consider the situation when x(y,§) is known only through the noisy observations
z(y, &) = x(y, &) + 0(y, &) and assume that the noise is bounded in expectation, i.e. there

exists non-negative deterministic constant ¢, > 0, such that
IEe[0(y, Oll, <9y, Yy €R™ (4.37)

Assume additionally that x(y, &) satisfies so-called “light-tails” inequality:

(\my,@ ~ E [f(y,i)]!@)
exp

2
0%

E; <exp(l), VYyeR", (4.38)

where o0, is some positive constant. It implies that we have an access to the biased gradient

Vib(y, &) &

= Az(y, &) which satisfies following relations:

|Ee [V, 0] - Vo),
|Ve5.€) = Be [Very. )

2
9y

IN

5, VyeR", (4.39)

2
E¢ |exp 2 < exp(l), VyeRY, (4.40)
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where § & \/ max(ATA)d, and o, = dof V Amax(ATA)o,. We will use @\If(y,ék) to denote

batched stochastic gradient:
1 & 3
U(y,&") = - D Viy, &), F(y,&") = — Zﬂs y, &) (4.41)
1=1

The size of the batch r; could always be restored from the context, so, we do not specify

it here. Note that the batch version satisfies

IA

HE [W(x,g’f)] - V¢(ac)H2 5, VreR" (4.42)
fovtn - [vota ]

O(7i/r2)

E |exp < exp(l), VzeR"  (4.43)
where in the last inequality we used combination of Lemmas 4.9.3 and 4.9.5 (see two
inequalities after (4.161) for the details). We call this approach SPDSTM (Stochastic Primal-
Dual Similar Triangles Method, see Algorithm 3). Note that Algorithm 4 from [46] is a
special case of SPDSTM when ¢ = 0, i.e. stochastic gradient is unbiased, up to a factor 2 in

the choice of L.

Algorithm 3 SPDSTM

Require: §° = 2° = y° = 0, number of iterations N, o = Ay = 0
1: for k=0,...,N do
2: Set L = 2L,

3: Set Agi1 = Ag + agy1, where Qf/aiﬂ = A + agy1

4 gFtl = (A +ogpz ")) Ak
5: A= 2k — 0y VI (5, €F)
6: yhtl = (Aky'woé,ﬁrlz’f“)/Ak+1
7: end for
Ensure: yV, 7V = Zk OOékJT(ATZ/k f )-

Below we present the main convergence result of this section.

Theorem 4.5.1 (see also Theorem 2 from [46]). Assume that f is u-strongly convex and
|V f(z*)||a = My. Let € > 0 be a desired accuracy. Next, assume that f is Lg-Lipschitz
continuous on the ball Br,(0) with Ry = Q <max{ By Vome(ATA) Iy R, ) :

ANV Amax(ATA)’ p ’
where Ry, is such that ||y*||2 < Ry, y* is the solution of the dual problem (4.22), and




23

R, = ||z(ATy*)||2. Assume that at iteration k of Algorithm 8 batch size is chosen according

o2y In(N/p) ~ HLR2
Ttk NPT _ k+1 HLRG GLRy
e }, where oy, = ,0<e< 52, 0<0< CEn

and N > 1 for some numeric constant H > 0, G > 0 and C' > 0. Then with probability
+/In L ~
> 1 — 45, where € (0,1/4) is such that Vg < 2, after N = O( %X(ATA»

,/ln%

to the formula ), > max {1,

iterations where Y(ATA) = % the outputs TN and y~ of Algorithm 3 satisfy the
following condition
~ * - - £
F@Y) = f@) < f@EY) +4yY) <6, [|[AZY]s < o (4.44)

Y
with probability at least 1 — 4. What is more, to guarantee (4.44) with probability at least
1 —4p Algorithm 3 requires

9] (max {%X(ATA) In (% %X(ATA)> : %X(ATA)D (4.45)

calls of the biased stochastic oracle Vip(y, €), i.e. (y,&).

4.5.2. Strongly Convex Dual Functions and Restarts Technique

In this section we assume that primal functional f is additionally L-smooth. It implies
that the dual function ¢ in (4.22) is additionally p-strongly convex in y° + (KerA™)*
where 1, = Auin(A7A)/1 62, 63] and A\F. (AT A) is the minimal positive eigenvalue of AT A.

From weak duality — f(2*) < ¢(y*) and (4.24) we get the key relation of this section
(see also [64-66])

Fa(ATy)) = fa*) < (Vi(y).y) = (Az(ATy),y) (4.46)
This inequality implies the following theorem.

Theorem 4.5.2. Consider function f and its dual function ¢ defined in (4.24) such that
problems (4.21) and (4.22) have solutions. Assume that y~ is such that ||V (y™)|2 < ¢/r,
and yN < 2R, where ¢ > 0 is some positive number and R, = |y*||2 where y* is any
minimizer of 1. Then for ™ = z(ATyN) following relations hold:
Fa) = f@) <25 A < £ (4.47)
y

where x* is any minimizer of f.
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Proof. Applying Cauchy-Schwarz inequality to (4.46) we get
N o (426) N N €
fa®) = f@) < Ve )lz- ly e < 5 - 2Ry = 2e.
y
The second part (4.47) immediately follows from ||[V¢(y™)|s < ¢/r, and Demyanov-
Danskin theorem which implies Vi) (y) = Az". O

That is why, in this section we mainly focus on the methods that provides optimal
convergence rates for the gradient norm. In particular, we consider Recursive Regularization
Meta-Algorithm from (see Algorithm 4) [67] with AC-SA? (see Algorithm 6) as a subroutine
(i.e. RRMA-AC-SA?) which is based on AC-SA algorithm (see Algorithm 5) from [68]. We

notice that RRMA-AC-SA? is applied for a regularized dual function

3y) = i) + Sy~ o°l (1.48)

where A > 0 is some positive number which will be defined further. Function ¢ is A-strongly
convex and iw—smooth in R™ where f/w = Ly + A. For now, we just assume w.l.o.g. that 0
is (py + A)-strongly convex in R", but we will go back to this question further.

In this section we consider the same oracle as in Section 4.5, but we additionally
assume that 0 = 0, i.e. stochastic first-order oracle is unbiased. To define batched version

of the stochastic gradient we will use the following notation:

Tt

z(y, €. (4.49)

1 & 1
V\Ij(ya £t> rt) = 7"_ Z VQM!/» gl)a x(ya £t> rt) = 7"_
t— t—

As before in the cases when the batch-size r; can be restored from the context, we will

use simplified notation V¥ (y,£&") and x(y,£"). In the AC-SA algorithm we use batched

Algorithm 4 RRMA-AC-SA? [67]

Require: y° — starting point, m — total number of iterations
1 o U, 90« 0, T + {log2 LTwJ
2: for k=1,...,T do
3: Run AC-SA? for m/r iterations to optimize v_; with §*~! as a starting point and
get the output ¢*
1 y) < )+ AT, 27y — 63
5. end for

Ensure: 7.
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stochastic gradients of functions v, which are defined as follows:

VI(E) = Y Viln), (4.50)
=1

Vir(y,€) = Vo, )+ Ay —y") + 1) 2y —13).

=1

Algorithm 5 AC-SA [6§]

Require: 2" — starting point, m — number of iterations, v, — objective function

0 0 ,0 0
L Ygg <= 275 YUppg < 2

2: fort=1,...,mdo

2 4L
3: O < g Ve < (tTdi)
) a- at)(AJr“/t) a((A—a)Atye) t—1
L Ynma © S(i=ana Yag T Sl
A 1—a) M -1
5 Zt — )\Oify ymd + %Zt >\+%V\Pk(ymd7€ )
6:  yhy a2t + (1 — o)zl

7. end for

Ensure: y,.

Algorithm 6 AC-SA? [67]

Require: 2" — starting point, m — number of iterations, v, — objective function

1: Run AC-SA for m/2 iterations to optimize v with 2° as a starting point and get the
output y!

2: Run AC-SA for m/2 iterations to optimize v, with y' as a starting point and get the
output y2

Ensure: 3%

The following theorem states the main result for RRMA-AC-SA? that we need in the

section.

Theorem 4.5.3 (Corollary 1 from [67]). Let ¢ be Ly-smooth and p,-strongly convex
function and A\ = © ((Lw In® N)/NQ) for some N > 1. If the Algorithm 4 performs N
iterations in total with batch size v for all iterations, then it will provide such a point

that

(4.51)

L2ly° —y*|2In* N o2In° N
¥ 2 ¥
<

E[[[VY@): ] y"7] _C( i ]

2 Tt means that the overall number of performed iterations preformed during the calls of AC-SA2

equals N.
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where C > 0 is some positive constant and y* is a solution of the dual problem (4.22).

Let us show that w.l.o.g. we can assume in this section that function v defined in
(4.24) is py-strongly convex everywhere with g, = Amin(AT4)/L. In fact, from L-smoothness
of f we have only that v is p,-strongly convex in y° + (Ker(AT))L (see |62, 63| for the
details). However, the structure of the considered here methods is such that all points

generated by the RRMA-AC-SA? and, in particular, AC-SA lie in 3° + (Ker(AT))l.

Theorem 4.5.4. Assume that Algorithm 5 is run for the objective iy (y) = ¥(y) +
A 25y — 1|3 with 2° as a starting point, where 2°, 9%, ... G are some points from

Y0 + (Ker(AT))L and y° € R". Then for all t > 0 we have y!,4, 2"y, € y° + (Ker(AT))L.

Proof. We prove the statement of the theorem by induction. For t = 0 the statement
is trivial, since 30, = yd, = 2" € yo + (Ker(AT))L. Assume that y}, 4, 2, vk, € y° +
(Ker(AT))L for some t > 0 and prove it for ¢ + 1. Since yo + (Kelr(AT))L is a convex

t+1

g 18 a convex combination of y}, and z* we have Yyt e 0 + (Ker(AT))l.

md

set and y

aA ) t+1 (1—at) Myt ot . . 0 T 1 . .
My Ymd TR, 4 also lies in o+ (Ker(AT))™ since it is convex

combination of the points lying in this set. Due to (4.48), (4.49) and (4.50) we have that
V(Y €)= Az (ATy L €) + Ayl —4°) + A Zle 2!yt — 1), The first term lies

in (Ker(AT))l since Im(A) = (Ker(AT))L and the second and the third terms also lie

Next, the point

in (Ker(AT))L since y' T y0 9. 08 € o0 + (Ker(AT))L. Putting all together we get

2 ey + (Ker(AT))L. Finally, y/+! lies in 3° + (Ker(AT))l as a convex combination of

points from this set. ]

Corollary 4.5.1. Assume that Algorithm 4 is run for the objective y(y) = ¥(y) +
A 25y — i3 with y° as a starting point. Then for all k > 0 we have §* €
Yy + (Ker(AT))L.

Proof. We prove this result by induction. For ¢t = 0 the statement is trivial since §° = 3.
Next, assume that 9°, ', ..., 9" € y°+ (Ker(AT))L and prove that g%+ € ¢%+ (Ker(AT))L.
Our assumption implies that the assumptions from Theorem 4.5.4 and applying the result
of the theorem we get that y! and y? from the method AC-SA? applied to the v, also lie in
YV + (Ker(AT))L. That is, the output of AC-SA? applied for v, lies in 3° + (Ker(AT))L. O

Now we are ready to present our approach which was sketched in [45] of constructing

an accelerated method for the strongly convex dual problem using restarts of RRMA-AC-SAZ.
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To explain the main idea we start with the simplest case: ai =0, r = 0. It means that
there is no stochasticity in the method and the bound (4.51) can be rewritten in the

following form:

L - 12N L 12N
T < YLl — Tl N VOL VO]

N2 ,uwNQ ’
where we used inequality [|[V¢(y°)]] > uylly® — y*|] which follows from the py-strong

(4.52)

convexity of 1. It implies that after N = ON(\/W) iterations of RRMA-AC-SA? the method
returns such ' = g that |V (7|2 < 1|V (y°)]2. Next, applying RRMA-AC-SA? with
7' as a starting point for the same number of iterations we will get new point %* such
that [|Ve(7%)[l2 < 5IVE @) [l < 11V (%) [l2- Then, after I = O(In(RulIV¥()l2/c)) of such
restarts we can get the point ¢ such that ||V (7')|]2 < ¢/r, with total number of gradients
computations NI = O ( L[y ln(Ry\\V¢(y°)||2/e)>.

In the case when ai # 0 we need to modify this approach. The first ingredient
to handle the stochasticity is large enough batch size for the [-th restart: r; should be
Q (73 /(N ve@@-1))2)). However, in the stochastic case we do not have an access to the
V9 (y'1), so, such batch size is impractical. One possible way to fix this issue is to
independently sample large enough number 7; ~ Rj/e2 of stochastic gradients additionally,
which is the second ingredient of our approach, in order to get good enough approximation
V(5 €7 7)) of Vio(7') and use the norm of such an approximation which is close
to the norm of the true gradient with big enough probability in order to estimate needed
batch size r! for the optimization procedure. Using this, we can get the bound of the

following form:

—l—=1Y]|2
B(IVe@I |7 < 4 & U

Vo € R = Ve |3
32 '
The third ingredient is the amplification trick: we run p; = Q(In(1/8)) independent

trajectories of RRMA-AC-SA?, get points 7°',...,7"" and choose such ") among of
them that ||V (55PD) ||y is close enough to min,—; _,, ||V (7"?)||2 with high probability,
ie. ||[V(g?D)]12 < 2min,—;__, [V (7'P)]3+5° /8R2 with probability at least 1—f for fixed
VU (71, €71 7). We achieve it due to additional sampling of 7, ~ B3 /<> stochastic gradients
at y'? for each trajectory and choosing such p(l) corresponding to the smallest norm of

the obtained batched stochastic gradient. By Markov’s inequality for all p =1,...,p,

1
P{”V?P P > 24 | g 7“1,771}§§7
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hence

_ 1
P{ r{un V(g )3 > 24, | 5~ rl,rl} < o

That is, for p; = log,(1/8) we have that with probability at least 1 — 2/

O o0 Mo R ) o 2 1
7o) < B - i

for fixed VW (7', €, #) which means that

||V1/J( g3
5 * 432

Ve O)I3 <

with probability at least 1 — 33. Therefore, after | = log, (2R5IIV¥@°)I3/e2) of such restarts

our method provide the point §“?®) such that with probability at least 1 — 313

0\([2 2 -1 2 2 2
(wooyy < W, < s L e

The approach informally described above is stated as Algorithm 7.

Algorithm 7 Restarted-RRMA-AC-SA?

Require: y° — starting point, | — number of restarts, {#;},_,, {Fx}\._, — batch-sizes,

{pk}i_l — amplification parameters

CL? In

1: Choose the smallest integer N > 1 such that —L2 N4N < %
Ky

2: y 7p(0) < y

3 fork=1,...,ldo

4:  Compute VW (gh-twrk=1) gh=Lroh=1) 5y

6400'3) I N
5: Tk <— Imax {1, N“V\Ij(gkfl’p(kfl)7§k—l,p(k71)7,;,k)”%}
6: Run p; independent trajectories of RRMA-AC-SA? for NNV iterations with batch-size
re with g~ 1P(=1) ag a starting point and get outputs g™, ..., g*P*

T Compute V\P<gk717 €k,17 7716)7 te V\P(gk,pk’gk,pk, Fk)
8 p(k) < argmin,_, _, VUG, &, 7))
9: end for

Ensure: g-?®).

Theorem 4.5.5. Assume that 1 is p,-strongly convex and Ly,-smooth. If Algorithm 7 is
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run with
{ 2R} | |V1/)( >||2}
[ = max
J3m% )1@
,f.k‘ = 2 Y
64C’aw In® N
Ty = 17
NHVkIf k—1,p(k—1) €k 1,p(k—1) 7a )H2
Dr = max{l logy — }
12803<1 31nlm
T, = max\< 1, (4.53)
for allk =1,...,1 where N > 1 is such that CL22£4N < LQ B € (0,Y3) and € > 0, then
with probability at least 1 — 33
v (ghr® — 4.54
IV (G)l2 < R (4.54)

and the total number of the oracle calls equals

! 2 2
_ ~ L R
E (fk + Npgry + pir) = O | max _wa Dy . (4.55)
= fy €

Corollary 4.5.2. Under assumptions of Theorem 4.5.5 we get that with probability at
least 1 — 36

1570 — ¥l < (4.56)

£
pplty’
where 8 € (0,1/3) the total number of the oracle calls is defined in (4.55).
Proof. Inequalities (4.54) and pp|ly — y*[l2 < ||V¥(y)|]2 which follows from i,-strong
convexity of ¢ imply that

[V, 639
Hop B NwRy‘

157 —y*[l2 <

]

Now we are ready to present convergence guarantees for the primal function and

variables.
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Corollary 4.5.3. Let the assumptions of Theorem 4.5.5 hold. Assume that f is L-Lipschitz

continuous on Bg,(0) where

" Aax(ATA) R,
Ry = + +—|R
d ( )\max(ATA) M Ry Y

and R, = ||[x(ATy*)||2. Then, with probability at least 1 — 43

¢
Azt < — 4.57
Mg D

l * Lf
fl@) = f@") < (2+8Ry\/m> e |l

where € (0,%/1), € € (0, pyR2) o' d:efa:(Angl’p(l),él’p(l),ﬁ) and to achieve it we need the

total number of oracle calls equals

Sy + Npur + per) = O <m{ Lyara) UiMQx(ATA)}) (458)

g2
k=1

where M = ||V f(z*)]]2.

4.5.3. Direct Acceleration for Strongly Convex Dual Function

We consider first the following minimization problem:

min ¢ (y), (4.59)

yeR?

where 1 (y) is py-strongly convex and Ly-smooth. We use the same notation to define
the objective in (4.59) as for the dual function from (4.22) because later in the section
we apply the algorithm introduced below to the (4.22), but for now it is not important
that ¢ is a dual function for (4.21) and we prefer to consider more general situation. As in
Section 4.5.1, we do not assume that we have an access to the exact gradient of ¢(y) and
consider instead of it biased stochastic gradient @le(y, ¢) satisfying inequalities (4.39) and
(4.40) with 6 > 0 and oy > 0. In the main method of this section batched version of the

stochastic gradient is used:
SRR
U(y.€") = > Vi, &, (4.60)
=1

where 7, is the batch-size that we leave unspecified for now. Note that VW(y, £*) satisfies
inequalities (4.42) and (4.43).
We use Stochastic Similar Triangles Method which is stated in this section as

Algorithm 8 to solve problem (4.59). To define the iterate 2**! we use the following
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sequence of functions:

of 1 =
Go(z) = Sllz— 208+ a0 (v(") + (VOGP €0, 2 — o) + Bl = ol3)
Gen(z) 2 Gule) + e (VE) + (VUL EH) 2 = )+ Bl — )
k+1
- —||z—z0u2+2az( (VU ),z =)+ Bl — 1) (4.61)

We notice that gi(2) is (1 + Agpy)-strongly convex.

Algorithm 8 Stochastic Similar Triangles Methods for strongly convex problems
(SSTM_sc)

Require: §° = 20 = y° — starting point, N — number of iterations
1: Set ag = Ag = /1L,
2: Get VU(y°, £°) to define go(2)
3: for k=0,1,...,N —1do
4: Choose 41 such that Apyy = A + o1, Appa (1 + Appy) = of Ly

5: gk—i—l — (Akyk+oék+1zk)/,4k+1

6: ZFH = argmin, cgn ry1(2), where Gi11(2) is defined in (4.61)
7: yk+1 — (Akyk+ak+lzk+l)/Ak+1

8: end for

Ensure: zV

Lemma 4.5.1. Assume that Algorithm 8 is run to solve problem (4.59) with 1 (y) being

fy-strongly convex and Ly-smooth. Then, for all k > 0 we have

k—1
~ A ~
Ap(y*) < Glz®) - Z TwH?Jl - 73
=0

+Z Hw 7€) —w(gl)Hz. (4.62)

Lemma 4.5.2. Let the sequences of non-negative numbers {cy } x>0, random non-negative
variables { R Y>—1, { R }es—1 and random vectors {n* Y=o, {a*} k0, {@" }eso satisfy inequality

-1

AlRl + Z Aszk < A+ hd Z Oék Rk 1+ Rk)
k=0 k=0
-1 -1

+uzak+1<nkuak +C~Lk> + czak-‘rlunk”%v (463)
k=0 k=0
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foralll = 1,...,N, where h,6,u and ¢ are some non-negative constants and A1 =

Ap + gy, a1 < DAy for some D > 1, Ag = ag > 0. Assume that for each k > 1 vector

a® is a function of n°, ..., 0", a® is a deterministic vector, u > 1, sequence of random
vectors {n*}r>o satisfy

E [nk n°, ... ,nk_l] =0, E {exp (Hf;%) Y, ... ,nk_l} < exp(1), (4.64)
Vk >0, 02 < ——C—— forsome C >0,e>0, 3 € (0,1), sequences {a*}r>o and

N2 (1+\/K)

{@*} x>0 are such that ||a¥||y < Ry and ||a*|)s < ék, R, and R}, depend only on ng, ...,n"*

and RO = 0. If additionally 6 < NG%L and e < %‘T Then with probability at least 1 — 203

the inequalities

JRO ~

JRy
R < R < —— 4.65
and
-1 _ -1 -1
ho Y akpa(Re+ Be) +u a0, 0 + ) + ¢ annlln®l3

k=0 k=0 k=0
< (chC +2JD (hG +uC, 2HC’g(N)>> RZ  (4.66)
hold for alll = 1,..., N simultaneously, where Cy is some positive constant, g(N) =

In( )-Hnln(?z;
(1+/3m(%)

3 N
B =8HCDR; (N <§> + 1) (A+2DR’G*R + 2C (c+ 2Du*) HR})

b= 202aiR% and

3B,D + \/93202 + 43 +8cHC
2 M

J = max Ay,

Theorem 4.5.6. Assume that the function 1 is j,-strongly convexr and Ly-smooth,

2 N2g2 In ¥
r, =0 | max< 1 La) S ) ,
’ Llﬁ g

3/2 N262 (1+4,/3In &¥ ’
e Tp > %max {1, (“—’”) w( ﬁ> } with positive constants C' > 0, € > 0 and

L¢ 3

N > 1. If additionally 6 < C\"/RL and e < N% where Ry = ||ly* — 4°||2 and Algorithm 8 is

run for N iterations, then with probability at least 1 — 33

. J2R2
ly™ = y7ls < — (4.67)
N
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where 5 € (0,1/3),

Hoap
2 2
h/:u:_, C:—27
Hy o
FURL I B <, +(Lw)3/4 2v2CH +(L )3/2 4CH
py - LypyNVAN  pgN? - Ny ) LypgNVAN by ) LypiN?Ay’

N . A 3/2
T 3BD+ \/9B%D2 +4A + 8¢HC (i-;{)
L, 2

R L,\"*
Blth+uCl\/2HC (u—”) §(N)
b

and C} is some positive constant. In other words, to achieve ||y~ —y*||3 < & with probability

~ ~ 0.2
at least 1 — 33 Algorithm 8 needs N = O ( i—Z) iterations and O (max{,/i—w —’”})

v €

oracle calls where 5() hides polylogarithmic factors depending on Ly, j1y, Ro, € and 3.

Next, we apply the SSTM_sc for the problem (4.22) when the objective of the primal
problem (4.21) is L-smooth, p-strongly convex and L ;-Lipschitz continuous on some ball
which will be specified next, i.e. we consider the same setup as in Section 4.5 but we
additionally assume that the primal functional f has L-Lipschitz continuous gradient. As
in Section 4.5 we also consider the case when the gradient of the dual functional is known
only through biased stochastic estimators, see (4.36)—(4.43) and the paragraphs containing
these formulas.

In Section 4.5 and 4.5.2 we mentioned that in the considered case dual function
is Ly-smooth on R™ and py-strongly convex on y° + (KerA")t where L, = Amax(AT4)/,
and j1,, = *min(AT4)/L. Using the same technique as in the proof of Theorem 4.5.4 we show

next that w.l.o.g. one can assume that 1 is p,-strongly convex on R™ since @\D(y, £k) lies
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in ImA = (KerAT)* by definition of VW(y, £"). For this purposes we need the explicit
formula for 2**! which follows from the equation Vg1 (2%1) = 0:
0 k+1

Sl < Z Qi i — 1
L+ Apyipiy L+ Apyipty 1+ Apapy =

k+1

o VU(g €h. (4.68)
=0

Theorem 4.5.7. For all k > 0 we have that the iterates of Algorithm 8 j*, 2%, y* lie in
y* + (Ker(AT))™

Proof. We prove the statement of the theorem by induction. For & = 0 the statement is
trivial, since §° = 2% = y°. Assume that for some k > 0 we have ¢¢, 2, y* € y°+ (Ker(AT))L
for all 0 <t < k and prove it for k + 1. Since yy + (Ker(AT)) is a convex set and §**!

is a convex combination of y* and z¥ we have g1 € 40 + (Ker(AT)) . Next, the point

Z - +Zl:+ - ' also lies in 3° + (Ker(AT)) since it is convex combination of

the points lylng in this set which follows from Ay, = Zziol oy. By definition V(i €' of

1+Ak+lﬂw

we have that V(7 €') lies in ImA = (KerAT)* for all . Putting all together and using
(4.68) we get 2Ft1 € 40 + (Ker(AT))L. Finally, y*** lies in 3 + (Ker(AT))L as a convex

combination of points from this set. n

This theorem makes it possible to apply the result from Theorem 4.5.6 for SSTM_sc
which is run on the problem (4.22).

Corollary 4.5.4. Under assumptions of Theorem 4.5.6 we get that after N = 9) ( i—z In %)

iterations of Algorithm 8 which is run on the problem (4.22) with probability at least 1 — 33

£

Vo)l <

(4.69)

where B € (0,1/3) and the total number of oracles calls equals

O (max {\/Z ifi}) . (4.70)
Hy &

If additionally ¢ < ,usz, then with probability at least 1 — 3

N * €
=il < )
ly™l2 < 2R, (4.72)

Proof. Theorem 4.5.6 implies that with probability at least 1 — 35 we have

J2R2
ly™ —y*l5 < .
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Using this and L,-smoothness of ¢ we get that with probability > 1 — 343

L2 J2R2
IV (™5 = IVe™) — Voy)lis < Lilly™ —y*ll; < wAN 2

(4.228) 2k - 7

Since A > LL (1 + %1 /’Z—¢> , it implies that after N = O < =2 In l) iterations of
v ¥ py €

SSTM_sc we will get (4.69) with probability at least 1 — 3 and the number of oracle calls

will be N
Zsz(maX{ _¢’U¢_2y}>.
=0 \/ Hy o €

Next, from ji,-strong convexity of ¢(y) we have that with probability at least 1 — 35

v o IV e
Yy H2 <
Hop fop Ry

IN

ly

and from this we obtain that with probability at least 1 — 33

[N le < 1™ = vz + ly*lle <
0

Corollary 4.5.5. Let the assumptions of Theorem 4.5.6 hold. Assume that f is Ly-Lipschitz

continuous on By f ) where

V maX A A
A=\t

= lz(ATy")]l2, € < pyR2 and 6, < ]%1%2 for some positive constant Gy. Assume

additionally that the last batch-size vy s slightly bigger than other batch-sizes, i.e.

2
N
| {1 (M)% N2 (14 /3m %) R

Y

c2

CT

e2

Then, with probability at least 1 — 40

2C Ly
<2+ ( m +G1> R_y g, (474)

145 < (14 V20 + GiV/ A (ATA)) 7
Y

—
—
X
Z
|
=
8
*
S~—
AN

(4.75)
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where 3 € (0,1/4), d:efj'c(ATyN,ﬁN, rn) and to achieve it we need the total number of

oracle calls including the cost of computing T equals

~ L - o2 M? T
O (max{ ;X(A A),Tx(A A)}) (4.76)

where M = ||V f(z*)]]2.

4.6. Applications to Decentralized Distributed Optimization

In this section we apply our results to the decentralized optimization problems.
But let us consider first the centralized or parallel architecture. As we mentioned in the
introduction, when the objective function is L-smooth one can compute batches in parallel

[16, 25-27] in order to accelerate the work of the method and (4.11)-(4.13) imply that

@) ( i > or O ( e > (4.77)
VIR Lfuln (nF2/c)

number of workers in such a parallel scheme gives the method with working time

proportional to the number of iterations defined in (4.11). However, number of workers
defined in (4.77) could be too big in order to use such an approach in practice. But still
computing the batches in parallel even with much smaller number of workers could reduce
the working time of the method if the communication is fast enough and it follows from
(4.13).

Besides the computation of batches in parallel for the general type of problem
(4.1)+(4.2), parallel optimization is often applied to the finite-sum minimization problems
(4.1)+(4.3) or (4.1)+(4.6) that we rewrite here in the following form:

Lo
min f(x) = p Z fr(2). (4.78)

ze@QCR"”
Qs k=1

We notice that in this section m is a number of workers and f(x) is known only for the
k-th worker. Consider the situation when workers are connected in a network and one
can construct a spanning tree for this network. Assume that the diameter of the obtained
graph equals d, i.e. the height of the tree — maximal distance (in terms of connections)
between the root and a leaf [29]. If we run STM on such a spanning tree then we will get
that the number of communication rounds will be d times larger than number of iterations

defined in (4.11).
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Now let us consider decentralized case when workers can communicate only with
their neighbours. Next, we describe the method of how to reflect this restriction in the
problem (4.78). Consider the Laplacian matrix W € R™ ™ of the network with vertices V/

and edges F which is defined as follows:

(

~1,  if(i,j) € E,

Wij = q deg(i), ifi=j, (4.79)

0 otherwise,
\

where deg(i) is degree of i-th node, i.e. number of neighbours of the i-th worker. Since we

consider only connected networks the matrix W has unique eigenvector 1,, def 1,...,1)"T €
R™ corresponding to the eigenvalue 0. It implies that for all vectors a = (ay, ..., a,,)" € R™
the following equivalence holds:

ag=...=a, < Wa=0. (4.80)

Now let us think about a; as a number that i-th node stores. Then, using (4.80) we can use
Laplacian matrix to express in the short matrix form the fact that all nodes of the network
store the same number. In order to generalize it for the case when a; are vectors from R"
we should consider the matrix W & W ® I, where ® represents the Kronecker product
(see (3.1)). Indeed, if we consider vectors x1,...,z, € R” and x = (xlT, o ,x;) e R,
then (4.80) implies

T =...=a, <= Wx=0. (4.81)

For simplicity, we also call W as a Laplacian matrix and it does not lead to misunderstanding
since everywhere below we use W instead of . The key observation here that computation
of Wz requires one round of communications when the k-th worker sends xj to all its
neighbours and receives z; for all j such that (k,j) € E, i.e. k-th worker gets vectors
from all its neighbours. Note, that W is symmetric and positive semidefinite [29] and, as
a consequence, W exists. Moreover, we can replace W by vW in (4.81) and get the
equivalent statement:

T =...=x, <= VWx=0. (4.82)

Using this we can rewrite the problem (4.78) in the following way:

Jmin 60 = =3 i), (1.83)

1., 2m EQCR™



38

We are interested in the general case when fi(zx) = E¢, [fi(zk, &)] where {& )72, are
independent. This type of objective can be considered as a special case of (4.6). Then, as
it was mentioned in the introduction it is natural to use stochastic gradients V fi(zg, &)

that satisfy

B¢, [V fe(wr, &) — Vir(zi)ll, < 0, (4.84)
E, exp(”vfk(xk’gk)_fﬁ’“ [ka(xk’ék)m?)] < exp(l). (4.85)

Then, the stochastic gradient
e m ef 1 &
VI, E VI AGHL) € D Viilon &)
k=1
satisfies (see also (4.43))

E¢

exp 5 < exp(1)

Of

( IV f(x,€) — B [V f(x, 5>1||§>

with o7 = O (7/m).

As always, we start with the smooth case with () = R™ and assume that each f
is L-smooth, u-strongly convex and satisfies ||V fe(zk)]]2 < M on some ball Bg,, (z*)
where we use Vi f(z;) to emphasize that f, depends only on the k-th n-dimensional
block of x. Since the functional f(x) in (4.83) has separable structure, it implies that f is
L/m-smooth, #/m-strongly convex and satisfies ||V f(x)|l2 < M/ym on B smpg,, (x*). Indeed,
for all x,y € R”

m
Ix —yl3 = Zka—kag,
k=1

IVix) =Vl = \%Zﬂkak ) = Vife(yr)ll3
k=
< \%Zuxk—ykua—éux—yuz,
o) = 3ot z% S () + (Tafiin), on — i) + 5% = o 12)
k=1 =1
= )+ (VI x = y) + 5 [x =y,

IVIEl2 = %Z IV fi() 12
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Therefore, one can consider the problem (4.83) as (4.21) with A = VIV and @ = R™™.

Next, if the starting point x° is such that x° = (2°,...,2%) " then
*\ ]2 2
R = = mla? — ool = m, Ryl DO o 2

Now it should become clear why in Section 4.4 we paid most of our attention on number
of AT Ax calculations. In this particular scenario AT Ax = VW T\/W xr = Wax which can
be computed via one round of communications of each node with its neighbours as it was
mentioned earlier in this section. That is, for the primal approach we can simply use the
results discussed in Section 4.4. For convenience, we summarize them in Tables 4.3 and 4.4
which are obtained via plugging the parameters that we obtained above in the bounds from
Section 4.4. Note that the results presented in this match the lower bounds obtained in [69]
in terms of the number of communication rounds up to logarithmic factors and and there
is a conjecture [45] that these bounds are also optimal in terms of number of oracle calls
per node for the class of methods that require optimal number of communication rounds.
Recently, the very similar result about the optimal balance between number of oracle calls
per node and number of communication round was proved for the case when the primal
functional is convex and L-smooth and deterministic first-order oracle is available |70].
Finally, consider the situation when @@ = R™ and each fj from (4.83) is dual-friendly,

i.e. one can construct dual problem for (4.83)

yrglﬂégm U(y), where y = (v, ..., )" €R™, yi,...,ym € R, (4.86)
eryr) = nax {{yr, xx) — fr(zr)}, (4.87)
By) = D prlmm), U(y) = VW) = S VIV, (159)

where [V WX]y, is the k-th n-dimensional block of v/IWx. Note that

max {(y,x) — f(x)} = max {Z<yk,$k> - %ka(xk)}

xERnm xcRnm
k=1 k=1
1 m
= — Z;ggﬂgg{ mye, o) — felor)} = — > prlmye) = O(y),
k=1

so, ®(y) is a dual function for f(x). As for the primal approach, we are interested in the

general case when ¢ (yi) = E¢, [0r(yk, §)] where {£}7, are independent and stochastic
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# of communication

# of V fi(x) oracle

[71]

Assumptions on fj Method
rounds calls per node
D-MASG,
-strongly convex, ~ ~
. Q=R" o (Vi) o(V¥)
L-smooth
[58]
STP_IPS with
STP as a subroutine, ~ ~
L-smooth @) (\/L—mx) 0 (\/L—RQ)
Q _ Rn € €
[This paper]
R-Slidin
-strongly convex, g> ~ ~
S ST eE) | e
IV fe(@)]2 < M 152
[60, 71]
Sliding,
Vi)l < M i o) 0 (22

Table 4.3: Summary of the covered results in this paper for solving (4.83) using primal

deterministic approach from Section 4.4. First column contains assumptions on fi, k=1,...,m

in addition to the convexity, x = x(W). All methods except D-MASG should be applied to solve

(4.25).

gradients V. (zy, &) satisty

E¢

k

exp

B¢, [Vor(ye, &)] — Veor(ur) ll,

IN

<Hv90k(yk, &) — Ee, [Vor(ur, §k)”|§>]

o2

Consider the stochastic function fi(z, &) which is defined implicitly as follows:

Since

Vo(y) =Y Ver(my)

Ok (Yr, &) = nax Uyr, o) — f(xn, &)} -

m
4.35)

k=1

5, (4.89)
exp(1). (4.90)
(4.91)

> anlmye) E x(y), @y < argmax { (g, ) — filwr)}

xR ER™
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Assumptions on fj

Method

# of communication

rounds

# of V fi(x,€) oracle

calls per node

p-strongly convex,

D-MASG,

in expectation,

[53, 60]

[71]

L-smooth Q =R",
[58]
SSTP_IPS with
STP as a subroutine,
L-smooth Q=R" 19, (\/L?X> 0 <max {\/Ls?v UZ§2 })
conjecture,
[This paper]
[45]
RS-Sliding
s comes, | Qo | (B | (i)
|V fr(z)]]2 < M [45] pe e
[53]
[60, 71]
S-Sliding
is bounded, » B
IVl <y |7 0 (y/22) 5 (g

g2

Table 4.4: Summary of the covered results in this paper for solving (4.83) using primal stochastic
approach from Section 4.4 with the stochastic oracle satisfying (4.84)-(4.85) with § = 0. First
column contains assumptions on fg, k = 1,...,m in addition to the convexity, x = x(W). All
methods except D-MASG should be applied to solve (4.25). The bounds from the last two rows

hold even in the case when @ is unbounded, but in the expectation (see [72]).

it is natural to define the stochastic gradient V®(y, &) as follows:

Vo(y. &) L valy {a)r) E Y Vermyn &) "2 Y aimy. &) & x(y, €),
k=1 k=1
Tk (Yr, k) & argmax { (Y, x) — fe(xr, &)}

rEER™

It satisfies (see also (4.43))

[E¢ [VO(y,8)] = Ve(y)l, < do,
]35 exp <||V(I)(y7§) - O-Ej [V(I)(y7§)]”2>] < exp(l)

with dp = md, and o3 = O (mo?). Using this, we define the stochastic gradient of ¥(y)
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as VU(y,¢) Lt WYVO(VvWy, &) = vIWx(VWy, &) and, as a consequence, we get

E. eXp(uwy,a—Eg [W(y,o]ni)] (1)

IN

2
Oy

with g = \/m&p and oy = \/ Amax(W)0s.

Taking all of this into account we conclude that problem (4.86) is a special case of
(4.22) with A = /W. To make the algorithms from Section 4.5 distributed we should
change the variables in those methods via multiplying them by v/W from the left [45, 46, 61],
e.g. for the iterates of SPDSTM we will get

gk-i-l — \/ng-s-l7 Zk+1 — \/WzkH, yk+1 — \/Wka,

which means that it is needed to multiply lines 4-6 of Algorithm 3 by v/W from the left.
After such a change of variables all methods from Section 4.5 become suitable to run
them in the distributed fashion. Besides that, it does not spoil the ability of recovering
the primal variables since before the change of variables all of the methods mentioned
in Section 4.5 used x(vWy) or x(vWy, &) where points y were some dual iterates of
those methods, so, after the change of variables we should use x(y) or x(y, §) respectively.
Moreover, it is also possible to compute |[vWz|3 = (x, Wx) in the distributed fashion
using consensus type algorithms: one communication step is needed to compute Wx, then
cach worker computes (zy, [Wx];) locally and after that it is needed to run consensus
algorithm. We summarize the results for this case in Tables 4.5 and 4.6. Note that the
proposed bounds are optimal in terms of the number of communication rounds up to
polylogarithmic factors [29, 69, 73, 74]. Note that the lower bounds from [29, 73, 74|
are presented for the convolution of two criteria: number of oracle calls per node and
communication rounds. One can obtain lower bounds for the number of communication
rounds itself using additional assumption that time needed for one communication is big
enough and the term which corresponds to the number of oracle calls can be neglected.
Regarding the number of oracle calls there is a conjecture [45]| that the bounds that we
present in this paper are also optimal up to polylogarithmic factors for the class of methods

that require optimal number of communication rounds.
We would like to thank F. Bach, P. Dvurechensky, M. Giirbiizbalaban, D. Kovalev,

A. Nemirovski, A. Olshevsky, N. Srebro, A. Taylor and C. Uribe for useful discussions.
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Assumptions on fi Method # of communication # of Vr(y, &) oracle
rounds calls per node
R-RRMA-AC-SA?
(Algorithm 7),
p-strongly convex,
L-smooth, Corollary 4.5.3, 5( £X> 5 <max{ ﬁ ,G%¥2X}>
Va@l <y | O
(Algorithm 8),
Corollary 4.5.5
SPDSTM
HrSUONEY COMEX, | orittn 3), | O (V) | O (max{\/22x, %5E0})
Vi@l < M Theorem 4.5.1

Table 4.5: Summary of the covered results in this paper for solving (4.86) using dual stochastic
approach from Section 4.5 with the stochastic oracle satisfying (4.84)-(4.85) with § = 0. First

column contains assumptions on fx, k = 1,...,m in addition to the convexity, x = x(W).

# of communication

# of Vi(y, &) oracle

Assumptions on fj Method
rounds calls per node
p-strongly convex, SSTM_sc
~ ~ 2 2
L-smooth, (Algorithm 8), O ( %X) 0 (max{\/ % ) %5]:[ X})
|V fi(x)|]l2 < M | Corollary 4.5.5

SPDSTM
(Algorithm 3),
Theorem 4.5.1

pu-strongly convex,

IV fr()ll2 < M

~ 2 o2 M?
%fx) O(maX{\/%x, S x})

Table 4.6: Summary of the covered results in this paper for solving (4.86) using biased dual
stochastic approach from Section 4.5 with the stochastic oracle satisfying (4.84)-(4.85) with
d, > 0. First column contains assumptions on fi, kK = 1,...,m in addition to the convexity,

X = X(W). For both cases the noise level should satisfy d, = O (¢/Mymx).

The work of E. Gorbunov was supported by RFBR, project number 19-31-51001. The
work of D. Dvinskikh was supported by Russian Science Foundation (project 18-71-10108).
The work of A. Gasnikov was supported by RFBR, project number 19-31-51001 and by

Yahoo! Research Faculty Engagement Program.
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4.7. Discussion

In this section we want to discuss some aspects of the proposed results that were not
covered in the main part of this paper. First of all, we should say that in the smooth case
for the primal approach our bounds for the number of communication steps coincides with
the optimal bounds for the number of communication steps for parallel optimization if we
substitute the diameter d of the spanning tree in the bounds for parallel optimization by
O(y/x(W)).

However, we want to discuss another interesting difference between parallel and
decentralized optimization in terms of the complexity results which was noticed in [45].
From the line of works [75-78| it is known that for the problem (4.1)+(4.6) (here we use
m instead of ¢ and iterator k instead of ¢ for consistency) with L-smooth and p-strongly
convex fi for all k =1,..., m the optimal number of oracle calls, i.e. calculations of of the

stochastic gradients of fi, with o?-subgaussian variance is

9) (m + m£ + 0—2> . (4.92)
e ope

The bad news is that (4.92) does not work with full parallelization trick and the best
possible way to parallelize it is described in |78]. However, standard accelerated scheme using
mini-batched versions of the stochastic gradients without variance-reduction technique
and incremental oracles which gives the bound

9) (m L, 0—2> (4.93)

fo e

for the number of oracle calls and it admits full parallelization. It means that in the parallel
optimization setup when we have computational network with m nodes and the spanning

tree for it with diameter d the number of oracle calls per node is

6( L, ) :5<max{\/z, o }) (4.94)
[ MmpE [ mpe

and the number of communication steps is

~ L
O (d ;> . (4.95)

However, for the decentralized setup the second row of Table 4.4 states that the number

of communication rounds is the same as in (4.95) up to substitution of d by /x (W) and
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the number of oracle calls per node is

~ L o?
O (max {\/;, £}> (4.96)

which has m times bigger statistical term under the maximum than in (4.94). What is

more, recently it was shown that there exists such a decentralized distributed method that

()
mpue

stochastic gradient oracle calls per node |79, 80|, but it is not optimal in terms of the

requires

number of communications. Moreover, there is a hypothesis [45] that in the smooth case
the bounds from Tables 4.3 and 4.4 (rows 2 and 3) are optimal in terms of the number of
oracle calls per node for the class of methods that require optimal number of communication
rounds up to polylogarithmic factors.

The same claim but for Table 4.5 was also presented in [45] as a hypothesis and in this
paper we propose the same hypothesis for the result stated Table 4.6 up to polylogarithmic
and additionally we hypothesise that the noise level that we obtained is also unimprovable

up to polylogarithmic factors.

4.7.1. Possible Extensions

e Asit was mentioned in Section 4.4, the recurrence technique that we use in Sections 4.3
and 4.5 can be very useful in the generalization of the results for STM from Section 4.4
for the case when instead of V f(x) only stochastic gradient V f(z, ) (see inequalities
(4.7)-(4.8)) is available, f is L-smooth and proximal step is computed in an inexact
manner. It would be nice also to compare proposed methods for the case when o
with the results from [58]. For the convex but non-strongly convex case one can also

try to combine Nesterov’s smoothing technique [61, 81, 82] with D-MASG from [58].

e We believe that the technique presented in the proofs of Lemmas 4.9.8 and 4.5.2
can also be extended or modified in order to be applied for different optimization

methods to obtain high probability bounds in the case when ¢ = R"™.

e We emphasize that in our results we assume that each f; from (4.83) is L-smooth
and p-strongly convex. When each f; is L;-smooth and p;-strongly convex, it means

that in order to satisfy the assumption we use in our paper we need to choose
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L = maxj<;<m, L; and p = min;<;<,, pt;. This choice can lead to a very slow rate in
some situations, e.g. the worst-case L can be m times larger than L for f as for the
case when m = d and f(z) = l=l3/om = 1/m > | fi(x), fi(z) = ©i/2 where L; =1 for
all 7 but f is 1/a-smooth [83]. It was shown [29, 61] that instead of worst-case p and
L one can use fi = 1/m Y ", p; and L to be some weighted average of L;, but such
techniques can spoil number of communication rounds needed to achieve desired

accuracy.

e It would be also interesting to generalize the proposed results for the case of more

general stochastic gradients |9, 11, 13, 59].

4.8. Application for Population Wasserstein Barycenter

Calculation

In this section we consider the problem of calculation of population Wasserstein
barycenter since this example hides different interesting details connected with the theory
discussed in this paper. In our presentation of this example we rely mostly on the recent

work [84].

4.8.1. Definitions and Properties

We define the probability simplex in R" as S, (1) = {# € R} | Y7, 2; = 1}. One
can interpret the elements of S, (1) as discrete probablhty measures with n shared
atoms. For an arbitrary pair of measures p,q € 5,(1) we introduce the set II(p,q) =
{ﬂ' ERYV" |al=p, 7'1l= q} called transportation polytope. Optimal transportation
(OT) problem between measures p,q € S, (1) is defined as follows

W(p,q) = min (C,7) = min ZC’WWZ] (4.97)

w€ll(p,q) w€ll(p,q)

where C'is a transportation cost matrix. That is, (¢, j)-th component C;; of C' is a cost of
transportation of the unit mass from point z; to the point x; where points z1,...,z, € R
are atoms of measures from 5, (1).

Next, we consider the entropic OT problem (see [85, 86])

n

Wﬂ(p7 Q) = mln (CUW’LJ + ,um] ln 7T1J) . (498)
well(pq) : oo
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Consider some probability measure P on S,,(1). Then one can define population barycenter

of measures from S, (1) as

p,, = argmin J W,(p, q)dP(q) = argmin E, [W,(p, q)] . (4.99)
PESn(1) pESn (1) —~—""
q€Sn(1) Wy (p)
For a given set of samples ¢', ..., ¢™ we introduce empirical barycenter as
N in — zmjw (p,q") (4.100)
P, = argmin — »,q") . .

. PESK(1) m i—1 a
Wir)

We consider the problem (4.99) of finding population barycenter with some accuracy and
discuss possible approaches to solve this problem in the following subsections.

However, before that, we need to mention some useful properties of W,(p, q). First
of all, one can write explicitly the dual function of W, (p, q) for a fixed ¢ € S,(1) (see
[84, 87]):

Walp,a) = max {(\.p) =W, (N} (4.101)
. = 1 & —Cii + N
W, (A) = ; ¢; In (CI_J ; exp (T)) : (4.102)

Using this representation one can deduce the following theorem.

Theorem 4.8.1 ([84]). For an arbitrary q € S,(1) the entropic Wasserstein distance
Wy(+,q) + Sp(1) = R is p-strongly convexr w.r.t. lo-norm and M-Lipschitz continuous
w.r.t. a-norm. Moreover, M < \/nM., where My, is Lipschitz constant of W,(-,q) w.r.t.
loo-norm and M., = 5(”0”00)

We also want to notice that function W, (M) is only strictly convex and the
minimal eigenvalue of its hessian ~ oo Amin(V2W, ,(X*)) evaluated in the solution A* &
argmax,cpn { (A, p) — W; ,(A)} is very small and there exist only such bounds that are
exponentially small in n.

We will also use another useful relation (see [84)):
VWu(p,q) =X, (A, 1) =0 (4.103)

where the gradient VW, (p, q) is taken w.r.t. the first argument.
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4.8.2. SA Approach

Assume that one can obtain and use fresh samples ¢, ¢?, ... in online regime. This
approach is called Stochastic Approximation (SA). It implies that at each iteration one can
draw a fresh sample ¢" and compute the gradient w.r.t. p of function W, (p, ¢*) which is
p-strongly convex and M-Lipschitz continuous with M = O(y/n|C||s). Optimal methods

for this case are based on iterations of the following form

Pk+1 = Projsnu) (pk - Ukku(pk7 qk>)

where projg (;y(z) is a projection of z € R on S, (1) and the gradient VW, (p"*, ¢*) is
taken w.r.t. the first argument. One can show that restarted-SGD (R-SGD) from [88| that
using biased stochastic gradients (see also [52, 84, 89]) VW, (p, q) such that

IVW,(p, @) = YW, q)l2 < 6 (4.104)

for some 6 > 0 and for all p,q € S, (1) after N calls of this oracle produces such a point

p"V that with probability at least 1 — 3 the following inequalities hold:

W.(") = Wa(p,) = O ("HCH%]?(N/“) + 5) (4.105)

and, as a consequence of y-strong convexity of W, (p, ¢) for all ¢,

. n||Cl|%2 In(V/a) o
0"~ pil =0 <\/ P20 ;) . (4.106)

That is, to guarantee

PN —pilla<e (4.107)

with probability at least 1 — 3, R-SGD requires

9] PlIC VW,(p, q) oracle calls (4.108)
11222 PP

under additional assumption that § = O(ue?).

However, it is computationally hard problem to find VW, (p, ¢) with high-accuracy,
i.e. find VW, (p, q) satisfying (4.104) with § = O(ue?). Taking into account the relation
(4.103) we get that it is needed to solve the problem (4.101) with accuracy § = O(ue?) in
terms of the distance to the optimum. i.e. it is needed to find such X that |A — \*||, < 0

and set @Wu(p, q) = . Using variants of Sinkhorn algorithm [48, 90, 91| one can show
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[84] that R-SGD finds point p» such that (4.107) holds with probability at least 1 — 3 and

it requires

~ (P*lCI% . [Cllo ) ( NC|so 1C]loo n
O( pre? mm{eXp( I )( It " n(vu%“ YV ypdet ( )

arithmetical operations.

4.8.3. SAA Approach

Now let us assume that large enough collection of samples ¢', ..., ¢™ is available. Our
goal is to find such p € S,(1) that |[p—p; |l < & with high probability, i.e. e-approximation
of the population barycenter, via solving empirical barycenter problem (4.100). This
approach is called Stochastic Average Approximation (SAA). Since W, (p, ¢*) is u-strongly
convex and M-Lipschitz in p with M = O(y/n||C||s) for all i = 1,...,m we can conclude
that with probability > 1 — 3

W, (%) — W) 2 0 (nHCHioln(m) In (m/6) \/nllcllioln(l/ﬁ)) (4.110)

wm m

where we use that the diameter of S, (1) is O(1). Moreover, in [7] it was shown that one

can guarantee that with probability > 1 — /3

Ak * : Cgo
W) - Wit 2o ("1 ). (a.111)

Taking advantages of both inequalities we get that if

oo [ AlC I BICIRNY g (e (IO ICI
p2e2 7 2t |7 Bu2e? 12t " Buze?

then with probability at least 1 — g

(4.110),(4.111),(4.112)

- . 2 .
15, = Pilla < \/; WulD5) = Wu(p) < (4.113)

DN ™

Assuming that we have such p € S, (1) that with probability at least 1 — g the inequality
A Ak €
1P = Bulle < 5 (4.114)
holds, we apply the union bound and get that with probability > 1 —

19 = Pull2 < [1p = BLll2 + D), — pll2 < e (4.115)
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It remains to describe the approach that finds such p € S,,(1) that satisfies (4.115)
with probability at least 1 — 5. Recall that in this subsection we consider the following

problem

. ] — A '
Wulp) = —> Wulp,q') = min . (4.116)
=1

PESn(1)
For each summand W, (p, ¢') in the sum above we have the explicit formula (4.102) for
the dual function Wy  (A). Note that one can compute the gradient of Wy (A) via O(n?)
arithmetical operations. What is more, W;i,/i(A> has a finite-sum structure, so, one can
sample j-th component of ¢° with probability q;- and get stochastic gradient
VW5 (A J) = puV (ln (ql; ; exp (#))) (4.117)
which requires O(n) arithmetical operations to be computed.

We start with the simple situation. Assume that each measures ¢’ are stored on m
separate machines that form some network with Laplacian matrix W € R"™*™. For this
scenario we can apply the dual approach described in Section 4.6 and apply bounds from
Tables 4.5 and 4.6. If for all i = 1,...,m the i-th node computes the full gradient of dual

functions W , at each iteration then in order to find such a point p that with probability

at least 1 — g
WD) = Wa(Bp) < &, (4.118)
where W = W ® I,,, this approach requires 9] ( ”Hi—allgox(W» communication rounds

and O (n2'5, / ”CH_EOX(W)) arithmetical operations per node to find gradients VW7 (X).
If instead of full gradients workers use stochastic gradients VW7, (A, j) defined in (4.117)
and these stochastic gradients have light-tailed distribution, i.e. satisfy the condition
(4.90) with parameter ¢ > 0, then to guarantee (4.118) with probability > 1 — g
the aforementioned approach needs the same number of communications rounds and
O (n max{ ””S—g&’x(W), %MW)}) arithmetical operations per node to find
gradients VW;iH()\,j). Using p-strong convexity of W, (p,¢’) for all ¢ = 1,...,m and
taking & = Msﬁ we get that our approach finds such a point p that satisfies (4.114) with

probability at least 1 — g using
~ C 00 . .
@) (\/EH—H\/X(WO communication rounds (4.119)
pe

and

9] (n%% X(W)) (4.120)
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arithmetical operations per node to find gradients in the deterministic case and
2 2
6 (n max { \/ﬁlllLSHoo \/W, mO'uT;!fHooX(W)})

arithmetical operations per node to find stochastic gradients in the stochastic case. However,
the state-of-the-art theory of learning states (see (4.112)) that m should so large that in
the stochastic case the second term in the bound for arithmetical operations typically
dominates the first term and the dimensional dependence reduction from n?® in the
deterministic case to n'*® in the stochastic case is typically negligible in comparison with
how much %X(W) is larger than %\/W . That is, our theory says that it is
better to use full gradients in the particular example considered in this section (see also
Section 4.7). Therefore, further in the section we will assume that o2 = 0, i.e. workers use
full gradients of dual functions Wy; (A).

However, bounds (4.119)-(4.120) were obtained under very restrictive at the first
sight assumption that we have m workers and each worker stores only one measure which
is unrealistic. One can relax this assumption in the following way. Assume that we have
[ < m machines connected in a network with Laplacian matrix W and j-th machine stores
m; > 1 measures for j =1,..., [ and Z§:1 m; = m. Next, for j-th machine we introduce
m; virtual workers also connected in some network that j-th machine can emulate along
with communication between virtual workers and for every virtual worker we arrange one
measure, e.g. it can be implemented as an array-like data structure with some formal rules
for exchanging the data between cells that emulates communications. We also assume
that inside the machine we can set the preferable network for the virtual nodes in such a
way that each machine emulates communication between virtual nodes and computations
inside them fast enough. Let us denote the Laplacian matrix of the obtained network of m
virtual nodes as W. Then, our approach finds such a point p that satisfies (4.114) with
probability at least 1 — g using

9] <maXATcm,j) %\/X(W) (4.121)
G=1,...,0
N—————

Tcm,max
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time to perform communications and

_ Ollas
@) max Ty ; nmu x(W) (4.122)
J=1L5
Tcp,max

time for arithmetical operations per machine to find gradients where T¢,, ; is time needed
for j-th machine to emulate communication between corresponding virtual nodes at each
iteration and T, ; is time required by j-th machine to perform 1 arithmetical operation
for all corresponding virtual nodes in the gradients computation process at each iteration.
For example, if we have only one machine and network of virtual nodes forms a complete
graph than xy(W) = 1, but Tipmmax and Tep max can be large and to reduce the running
time one should use more powerful machine. In contrast, if we have m machines connected
in a star-graph than T, max and Top max Will be much smaller, but x (W) will be of order
m which is large. Therefore, it is very important to choose balanced architecture of the
network at least for virtual nodes per machine if it is possible. This question requires a

separate thorough study and lies out of scope of this paper.

4.8.4. SA vs SAA comparison

Recall that in SA approach we assume that it is possible to sample new measures in
online regime which means that the computational process is performed on one machine,
whereas in SAA approach we assume that large enough collection of measures is distributed
among the network of machines that form some computational network. In practice
measures from S,,(1) correspond to some images. As one can see from the complexity
bounds, both SA and SAA approaches require large number of samples to learn the
population barycenter defined in (4.99). If these samples are images, then they typically
cannot be stored in RAM of one computer. Therefore, it is natural to use distributed
systems to store the data.

Now let us compare complexity bounds for SA and SAA. We summarize them in
Table 4.7. When the communication is fast enough and p is small we typically have that
SAA approach significantly outperforms SA approach in terms of the complexity as well
even for communication architectures with big x(WW'). Therefore, for balanced architecture
one can expect that SAA approach will outperform SA even more.

To conclude, we state that population barycenter computation is a natural example
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Approach Complexity
A n3 2 : oo o o n
" 5 (—;tg!w min {exp (1) (1 110 (1)), /i })
arithmetical operations
SA,
the 2-d term 9] (”S'SHCH&> arithmetical operations
WM3.554 p
is smaller
9] (TcmmaX% X(W)) time to perform communications,
SAA O (Tcp,maxnz‘r’%\/ X(W)) time for arithmetical operations per machine,
~ . 2 2
where m = (n min {—'chllg?, —'/Li'g‘gs })
SAA,
W) = Q(m), ~
(W) (m) @) (%ﬁ!é‘;) communication rounds,
emnsx = O(1), O (U ) arithmetical operations per machine
_ o) T D p
cp,max — 3
VB>e

Table 4.7: Complexity bounds for SA and SAA approaches for computation of population
barycenter defined in (4.99) with accuracy e. The third row states the complexity bound
for SA approach when the second term under the minimum in (4.109) is dominated by
the first one, e.g. when p is small enough. The last row corresponds to the case when
Temmax = O(1), Tepmax = O(1), v/B > €, e.g. 8 =10.01 and € < 0.1, and the communication
network is star-like, which implies x (W) = Q(m)

when it is typically much more preferable to use distributed algorithms with dual oracle

instead of SA approach in terms of memory and complexity bounds.

4.9. Missing Proofs, Technical Lemmas and Auxiliary Results

4.9.1. Basic Facts

In this section we enumerate for convenience basic facts that we use many times in

our proofs.
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Fenchel-Young inequality. For all a,b € R” and A > 0

lalls  Allbllz

< 4.123

(0, 0)] < T2+ =5 (4.123)
Squared norm of the sum. For all a,b € R"

la + bl < 2[la]lz + 2[1b]l>- (4.124)

4.9.2. Useful Facts about Duality

This section contains several useful results that we apply in our analysis.

Lemma 4.9.1 ([71]). Let y* be the solution of (4.22) with the smallest {y-norm R, &

lly*|l2. Then ,
2 HVf(x*)Hz

Lemma 4.9.2. Consider the function f(x) defined on a closed conver set ) C R"
and linear operator A such that KerA # {0} and its dual function ¥ (y) defined as

b(y) = maxeeq {{y, Ax) — f(x)}. Then
V() = —f(@") = (¥, AT) — f(2) VieQ. (4.126)
Proof. We have
Uy") = (v, Ax(ATy") = f (2(ATy).
From Demyanov—Danskin theorem [63] we have that Vi(y) = Az(ATy) which implies
0= Vu(y*) = Az(ATy").

Using this we get

—F@ATY) = vy) = max { (' Az)~ (@)}

Finally,

Py") = —f(@") = max {(y*, Azx) — f(2)} = (", AZ) — f(2).

Az=0,2€Q
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4.9.3. Auxiliary Results

In this section, we present the results from other papers that we rely on in our proofs.

Lemma 4.9.3 (Lemma 2 from [92|). For random vector £ € R™ following statements are

equivalent up to absolute constant difference in o.
1. Tails: P {||¢]ls > 7} < 2exp (--) vy > 0.
2. Moments: (E [57’])% < 0./p for any positive integer p.
3. Super-exponential moment: E [exp <”§H2ﬂ < exp(1).

Lemma 4.9.4 (Corollary 8 from [92]). Let {&}_, be a sequence of random vectors with
values i R™ such that for k=1,..., N and for all v >0

2

Bl e 6l =0 Bl 27 6o il Soxp (=50, ) amost surcy
k

where o2 belongs to the filtration o(&y, ..., &—1) for allk = 1,...,N. Let Sy = Z .
Then there exists an absolute constant Cy such that for any fixred 8 > 0 and B > b > 0

with probability at least 1 — (3

N N
2 B
either Zaz >B or ||Syl2<Ch maX{Zaz,b} (ln% +1Inln 3)
k=1

k=1

Lemma 4.9.5 (corollary of Theorem 2.1, item (ii) from [93]). Let {&. 1, be a sequence

of random vectors with values in R™ such that
E[& | &, & -1] =0 almost surely, k=1,... N

N
and let Sy = > &. Assume that the sequence {&. )5, satisfy “light-tail” assumption:
k=1

k

where a1, ...,0x are some positive numbers. Then for all v > 0

P 1Swll > (V2+v2y) (4.127)
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4.9.4. Missing Proofs from Section 4.3
Proof of Lemma 4.3.1
Since x* is a minimizer of g(z) on R", we have Vg(x*) = 0 and [1]
IVg()ll2 < 2L(g(2) — g(z7))-

Next, using this, Cauchy-Schwarz inequality and definition of & we get

(Vg(2), & = 2) < |Vg(@)llz - |& = zll2 < v/2L(9(2) — g(2"))l|F — all2 < V2LI|12 — o,

that concludes the proof.

Proof of Lemma 4.3.2

First of all, we prove by induction that zF*! 2% 2% Bg, (z*) for Kk =0,1,.... For
k = 0 this is true since 2° = 20, Ry = Ry = [|2° — 2*| and &' = (Aoa"+ar120)/a, = 20,
since Ay = ap = 0 and A; = oy. Next, assume that zF+1 2% 2% € Bék(x*) for some
k > 0. By definition of Ry, and R, we have zFt! ¢ Bpg,, (z%) C B§k+1(:1:*). Due
to the assumption that z* € Bpg,(z*) C Bg,,,(z*) C Bg, ., (¢7) and convexity of the

k+1
B ;

= (r*) we get that z**! € Bz (z*) since it is a convex combination of z* and 2z
Rk+1 Rk+1

i.e. 21 = (Axa*+araz) /4, Similarly, 7872 lies in the ball Bz~ (z*) since it is a convex
+ ) RkJrl

combination of z*t! and 2Ft1 e, #FTl = (At tarnzt)/y L That is, we proved that

Tkt ok ok e B, (z7) for all non-negative integers k.

k+1

Since 2"t = argming’gﬁgn gri1(z) and gryq(2) is 1-strongly convex and (oyy1Ly +

1)-smooth we can apply Lemma 4.3.1 and get

(Vg (25F1), 25 —a) < \/2(ak+1Lh + 13k — 25 [ — 2o (4.128)
From 1-strong convexity of gy1(z) we have
1254 = 2D < 2(grgr (2M1) = graa (B51)) < 28|12 — 215,
Together with triangle inequality it implies that
le# = 41l < 12k = 2%l + fla” = o+ |4 = 24y < 2R + VI — 4,
and, after rearranging the terms,

. 2 o
[P | P —— - A (4.129)
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Applying inequality above and (4.225) for the r.h.s. of (4.128) we obtain
(=2 e VE) + arn VR, 24 —2%) <oVE+2RE,,,  (4.130)

where we used

5 2(ag1 Ly +1)6 (4-2<25) 5 2((k+2)Lp+2(k+2)L)0
(1202 -

(Lp+2L)§ ——
2(1 — V26)2L = 2\/(1—\/%)% bz

and § & 2 % Using this we get
a1 (Vf(2 k:+1) ok ) = ak+1<Vf(jk+1)7 Lk Zk+1> i Oé]g+1<Vf(fi'k+1), Skl _ )

(4.130)
< ak+1<Vf(i‘k+l),Zk . Zk+1> + <Zk+1 o Zk,x* o Zk+1>

gy (VA(ZFY), o — 2FY 4 0vk + 2R2, .
One can check via direct calculations that
(0,6) = glla+ b3~ glall3 — SIbl3, Vabe R
From the convexity of h
(VA(1), 2 — 1) < h(a*) — h(z4H).

Combining previous three inequalities we obtain

k

e (VF(EF), 28 — %) < ap(VF@ER), 28 = M) — PG+

Sllz" = —"[l3

2 2
1 N ~
—§||zkJrl — 2|5 + apgr (R(z*) — R(Z*TY) + 6VE + 2R} 4.

L

By definition of 2**! and #**!
k k+1 k k
k+1 Apa® 4 a2t Apz® 4 a2 Okt1 [ ga1 k
T = = 2 — 2F)
Agta Apa Akt

- k41
R R (R zk) .
Ak
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Together with the previous inequality and Ayyq = 2Loj 4, it implies

Oék+1<vf( k+1) k_$*> § Ak+1<vf( k—i—l) ~k+1 _xk—i-l)

A2 . 1 . 1
e [ | LAl
iy
tagg (h(z*) — h(ZFY) + 0vVE + 2RE,
- 2L .
S e B T )
1 L, 1 .
T A= sl
+Qt1 (h(m*) h(z kH)) + 0V + Rk+1
1 * *
< A (FET) = FET) + 511 =l = 12T =S
taggr (h(z*) — h(ZFN) + 0vVE + 2RY, (4.131)
From the convexity of f we get
(V@E),ah =3 < fd®) — f(@*). (4.132)
By definition of #**! we have
Qg1 (ikﬂ — zk) Ay (x — a:kH) (4.133)
Putting all together, we get
s (V (@5, # —a) = i (V (), 25— 2F)
+Oék+1<Vf( k+1) Zk _ x*>
(4.133) .
o <Vf( k+1) k :L.kJrl)
Fapn (V(E), 25 = a%)
(4.131),(4.132) . e
A (f(*) = f@")
+Ap (FEH) = f™)
1 . 1 «
3l = 2 = S h — a2

+ags (h(x*) — h(ZF)) + oVk + Rk+1.
Rearranging the terms and using Ay,1 = Ax + ai1, we obtain

At @) = Af (@) < ann (FE) + (VFE), 0 = 59)) 4 Z 12— o7

1 . ~
_§sz+1 — 2|3+ apr (h(a®) = R(Z"H) + 0VE + 2R},
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and after summing these inequalities for £ = 0,..., N — 1 and applying convexity of f, i.e.

inequality (Vf(zF+1), " — 2FH1) < f(2*) — f(2FL), we get

N-1
1 1
Anf(V) < §R(2) . §R?\/ + Anf(2") + Axh(z") — apah(z") + g Z Vi + Rk+17
k=0
where we used that Ay = 0. Finally, convexity of h and definition of z**!, i.e. 2¥+1 =

(Akl‘k+ak+1zk+1)/Ak+17 implies
ANh(.I'N) S AN_1h<I'N_1) + O./Nh(ZN).

Applying this inequality for Ay_1h(z¥71), Axy_oh(z¥72),..., Ajh(2!) in a sequence we

get
N-1 N-1
Anh(aV) < Aoh(2®) + ) arph(Z*) = ) apah (),
k=0 k=0
which implies
N * 1 2 1 -
Ay (F(zV) = F(z*)) < oL 5 Z F2R?,

that finishes the proof.

Proof of Theorem 4.3.1

Lemma 4.3.2 implies that

-1

R} +0) vVE+2R,, (4.134)

k=0

A (F(a!) = F(z*)) < SR% -

1
2

DO | —

for I =1,2,...,N. Since F(z!) > F(z*) for each [ and § <

W we get the recurrence

-1
20 e
R?SRﬁerE (k+2)°R2,,, Vi=1,. .. N.
k=0

Note that the r.h.s. of the previous inequality is non-decreasing function of . Let us define

[ as the largest integer such that [ <1and Ei = R;. Then R; = ﬁi = éf—&-l =...= ﬁl and,

as a consequence,

-~ oc -
R} < R§+m2(k+2)1/23§+1, Vvi=1,...,N. (4.135)
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Using Lemma 4.9.12 we get that El <2R:foralll=1,...,N. We plug this inequality

together with § < (N+C1)3/2 < 4(Ni1)3/2 and R% > 0 in (4.134) and get

N * 1 2 4R% — 1/2
AVFE") = F@) < 3R+ gt > (k+2)
k=0
3
< §R87

which concludes the proof.

Proof of Corollary 4.3.1

The first part of the corollary follows from (4.18) and Lemma 4.9.9. Relation (4.20)

follows from the definition of & and & < W Indeed, since § ot 2, /% and C' < }1

we get that
C*(1 —/20)*L _ L _1 L
= 4(Ly +2L)(N + 1) = 64(Ly, + 2L)N3 ~ 64 (Ly + L)N3"

4.9.5. Missing Proofs from Section 4.4
Proof of Theorem 4.4.1
By definition of F

R? R?
F(2™V) — min F — NY Y AN N2 — mi “Y Y Agll?
(™) i (z) f(@™) + 8 [ Az I3 mxelg{f(x)Jr 5 | 56||2}

N i N2 i 2

> —1A — mi —Z1A

> S A - min { )+ T2l
2

R
Ny : y N2
f($ ) Axr:I%)l,archQf(x> € ||Al' ||2’

which implies
R? (4.26)
f@™) = f@) + A5 < e (4.136)

where z* is an arbitrary solution of (4.21). Taking inequality || Az |2 > 0 into account we

get the first part of (4.27). From Cauchy-Schwarz inequality we obtain

(

4126
—Ry[[ Az 2 < —[ly"[l2 - [A=" )2 < (v, Aa™) <

' Fa) - f).

Together with (4.136) it gives us quadratic inequality on R, || Az™ ||2:

R2
—R,[| Az |2 + ?yHAxNH% <e.

Therefore, R,||Az]|2 should be less then the greatest root of the corresponding quadratic

equation, i.e. R,[Az" |, < 1Y% < 2¢.
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Proof of Theorem 4.4.2

Note that h(z) is convex and Lj-smooth in R™ with Lj, = 285 max(ATA)/c since Vh(x) =

QR:’Q/ AT Aac/s and

2R? 2R?
IVA(z) = Vh()ls = —HA Al —y)lls < —*[AT A2 - e =y,

2R\, (AT A)

< [l = yll2
9

for all x,y € R". We can apply STM with inexact proximal step (STP_IPS) which is
presented in Section 4.3 as Algorithm 2 to solve problem (4.25). Corollary 4.3.1 (see
Section 4.3 in the Appendix; see also the text after the corollary) states that in order to
get such v that satisfy (4.26) we should run STP_IPS for N = O <\/ﬁ2/s> iterations
with 6 = O (7*/((La+L)VIR?), where R = [|z° — 27|, 2* is the closest to 2° minimizer of
F and ¢ is such that for all k = 0,..., N — 1 the auxiliary problem gj.1(z) — min,cgn

k 2’k+1||2

for finding 2% is solved with accuracy gp,1(2*™1) — gri1(251) < 0|2 5 where

gr+1(2) is defined as (see also (4.16))

gm(z):éuz’f—zn%mkﬂ(f@k“) F(THE), 2 = 3 + h(2)

for k=0,1,... and 2*"! = argmin, . gry1(2). That is, if the auxiliary problem is solved
accurate enough at each iteration, then number of iterations, i.e. number of calculations
V f(z), corresponds to the optimal bound presented in Table 4.1.

However, in order to solve the auxiliary problem min,cgn gi+1(2) one should run
another optimization method as a subroutine, e.g. STM. Note that ImA = ImAT = (KerA)"
and if the starting point for this problem is chosen as z* — a1V f(Z**1) then the iterates
of STM applied to solve problem min,cgn gr1(2) lie in 28 — o VF(@41) + (KerA) " since
Vgii1(2) € Im(A) for all z € 2% — oy Vf (1) + (KerA) ™ (one can prove it using simple
induction, see Theorem 4.5.7 for the details of the proof of the similar result). Therefore, the
auxiliary problem can be considered as a minimization of (1 + 20x+185A 5, (AT A)/c)-strongly
convex on 2¥ — v V (25 4 (KerA) ™ and (142004183 Mmax(AT 4)/2)-smooth on R” function.
Then, one can estimate the overall complexity of the auxiliary problem using the condition

number of gy 1(2) on 2 — ap  Vf(ZFH1) + (KerA) '

1+ 2ak+1R2)\maX AT4) /5 max(ATA) def T
1+ 200 REALL(ATA) e = \E (ATA) x(A°A). (4.137)

min
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Assume that 281 is such that gpyq(2511) — gea1 (3541 < 8|28 — gy V. (ZFHD) — 2541,
Then
|25 = e VFET) = 25, < 1P = A+ e [V FE |2
<12 =2+ e IVFEY) = V@) [lo + ara [V ()
< 2P =l e LIF = 2 lo + arnt [V ()
- - P 2R g,

and using the similar steps as in the proof of inequality (4.129) we get

w5
2+ )R“ﬂ+w+QMVﬂfwz
1- V2% 2L (1-V2)

Combining previous two inequalities we conclude that

k 2k+1’|2 <

Iz

2+ —(’“2)\/5 k+2

—
1—\/5 2

k+2

1
—_ ——= | IV f(z")]]2.
+2L(}+1_¢5>nf<m

It means that to achieve gp,1(2*™) — gpy1 (¥ < 5}Nﬁz+1 with § = O (63/2/((Lh+L)ﬁR3))

2% — e VF(@E) = 2511, Ri11

one can run STM to solve the auxiliary problem gjy1(2z) — min,egn for 7' iterations with

the starting point 2% — agy V. f(ZF+1) where

T = 0( X(ATA)II]<

L, — 1+ 206k+1R Amax (AT A) (4.19) :(4.225)0 (RzRAmaXFATA))
€ VL2

Ly L (Bipmax(ATA)Je 1 L)R3 (R? + IV £@9)I3/12) ))
%/ ’

or, equivalently,

max (AT A)L(BAmax(ATA) /o + L)R2R* (R? + IV/(9)13/12
T O(/—ATAln< )L( e+ L)R;R* ( /L))>’

o4
4.9.6. Missing Lemmas and Proofs from Section 4.5.1
Lemmas

The following lemma is rather technical and provides useful inequalities that show

how biasedness of @\Il(y, % ) interacts with convexity and L,-smoothness of .
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Lemma 4.9.6. Assume that function ¢ (y) is convex and Ly-smooth on R™. Then for all
x,y € R"”

Uy) = Y@+ (B [V y—x) —dly -zl (4.138)

60 < o)+ (BT e0] o)+ Loy —alf+ 5. (4139)

Proof. From the convexity of ¢ we have
b@) - vly) < (Vel)a—y) = (B [Ve(e)]| 2 —y) + (Vo) — B V(€] o - y)
< (E[VU@e].a—y)+ |Vo@) —E [V en)]| -l -yl
(4.42)

< (B|V¥@e)| 2—y)+lle -yl
which proves the inequality (4.138). Applying L-smoothness of v (x) we get
W) < 9la)+{V)y )+ 5y~ ol
= () + (B[] .y — o)+ (Vo) ~ B [V0(.€9)] .y — ) + Lyl

Due to Fenchel-Young inequality (a,b) < 5[|al|3 + 3][b]|3, a,b € R", A > 0,

- 1 . 2 T
(Vo) - B[] y—2) < 5|V -E[uee)| + Sy -
(4é2) 52 L )
S ot §||y — z|3.
Combining these two inequalities we get (4.139). O
Next, we will use the following notation: Ei[-] = Ege+1 [] which denotes conditional

mathematical expectation with respect to all randomness that comes from &%,

Lemma 4.9.7 (see also Theorem 1 from [54]). For each iteration of Algorithm 3 we have

1 1
Avpl™) < o= 03— Hle—
N—-1 ~
+ i1 (w(glﬁrl) 4 <V\I]<gk+1,£k+1), ¥ gk+1>>
k=0
N-1 ~ _
£ A (VU ) B [V )|yt - )
k=0
N-1 Ak 9
1 d ~ ad ~
+ 2;{ HEk [V\I](yk+1, £k+1):| . vqj(yk-‘rl’ Ek-‘rl)Hz
k=0
N-1 N-1 A
+6 Y Aellyt = i 2+ 07> =, (4.140)
k=0 k=0 L

for arbitrary z € R".
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Proof. The proof of this lemma follows a similar way as in the proof of Theorem 1 from

[54]. We can rewrite the update rule for z* in the equivalent way:

_ - . 1
Skl argﬁnn {ak+1<V\Il(yk+17£k+l)7 z — yk+1> + 5”2 — z’“||§} .
z€R™

From the optimality condition we have that for all z € R"
(M — 2P o VI(GFHL R 2 — 2 > 0. (4.141)
Using this we get

ak+1<6\y(gk+l’ €k+1)a Zk - Z>

= e (VO (1, 6541, 2 — 2500) gy (VIR €9, 24— 2)
(4.141) ~
< g (VU (GEFL €L gk kY R ok kL,

One can check via direct calculations that
1 s 1 o L0 n
(0.8) < sllo+ 03— Sl - SI03, ¥ abeR

Combining previous two inequalities we obtain

Sy S 1
ak+1<vqj(yk+17£k+l)7 Zk - Z> S ak+1<v\lj(yk+17 £k+1)7 Zk - Zk+1> - §||zk - Zk+1||g
1 1
#3128 = 23 = SllH - )
By definition of y**! and g**!
yk+1 _ Ay + 041c+1»2'kJrl _ Ay + g 2° Ot Skl _ zk)
Ay A1 Apa

— gl Qk+1 (Zk+1 _ Zk) ‘

Apt
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Together with previous inequality, it implies

ak+1<@\p(gkz+1’ £k+1)’ Zlc o Z> S Ak—i—l <@\D(~k+1’ €k+1>’ gk-ﬁ-l . yk+1>
Ab

9.2
2 Q1

S Ak—i—l ((@\Iijk—i—l? £k+1), gk-ﬁ-l . ykz-i-l)

oL
—7\13/""+1 — y’““H%)

i 1
15 =y 4 Sl = 2015 = Sl = 2

L
2

1
o 2 - k+1
A3 - 5l

Ak+1<<Ek [V‘I’( . Ek“)} VAR yk+1>

~k+1 k+1
|| 12

+ A (VU € — B [W( e | -y

— 23

1 1
ol = 2 - Sl - 2B,

From Fenchel-Young inequality (a,b) < 5-||al|3 4 3[/b]|3, a,b € R", A > 0, we have

<V\IJ( F et _ R, [@\If(gk+17€k+1)] g y’“+1>

~ 2 -
‘V\If JEH €5 L) B, [V\I;<gk+17£k+1)] H2 n éugk—&-l — 2,

< L
Y

Using this, we get

ak+1<@\y(gk+17€k+1)’ Sk 2) < Mo ( <Ek [V\If( E+1 £k+1)} ’gk+1 _ yk+1>

L. .
—§|Iy’“+1 — y’““ll%)

Ak+1 qu] ~k+1 €k+1) E, [@\Ij(gkﬂ’ékﬂ)} Hz
1
+§||z — 2l = Sl = 2
(4.139) . . 52
< A (V@) =Yy )+f
1 k 2 1 k+1 2 4 142
gl = 2l = S lA — 2 (1142)
A

T35 |vw e - B W\If(@’““»ﬁ“”wz'
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With Lemma 4.9.6 in hand, we have

(V\Il( k+1 £k+1)’yk _ gk+1> _ <Ek [@\Ij(gk+l7£k+1):| Ly — gk+1>
<V\I/( kL ghtly [V\I/( k1 €k+1)] o _,gk+1>
(4.138) k ~k+1 k ~ k41
< W) =@ +olly" =7 e (4.143)

<V\IJ( KL ghtly [V\If( ~k+1 €k+1)] o _gk+1>‘

~k+1

By definition of %" we have

a1 (T = 2%) = A (v = 9. (4.144)
Putting all together, we get

ak+1<@\y(gk+1’ £k+1)’ gk+1 . Z>
V\D(gk—i-l €k+1) gk—i—l . Zk> + i1 <@\Ij<gk+1’£k+l)’ Zk . Z>
4144) Ay <V\P(yk+1 £k+1) k gk+1> + aHl(@\Ij@kH,EkH),Zk _ z)
(4.142),(4.143) . . P
Ap (V) = 0" + blly* — 75J2)
+Ak <@\Ij<gk+1’ €k+1) o Ek [@m(gk—l—l’ €k+1)] 7yk _ gk+1>
A (BEH) = ) + 8 ) + 3 - 2l — ) - 3

Ak+1

= 04k+1< v

V‘IJ( ~fd-1 £k+1) E, [@\Ij(?jkﬁ-l’gkﬁ-l)]

) .

Rearranging the terms and using Ay, = A + a1, we obtain

Ak+1¢(yk+1> - Ak@/)(yk) < Qg1 (¢(yk ) <V‘I’( Thas €k+1)az - ?jk+1>> + 1||2k - ZH%

1 Ajy16?
— I = 2l Al — 72 + =

_’_Akj-l

@qj(glwrl’ €k+1) _E, [@qj(@k+1’£k+l)} 2

2

YA, <@\I,(gk+17€k+1) _E, [@qj(ng’ €k+1)} - gk+1> ,
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and after summing these inequalities for K =0,..., N — 1 we get
N-1

Avil™) < gllz= 2 - gl = 2B X e (B + (TR €44, 2 - )
k=0

N-1
I Z A, <@\Ij@k+17€k+1) [V\IJ( k+1 €k+1)} = gk+1>
k=0
N-1
A1
+,; 2L
= A

N—-1
0> Ayt =g+ 8% Y =
k=0

k=0
where we use that Ay = 0. O

~ ~ 2
Ek [vm(gk+l’£k+l)i| . vw(gk+l’£k+l) ,

The following lemma plays the central role in our analysis and it serves as the key to
prove that the iterates of SPDSTM lie in the ball of radius R, up to some polylogarithmic
factor of N.

Lemma 4.9.8 (see also Lemma 7 from [46]). Let the sequences of non-negative numbers
{ax} k>0, random non-negative variables { Ry }x>0 and random vectors {n*}i>o, {a*}1>0

satisfy inequality

-1 -1
—Rz < A—l—h(SZakHRk—i—uZakH n", a* +CZO%+1H77 3, (4.145)

k=0 k=0 k=0
foralll =1,...,N, where h,,u and c are some non-negative constants. Assume that
for each k > 1 vector a* is a function of n°, ..., 0%, a® is a deterministic vector, u > 1,

sequence of random vectors {n*}i>o satisfy Vk >0

k|2
E [nk Y. .. ,nk_l} =0, E {exp (”22”2) n°, ... ,nk_l} < exp(1), (4.146)
k

gyt < gy = D(k+2), 07 < ﬁ for some D,C >0, >0, 8 € (0,1) and sequence

Op41ln

of random variables { Ry Yy=o is such that ||a*||y < dRy with some positive deterministic
constant d > 1 and R), = maX{}N%k 1, Ry} for all k > 1, Ry = RO, Ry depends only on
Mo, -..,n" and also assume that In <ﬁ> > 3. If additionally < Hhgy S and o < ﬁf‘f 5, then

with probability at least 1 — 23 the inequalities
R, < JR, (4.147)

and

uz 1 (n®, ¥y + CZ g lnfls < (24CCDH + hGDJ
k=0 k=0

+udClx/C’DHJg(N)>R3 (4.148)
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hold for all Il = 1,..., N simultaneously, where C is some positive constant, g(N) =

ln(%)—l-lnln(%)
n(5)
B = 2d’CDHR}(2A+ (14 ud)Ri + 48CDHR] (2¢ + ud) + h*G*RiD) (2(1 + ud))",

b=oia dzR2 and

J = max {1,udC’1\/CDHg(N) + hGD

2 24
+\/ (udClx/CDHg(N) + hGD) + 55+ 48cC’DH}.

0

Proof. We start with applying Cauchy-Schwarz inequality to the second and the third
terms in the right-hand side of (4.145):

-1 -1 -1

1 N _
5312 < A4S oppRe+ud Y apa|nfllaRe+ > ady Intl3,

k=0 k=0 k=0
h2 2 121 ud+1 - ~
< AIEY ok Y (c+5 )Zamnn 3. (4149)
k=0

The idea of the proof is as following: estimate R%, roughly, then apply Lemma 4.9.4
in order to estimate second term in the last row of (4.145) and after that use the obtained
recurrence to estimate right-hand side of (4.145).

Using Lemma 4.9.5 we get that with probability at least 1 — %

¥l < V2{1+ s o, <va (14 f3m Y VCe
g 3 = -
Qg1 In (g)
1 3 3
+ ) =— | v2Ce <2,/ =—Vace, (4.150)
m Okt Qg1

where in the last inequality we use In % > 3. Using union bound and a1 < a1 = D(k+2)

we get that with probability > 1 — 3 the inequality

1, h252D? X ud—i— - ud <
SR < A+ — I;(k; +2)? ;R +24Ce e+ = i1

252 )2 -1 -
< A+h52 I(1+1)% + “d+ ZR,Z+24CD5(c+ )Z(k+2)
k=0
h2§%D? ud+ 1 ud
< A+ I(1+1)* Z +12CDe (c+ o )11 +3)

k=0
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holds for all [ =1,..., N simultaneously. Note that the last row in the previous inequality

is non-decreasing function of /. If we define [ as the largest integer such that [ <1and

R; = R;, we will get that R; = R = Rl+1 = ... = ﬁl and, as a consequence, with
probability > 1 — 3

ud

|~ h28°D2 . - d+150 - .
2 wr ZR§+120D5(6+7>Z(1+3)

SH < A+ I(0+1)%+

h252 D? d
< AT 1) 1

ud
ZR,CJr 12C'De (c+ : ) I(1+3), VYi=1,...,N.
k=0
Therefore, we have that with probability > 1 —

-1
R} < 2A+ (ud+1)Y  R}+12CDe (2c + ud) (1 + 3) + h*6*D*I(I + 1)*

k=0

-2
< 242+ ud) + (1 +ud + (1 + ud)® Z
N—— -~ =0
<2(14ud) <2(14ud)?
+12CDe(2¢ +ud) (I(1 4+ 3) + (1 + ud)(I — 1)(I + 2))
§2(1+;g)l(l+3)
+h26°D* (11 +1)* + (1 + ud) (Il — 1)I?)

<2(1+ud)l(l+1)2

1-2

< 2(1 + ud) <2A +(1+ud)) R? +12CDe (2¢ + ud) I(1 + 3) + h*62D?I(1 + 1)2> ,
k=0

forall [ =1,..., N. Unrolling the recurrence we get that with probability > 1 —

R < (2A + (1 + ud)R2 + 120 De (2¢ + ud) (I + 3) + K262 D2(1 + 1)2) (2(1 + ud))’,

forall l =1,..., N. We emphasize that it is very rough estimate, but we show next that
such a bound does not spoil the final result too much. It implies that with probability
>1-p

1

R <l <2A + (14 ud)R2 + 12CDe (2¢ + ud) I(1 + 3) + h252DI(1 + 1)2> (2(1 + ud)),

B
Il

’ (4.151)

for all I = 1,...,N. Next we apply delicate result from [92] which is presented in

Section 4.9.3 as Lemma 4.9.4. We consider random variables ¥ = &, (n", a*). Note

that B [¢F | €0, & =ap i (E[n" [ 1% ...,n" '] ,a") =0 and
Sk 2 - o ||77k||2d2§2 -
exp Lﬂ ETIN exp | =D )
750 PR T30 PRy

U )
= E {eXp (@) A 1] < exp(1)

O

E

IN

E
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due to Cauchy-Schwarz inequality and assumptions of the lemma. If we denote 67 =

ai&inQEi and apply Lemma 4.9.4 with
B =2d°CDHR} (2A + (1 + ud)R§ + 48CDHR; (2¢ + ud) + >GR3 D?) (2(1 + ud))™

and b = 62, we get that for all [ = 1,..., N with probability > 1 — £

i N B
k 2 (In = nln | —
Zé” < kzzo k(l (5)“ 1 (b)>

with some constant C'; > 0 which does not depend on B or b. Using union bound we

-1 1-1 N B
k A
kgzof < kgzo o7 <ln (E) +Inln (€)>

and it holds for all [ = 1,..., N simultaneously. Note that with probability at least 1 — (8

-1

eltherZak > B or
k=0

obtain that with probability > 1 —

either Z 67> Bor

-1

-1

~ Ce ~
~2 2 2~2 132 2 ~
o, = d E 0 M < d E LN N@kHRk
0 = k=0 " B

>
Il

d?CDHRg —  PCDHE; N+1 — ~
k’ 2 D2 0 . 2
Z R 3N N ;R’f

(4151) Q2CDH R
< %1@(1 + ud))’ <2A + (1+ ud)fig +12CDe (2¢ + ud) (I +3)
+h202D2(1 + 1)2>

< d°CDHR} (2A+ (1+ ud)R} + 48CDHR} (2¢ + ud) + h*G*R3D?) (2(1 + ud))™
B

2

for all { = 1,..., N simultaneously. Using union bound again we get that with probability

> 1 — 20 the inequality
— N B
<C ;&g (m (5) +Inln (3)) (4.152)

holds for all [ = 1,..., N simultaneously.

Note that we also proved that (4.150) is in the same event together with (4.152)
and holds with probability > 1 — 24. Putting all together in (4.145), we get that with
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probability at least 1 — 2/ the inequality

1 ~. (4.145) - —
5Rl2 < A+h5kz;ak+1Rk+ukz%ak+1 77 a* +Ckz;ak+1||77 ||2

(4.152) =1 ~ =t N B —
< A+hd kz:; g1 Ry +uCh Z 0% (ln (E) + Inln (3)) + 24cCe kz:; lgr1

k=0

holds for all [ = 1,..., N simultaneously. For brevity, we introduce new notation: g(N) =
ln(ﬁ)Jrlnln( ) ~ 1 Ce

BEGEN T (3
definition 67 = 02a?, ,d®R? we obtain that with probability at least 1 — 23 the inequality

(neglecting constant factor). Using our assumption o7 < — ) and

-1 -1 -1

§Rl < A+h5kz_ooak+1Rk+u;0ak+1<n’“,a’“>+ckz_004i+1Hn’“H§

- -1
h D
< G RO Z (k +2) Ry + udCy+/Ceg(N Z%HR +24cCe ) G
0 k=0
hGDR —
< 022k+2Rk+udC'1\/W
k=0
-1
+24cCDe Y (k+2)
k=0
< A+ ucopfilltl) | hGDR, li k+2)R
= N2 2 (N +1)? =
H 2 -1 ~
N N | e
k=0
A hGDRy < ~
< (R2 + 24cCDH) R+ EESIE 2% 2) Ry
+ud(j?\;Ro CDH(N (4.153)

holds for all [ = 1,..., N simultaneously. Next we apply Lemma 4.9.11 with A = % +

0
24cCDH, B = udC1\/CDHg(N), D = hGD, ry, = Ry and get that with probability at
least 1 — 20 inequality

R < JR,
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holds for all [ = 1,..., N simultaneously with

J = max {1,udC’1\/C’DHg(N) + hGD

24
+\/ (ud(Jl\/CDHg(N) + hGD) ot 48cCDH}

It implies that with probability at least 1 — 23 the inequality

-1 -1 -1

A+ hd Z e Ry + u Z appr (n*, d*) + CZ a3
k=0 k=0 k=0

) -1
< (& +24cCDH) By + 162408 z (k +2) + “OB  /ODHGN), | 3 (k +2)J

(N+1)2
k=0

<A+ (24cC’DH +hGD.J + udCy\/CDHJg(N) /@) R’

<A+ <24CC’DH + hGDJ + udC, CDHJg(N)) R?

holds for all [ = 1,..., N simultaneously. O]

Proof of Theorem 4.5.1

For the convenience we put here the extended statement of the theorem.

Theorem 4.9.1. Assume that f is p-strongly convex and ||V f(z*)||l = My. Let € > 0 be

a desired accuracy. Next, assume that f is Lg-Lipschitz continuous on the ball Bg,(0) with

_ / T
Ry =0 <maX{A 1y Amax(4 A>Ry,Rx}) )
N %

V Amax (ATA)’
where R, is such that ||y*|l2 < Ry, y* is the solution of the dual problem (4.22), and

R, = ||z(ATy")||2. Assume that at iteration k of Algorithm 8 batch size is chosen according

25, In(N/g ~
oZay In( /)}7 where &, = k) <o < HLR? 0<6§< GLRg_

Ce 2L 7 - N2 (N+1)2
and N > 1 for some numeric constant H > 0, G > 0 and C > 0. Then with probability

>1-4p

to the formula ), > max {1,

R G(6.] + 4
VM) + I + 2R, 45 < 3 (8\/HCQ 424 120H + %

LLs (v96C-H +G) G2
2Ry v/ Amax(ATA)

+CM/CHJ9 +/96C, H +G) (4.154)
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. 1+,/ln% o )
where B € (0,1/4) is such that ——— < 2, Cy, C, Cy are some positive numeric constants,

In(&¥)+Inln(E m
g(N) = n(ﬁl)n—i(_]:\:[)n(b)7

27 P2
B=CHR? (QA +2R2 + T2CHR? + oG 2L RO) 4N,

b= olaiR? and

2
Hg(N Hg(N 2A
0

This means that after N = O < %X(ATA)> iterations where x(ATA) = %, the

min

outputs T and y» of Algorithm 3 satisfy the following condition

F@Y) = @) < f@Y) + oY) <e, [ATV]2 < R% (4.155)

with probability at least 1 — 4/3. What is more, to guarantee (4.155) with probability at least
1 — 48 Algorithm 3 requires

9) (max{%g]yf x(ATA)In (% %X(ATA)> ; %X(ATA)}) (4.156)

calls of the biased stochastic oracle Vii(y, €), i.e. #(y,&).
Proof. Lemma 4.9.7 states that
A w( N) < 1||~_ 02_1 ~ N2
W) < L P -

N-1
+ Z Qi1 (w@kﬂ) + <@\I,@k+1’ £k+1>’ j— g]k+1>)
k=0

N-1

i Z A, <@\Ij<gk+17€k+1) _E, [@\Ij(gk+1,€k+1)] - gk+1>
k=0
+Nz:1 Apmr HE [@\I,(%H €k+1)] _ @‘11<~k+1 €k+1)H2
L 2]3 k Yy ) Yy ) 9
N-1 N1y
+6 Ayt = 7 2+ 0% ’jijl, (4.157)
k=0 k=0

k+1

for arbitrary y. By definition of " we have

e (T = 2F) = A (v - 7). (4.158)
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Using this, we add and subtract S~V "y <Ek [Wr(gkﬂ, g’““)} - gk+1> in (4.157),
and obtain the following inequality by choosing § = §* — the minimizer of ¥ (y):

Lo

Sy =215 - Hy —z

2
£ e (50 + (B [T 1] 5 )
k=0

N-1
i kZ:O Qpr1 <V‘Ij(yk+1’£k+1) [V\D( k+1 €k+1)] ’ak>

Anp(yY) < M3

N-1
- - 2
+ Z az+1 V\I/<gk+1, £k+1) . Ek [vqj(gk—kl, €k+1):| H
2
k=0
N-1 N-1 A
+0 Z ap|[g = 2 + 82 Z kgla (4.159)
k=0 k=0

where a* = 7* — 2*. From (4.138) we have

Z . < <Ek; [V\If( ~Et1 £k+1)} - gk+1>>

(4.138) N—1
< ’;0 aper (V@) +9(07) — @) + 0|7 — 57 l2)

N—-1
= kz rr (VG + 017 — 7*l2)
=0
_ N—-1 _ B
= AN(g*) +6 ];O e |75 — 772

N-1
S ANP(YN) 46 D apallg" T = 772

k=0

From this and (4.159) we get

1 (4159) 1 2 A
Slg =2V <0 Sl =340 ) ==
2 2 — L

N-1
+6 > appr (17 = 2o+ 17 = 571)

N-1

+ 3 ann (VU@L € — By VU €] Lat)
k=0

+Nzlak+1 HW L e _ Ry [v\p( Tiaa Lany ]H (4.160)
k=0

Next, we introduce the sequences { Ry }rso and { Ry }rso as

Rk = sz — Zj*HQ and ék = Imax {Ek,b Rk} ,Eo = Ro
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Since in Algorithm 3 we choose z° = 0, then Ry = R,. One can obtain by induction that
Vk > 0 we have g*1 y* 2F € Bg, (§7), where B (y*) is Euclidean ball with radius Ry, at
centre ¢*. Indeed, since from lines 2 and 5 of Algorithm 3 y;,; is a convex combination of
Zk+1 € Br,, (") € Bg,,,(¥") and y* e By, (y7) € By, ,, (y"), where we use the fact that
a ball is a convex set, we get y*™! € B +1(~*). Analogously, since from lines 2 and 3 of
Algorithm 3 g**! is a convex combination of y* and 2* we have §*™ € By (7). Tt implies
that
175 = 25[lo + 3% = §*|l2 < 2Ri + Ry = 3Ry

Using new notation we can rewrite (4.160) as

1 1 N-1 A N-1 _
§R?\; S §R3 + 52 Z E—H + 3(5 Z Oék+1Rk
k=0 k=0

N-1
1 Z - <@\I,@k+1’£k+1) _E, [§\Ij@k+1’£k+1)} 7ak>
k=0

2

4.161
e

N-1
4 Z o2, H@\y(gk+1’£k+1) _E, [@\p(gkﬂ’ékﬂ)]
k=0

where ||a¥|| = ||§* — 2¥||2 < Ry. Note that (4.161) holds for all N > 1.
Let us denote 7% = VU(gF! ") — B, [@\If(gk“,fk“)] Theorem 2.1 from [93]
(see Lemma 4.9.5 in the Section 4.9.3) says that

p Hn’“HzZ(\/_Jr\/_v)\/»m,-.-,nk‘l SeXp(—%Z)'

Using this and Lemma 2 from [92] (see Lemma 4.9.3 in the Section 4.9.3) we get that

Ele ||77k||3 0 k=1| < 1
ol 0" <exp(l),
k

2 ~ ~ N
where 02 < % < ¢ and C' = C - C are some positive constants. From (4.225)
k Thk+1 Ok+1 1n(7)
we have that aj 1 < Qpyq = % Moreover, a* depends only on 7%, ..., n*~!. Putting all

together in (4.161) and changing the indices we get that for all { =1,... N

-1 -1

-1
1 1 A
§R12 < §R3+522 ZH +352@k+1Rk+Zak+1 7", a +Zai+1\|nk\\§-
k=0 k=0 k=0

N-1
Next we apply Lemma 4.9.8 with the constants A = %Rg +6% > A’“{l h=3,u=1,c=
k=0

LD = L, d=1, H]{;RO and 0 < (%i}fg’g, and get that with probability at least 1 — 20

the inequalities

R, < JR, (4.162)
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and
— - 3G.J CH.Jg(N)
> ot ety +> ok 13 < (120H+ =+ G T) RZ  (4.163)
=0 k=0

hold for all [ = 1,..., N simultaneously, where C} is some positive constant, g(N) =

n(X¥ nin( 2 21, R2
Melos) (ﬁl)+(1N1)(,,)7 B = CHE} (24 + 2R} + T2CHE} + ") 4N b — o223 and
N

2
J =max< 1,(} —CHg(N) + % + (Cl —CHg(N) + %) + ?;21 +24CH

To estimate the duality gap we need again refer to (4.157). Since ¢ is chosen arbitrary

we can take the minimum in ¢ over the set Byg, (0) = {7 : [|7]l2 < 2R, }:

Anp(y"Y) < min {—Hy— 2|3

yeBzRy(o)
N—1 ~
+ Z Qpt1 (w@ml) X <V\I,@k+17 gy g — gk+1>) }

k=0

+]Vz:lAk <V\Il( 7L R R, [V\IJ( ~k+1 £k+1)] o _gk+1>

3 A, [ougre o] - Fu e

N—-1 N-1 A
46 Ak”yk o gk+1“2 + 62 /i—i-l
;0 > 7

k=0

< 2R2+ min ZakH( <V\If( ~k+1 £k+1),g—gjk+1>>

§€B2R, (0

+2Ak <@\P(gk+17€k+1) [V\IJ( ~k+1 €k+1)] y _yk+1>

k=0

N-1
A . - 2
n Z kil E, [V\D(ykﬂrl’ €k+1)] ~ V(G €k+1)
— 2L 2
N-1 N-1 A
+5 AkHyk . gk+1 ||2 4 52 ’i"'l 7 (4164)

where we also used £[|g — 2"[|3 > 0 and 2° = 0. By adding and subtracting
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S <Ek [@\P(Qk“,ﬁkﬂ)] L — gjk+1> under the minimum in (4.164) we obtain

min Z Ceia ( Taand) <V\I/( Tanir e gk+1>>

§E€B2R, (0

min Z Qs < (G+1) + <Ek [qu( k41 €k+1)} ,Zj—gjk+1>>

yeB2R 0) k=0
+ max E k11 <V‘I’( e — Ey, [@‘I’@Hl’fkﬂ)} 7?]>
yEBQRU(O) k=0
—1

+ Z i1 <@\P(gk+l’ sk’-ﬁ-l) . Ek [@\Ij(:&lwrl’ék-‘rl)} ’ _gk+1> )
k=0

Since —y* € Bag,(0) we can bound the last term in the previous inequality as follows

N-1
Z it <@\Ij@k+17£k+1) _E, [@@(ngrl,ﬁkJrl)} ’_gk+1>
k=0

N-1

= Z O+1 <@\1j(gk+lu €k+1) - Ek [@\P(@k—H’ €k+1)i| 7?]* - gk+1>
k=0
N-1 - ~
3 (VO E) — B VU )| —5r)
k=0
N-1

<Y an (VO EH) By [ VO E] g - )
k=0

+ max Zl Oy <V\I/( Thal €k+1) E; [@\I’(ﬂkﬂaflﬁl)] ,?J>.

§€B2r, (0) =0

Putting all together in (4.164) and using (4.158) and line 2 from Algorithm 3 we get

Ant(yY) < 2R2+ min Z Q1 ( TASRS! <Ek [@\I’(ﬂkﬂyfkﬂ)] Y= ﬂk+l>)

§€B2R, (0

N-1

+2  max Zakﬂ (VU ) — By VOt €] Lg)

yGBzRy (0)

i Z - <V\l/( TiaaLany [ Tz k+1)} 7ak>

k=0

N-1 . ~ 2
4 Z o, quj(gk+17€k+l) V(5 k+17€k+1)} ‘

2

k=0

N-1 N-1
+6 ) o [[§FT = 2F + 67 il (4.165)

= 5L

where a* = 7* — z¥. From (4.162) and (4.163) we have that with probability at least 1 — 243
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the following inequality holds:
At < min 3 apn (6@ + (B [VOEELE] 5 - 5))

19 max Zak—i-l <V\IJ( Gl gy [V\I/( ~Et1 €k+1)} ,yj>

y€B2R,, (0)

5GJ G2 CHJg(N)
2R? 120H IV VR (41
+Ry+< CH + : +2<N+1)+Cl 5 Ry, (4.166)

where we used that A, < (

N-1

TR =y 2GLR2T 1 =R )
5;:0 ap || — 2, < 28Ry Za,m < N 17aT Z(k +2) < GJRZ,
= A G2L2R2 — k+2 G?R2
o % k{ = Z 2(N +01)
By the definition of the norm we get
N-l ~
jo ) 3o (VL€ — B [VH €] 5)

N—-1

<2R, | 2 apy (VO EH) Ky [W@W,s’“*l))ﬂ
k=0

167)

2
Next we apply Lemma 4.9.5 to the right-hand side of the previous inequality and get
2

o
> (VE+VE) [ 3 oty } <exp(-%).

I o2 ay In
Since N? < HLERg and 7, = Q <max {17 M}) one can choose such Cy > 0 that
2

U_w 025 Hi/CQR __2
< (D) = m () Moreover, let us choose vy such that exp( ) = v=

NZI k1 (W(ﬂ"“*l, R [W@W’ €k+1)D

k=0

31ln % From this we get that with probability at least 1 — 3

N-1

Z@Hl (@\I,@Hl’gkﬂ) [V\IJ( Skt €k+1)D

k=0
N-—1
< \/_<1+ /HLCQ ak+1

(4.225)

< 2V2R,\/ HLC, k2 — 9R,HCy YN < 4R,/ THCHGS)

2LN2
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In the above inequality we used the fact that R, = R,. Putting all together and using
union bound we get that with probability at least 1 — 33

Anv(y™)
(4.166)+(4.167)+(4.168)

= it g, 0) S ke (G + (Be [VUELE)| - +))
+<8\/H02+2+120H+5G7J+ﬁ

+01 C’HJg(N)) RQ

2 Y

< mingep,, o) Yoncg Qkat (CEIH) + (VY (), § — 7541))
N—1

g, ) 3 ok (Bi | VUG €] = Vo), 5 - 7+
k=0

<8\/ Co+2+120H + %2 + (N+1 + O/ S )R2 (4.169)

First of all, we notice that in the same probabilistic event we have ||7Ftt — 7%, <
. (4.162)
Ry, < JRy. Therefore, in the same probabilistic event we get that ||[g"™ — g|ls <

|75 = g2 + |5* — Gll2 < (J +4)R, for all § € Bag,(0), where we used Ry = R,. It

implies that in the same probabilistic event we have

g 3 e (B [0 €] - v )

yEBQRy(O)
N-1 ~
< max Y. agy || Ex [v\p(gkﬂ’gkﬂ)] V(g || Hg _ gk+1||2
9€B2ry (0) k=0 2
(4.39) N—1 N— GO R2
S ity + R, < 5 G )R, < S

Secondly, using the same trick as in the proof of Theorem 1 from [94] we get that for

arbitrary point y

(4.24)+(4.35)

(y) — (Vo (y),y) (y, Ax(ATy)) — f (2(ATy)) — (Az(ATy),y) = —f(=(ATy)).

Using these relations in (4.169) we obtain that with probability at least 1 — 33

N-1
Anv(yY) < —Zakﬂf@(AT?ij)) + mm(o Zak-i-l Vo (i), g)
=0

yE€Bar,
G(6J + 4) N G?
2 2(N + 1)

CH‘]TQ(N)> R? (4.170)

+

+ (8\/H02+2+120H+

+C4
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To bound the first term in (4.170) we apply convexity of f and introduce the virtual primal
N-1
iterate &V = 4 kz—:() gz (ATGEFL):

N—

- Zakﬂf (ATFHH) Z L p(2(ATFHY) < ~Anf (@),

k=0

In order to bound the second term in the right-hand side of the previous inequality we use

the definition of the norm we have

N-1 N-1
K1y ~\ 1y -
yeggj(o) E ap 1 (VY("T),g) =  min < E ap VY (g°), >

§€B2R, (0

N-1

Z ak+1v¢(?jk+l)

k=0
= 2R, Ax||AEN|),

= 2R,

2

where we used equality (4.35). Putting all together we obtain that with probability at
least 1 — 383

R? G(6J + 4
WyN) + f(@Y) + 2R, AN ||, < A_}i (8\/HC’2 +2+412CH + %
G2 CHJg(N)
T + O ———— 171)

Lemma 4.9.5 implies that for all v > 0

"I

Z ak+1 AT ~k+1 €k+1) —E [.f?(ATgk—i_l,ngrl) ‘ yk+1})

2

> (V2 +v/27) ]:Z M}<exp( f)-

Tk+1

k In
Using this inequality with v =, /31n and r > 70 e we get that with probability at



81

least 1 —
1 N-1
||i‘N . AN||2 _ A_ ot (.%(ATgk+1,£k+1) . I(ATgk—&-l))
N || k=0 2
< [ (AT ~k+1 £k+1) | ~k+1})
2
Z V1 (E [i,(ATgk+1,£k+l) ’ ngrl} . x(ATgk+1>)
= 2
<

1
o 2 ke [[B[RATFL ) [ 9] —a(aTg )
k=0

(4.37) / - Goapae 1 =
< In — — )
< 6 In FJ )\maX(ATA) + Ax kZ;OékJrl y

k=0

2 «— (k+2)HLR?
An V Anax( A A) 2LN2

< Z
=0
1 Yl GLR
Ik :
Ay &= 2L (N +1)2\/ A (AT A)
2R 6CyH G
- ; n _ 4.172
= AN< Amax(ATA) 4 AmaX(ATA)) | )

It implies that with probability at least 1 — 3

JAZY — AzVls < (Al - 1Y = 2Vl
(1172) 2R 6C, H e
< Amax ATA K +
o ( ) AN < )\max(ATA) 4 )\max(ATA)>
- 2AN <\/9602 +G> (4.173)

and due to triangle inequality with probability > 1 — 8

OR(AN 2 = 2R, [AF||; - 2R, Ax]| A" — AZV],

(4.173) y R? (v/96C,H + G
5 oy azvy, — ol T )

(4.174)

The next step is in applying Lipschitz continuity of f on Bg,(0). Recall that

z(y) = argmax {{y, x) — f(z)}

xeR”
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and due to Demyanov-Danskin theorem x(y) = V(y). Together with L.-smoothness of ¢
it implies that

le (AT D)l = V(A 7 )2 < [IVe(AT5) = V(A Ty )2 + [Ve(ATy) 2

IN

Lo ATG T — ATyl + [la(ATy")2

Amax(ATA)

< 1754 =yl + R

From this and (4.162) we get that with probability at least 1 — 25 the inequality

) (4.162) N ATAV R,
lz(ATg** D] < ( L ) +R—> R, (4.175)
)

holds for all k = 0,1,2,..., N — 1 simultaneously since §**! € Bg, (y*) C Bg, ., (y*). Using
the convexity of the norm we get that with probability at least 1 — 20

N-1
. 1 . A175) [\ Amax(ATA)J R,
2% < —— Z app (AT < ( ) +— | R,. (4.176)
Av iz K Ry

We notice that the last inequality lies in the same probability event when (4.162) holds.

Consider the probability event £ = {inequalities (4.171)—(4.176) hold simultaneously}.
Using union bound we get that P{E} > 1 — 4. Combining (4.172) and (4.176) we get
that inequality

12V < [l2Y = 2N + 12Y])-

(VICH+G) P ATA)J  R.
<2AN\/m+ 7! +Ry Ry (4.177)

lies in the event £. From this we can obtain a lower bound for Ry:

R (vV96C-H + G) +«/AmaX(ATA)J+& .
T\ 240 vV (AT A) i R, )"

Then we get that the fact that points zV and 2V lie in B ; (0) is a consequence of E.

Therefore, we can apply Lipschitz-continuity of f for the points 2%V and "V and get that

inequalities
N N any 7D LR, (VI6CLH + G)
) = JE < Bl =N S SO (4.175)
and
FEY) = 1EY) + (FGY) — £@E) <4.127s> 1) LyR, (vV96C>H + G) (4.179)

2An v/ Mmax (AT A)
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also lie in the event E. It remains to use inequalities (4.174) and (4.179) to bound first and
second terms in the right hand side of inequality (4.171) and obtain that with probability
at least 1 — 40

2

R
Wy + f(@Y) + 2R, [| ATV ||, < A—z(8\/H02+2+120H+

G(6J +4)

e

+Lf(\/W+G) G?
2R\/m 2(N +1)

i3
«+CM/(7 Jg ) JGH -+G>4180

Using that Ay grows as (2 ( ) [1], L < M and R, < % (see Section V-D

from [46] for the details), we obtain that the choice of N in the theorem statement

guarantees that the r.h.s. of the last inequality is no greater than . By weak duality
—f(z*) < 9(y*) and we have with probability at least 1 — 47

F@Y) = fla®) < f@Y) +0(y") < F@EY) + (YY) <e. (4.181)

Since y* is the solution of the dual problem, we have, for any z, f(z*) < f(z) — (y*, Az).
Then using assumption ||y*||s < R,, Cauchy-Schawrz inequality (y, Az) > —||y*||2-|| Azl >

~N

—R,||Az||2 and choosing x = Z", we get

F@EY) > f(x") = Ry || AZY | (4.182)
Using this and weak duality —f(z*) < ¢(y*), we obtain

Y(y") + F@Y) 2 0(y") + F(@Y) = —f(2") + f@Y) = —Ry[| ATV,

which implies that inequality

(4.180)+(4.181) ¢

Az < — 4.183
l4aMl s 5 (4.183)

holds together with (4.181) with probability at least 1 —4/. The total number of stochastic
N

gradient oracle calls is > rg, which gives the bound in the problem statement since
k=1

N
Z Ay = AN. ]
k=1
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4.9.7. Missing Proofs from Section 4.5.2
Proof of Theorem 4.5.5

For simplicity we analyse only the first restart since the analysis of the later restarts

is the same. We apply Theorem 4.5.3 with N = N such that

and batch-size

64005)1116N
ry =max< 1, = PRPTENTD
NHV\IJ(y >€ ,7”1)”2

together with simple inequality ||V (y°)|l2 > pyplly® — y*|l2 and get for all p=1,...,p
VeIl | IV, £, 713

E[[[Ve@ )3 |y i <

32 64
4124 012 o7 Bl
2 IVUOIE | 1TV ) = TG,

By Markov’s inequality we have for each p = 1,...,p; that for fixed VW(y°, £° #,) with
probability at most 1/2

P2 > S IVely )II%+IIV‘P(yOfO,ﬁ)—V@D(yO)H%

IVe(g - P

Then, with probability at least 1 — 1/2»1 > 1 — /1

VO | IV €0 7) = V)3

Vo)l < L ,

(4.185)

where p; is such that ||V (y'?1)||2 = ming—1__,, [[Ve(5?)|/3. From Lemma 4.9.5 we have

.....

forallp=1,...,m

2 2
P [[VeE e, m) - Vo), = (V2+v2) \/i:f 97 5 < exp <_%> |

2
2 lpy 2
128”1/1 (1+\/3ln T) R

= we can take v = /3In'2L in the previous

B

Since 7, = max< 1,

inequality and get that for all p = 1,...,p; and fixed points ' with probability at least

1 —5/apy) P

< i
Using union bound we get that with probability at least 1 — 5/i inequality

||V\D(g1,p,€1,l)’?¢1) V'I/J

52

[ve@.€2.m) = V@l < g

(4.186)
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holds for all p = 1,...,p; simultaneously with fixed points . Using union bound again

we get that with probability at least 1 — 26/1 for fixed VW (°, £°,71)

(4.124) 2
Vo O < 2| Vet m)
2
2
2| vu@n D, 00, 7) — V(g o)
(4.186) . . 9 c2
< 2 P (ghPr ghhr F
= HV (y 75 ’TI)H2+32RZ
ey SLpry |12 Sl glpl = |2
<A@ B+ A [V €0 ) - Yo+
y
(18511860 |V (yO)[3 | Ve, €% ) = VoI5 |, &
< : 4.187
= > 1 TR (418D
402 (14, /310 L) R2
Using Lemma 4.9.5 with v = ,/31né and 7, = max {17 w( + o ﬁ) y} we get that
with probability at least 1 — /i
2
. €
IVU(y°, €% ) = Vo(y)l3 < Yok (4.188)
y

Applying union bound again we get that with probability at least 1 — 35/i the following

inequality holds:
(4.187)+(4.188) || Voh(y0)[]3 &2
AL ONE < : ’
Vo3 < 2 Tim

Similarly, for all £k = 1,...,l with probability at least 1 — 38/

—k—1,p(k—1)Y]|2 2
kp(R) (|2 < Vi (y s | e

Using union bound we get that with probability at least 1 — 35 the inequality

- Vl/J gk—l,p(k:—l) 2 62
vy < VTl | e (4.189)
Y

holds for all £ = 1,...,[ simultaneously. Finally, unrolling the recurrence an using our

choice of I = max {1, log, (2RIIV¥(°)lI3/:2)} we obtain that with probability at least 1 — 3

(4.189) \V4 0112 2
||V2/1(§l’p(l))\|§ < “ ¢(y )||2 € 24@

2! 4R —
g2 £ XK.,
< 4N
TR
_ 52 N 52 B 2
oR? TaR2 CT R

which concludes the proof. To get (4.55) we need to estimate > (7, + Npgry, + ppTe) using
k=1
our choice of parameters stated in (4.53).
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Proof of Corollary 4.5.3

Theorem 4.5.5, Corollary 4.5.2 and inequality ¢ < ,uwR; imply that with probability
at least 1 — 30

(4.56)
IV (5D < 177D < 1770 =y lla+ ly*lla < 2R, (4.190)

R
Applying Theorem 4.5.2 we get that with probability 1 — 35 we also have

f@) = fla') <26, A& < = (4.191)

Y

where 3 & (AT 7", Next, we show that points 27 = z(AT ") and gbr & (AT ghr € )
are close to each other with high probability for all p = 1,...,p, and both lie in Bg,(0)
with high probability. Lemma 4.9.5 states that

P{W ||, > \/—+\/_\/7lp(l)}_exp<—%2).

12802 (144/31n 2L ) R2
Taking v = 3111% and using 7, = max< 1, ( 3 ) y} we get that for all

55
p=1,...,p with probability at least 1 — 5/p,
€ o2 5

~1p l,p _
TP —x — = ,

where we use 0, = \/Amax(AT A)o,. Using union bound we get that with probability at
least 1 — (8 the inequality

127 — 27|, <

g
" S8Ry Amax(ATA)’

holds for all p =1, ..., p(l) simultaneously and, in particular, we get that with probability

at least 1 — /8
130 — 2| < c . (4.192)
8Ry\/ Amax(ATA)
It implies that with probability at least 1 — 3
|AZ' — Aa'll; < [JA]z - (|20 — 2|2
(4.192)
< Ve (ATA) c - (4.193)
8Ry\/ Amax(ATA) 8RRy
and due to triangle inequality with probability > 1 —
. . €
1Az [l > [|Az'[|z — [|Az" — Aﬂfl\la > \|Ai€l\|2 - (4.194)

8R



87

Applying Demyanov-Danskin’s theorem, L.-smoothness of ¢ with L, = 1/u and € < uwRZ
we obtain that with probability at least 1 —

12 = [VeATg"O)s < [V(ATg ) = Vp(ATy")ll2 + VoA Ty

Amax(ATA)

< LJlATEY — ATy o + [la(ATyY)2 < 157 = y*ll2 + Ra

(4.56) Amax (AT A)e A max (ATA)
< ( + R, < R, (4.195)
fpg Ry Ry
and also
[P < ! = 212 + 11272

(4.192)2(4.195) Amax(ATA)

oy @
+ +— | R,. 4.196
N <8 )\max(ATA) % Ry > ! ( )

That is, we proved that with probability at least 1 — 3 points 2! and 2! lie in the ball

Br,(0). In this ball function f is Ls-Lipschitz continuous, therefore, with probability at
least 1 —

f@) = f@)+fE) - @) = f@') - If@) - f2h)]
(4.192) gLf

4.
Z f(xl)_Lf||$l_$l||2 Z f($l)_ 8Ry\/m.

Combining inequalities (4.191), (4.194) and (4.197) and using union bound we get that

(4.197)

with probability at least 1 — 40

. 9e
vl = 8R

0 f(* Ly e
fla) = f( )§<2+8Ry —AmaX(ATA)) :

Finally, in order to get the bound for the total number of oracle calls from (4.58) we use

(4.55) together with 07, = 02 Anax(A"A) and (4.125).
4.9.8. Missing Proofs from Section 4.5.3

Proof of Lemma 4.5.1

We prove (4.62) by induction. For k = 0 this inequality is trivial since A, = 7,
g' = 1y° and 2° = ¢°. Next, assume that (4.62) holds for some &k > 0 and prove it for k + 1.

By definition of gi41(2) we have

e (2 = () (4.198)
s (D) + (VUG €, 240 — ) Bk g )
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Since g (z) is (1 + Agpuy)-strongly convex we can estimate the first term in the r.h.s. of
the previous inequality as follows:

. N 1+A
) 2 o)+ -

(4.62)

1+ A
ST Ab(yF) + B a2

2
— Aipp 1 g2 : Al &~ gl NI
HY S B S g e ) - vea

Applying p,-strong convexity of ¢ and the relation

k k41 k k
pr Ayt a2 Ayt oz Okl [ g1 A
ST A - A A, Fr )
k+1 k+1 k+1
a
1 k41 [ kt1 k
= g4 /= (" = 2F)
Ak+1

to the previous inequality we get

. . . . A .
gz > A () + (Vo) Ayt - 77TY) + %Hyk — g3

A2 (1 + Ak,uw) - Pl Al,u -
+ k+1 5 H k+1 k+1H2 + Z (4 Hyl _ yHlH%
k+1

1=0

2
—Z Hw g)-v@z)(gl)Hz. (4.199)
Next, we use (4.199) in (4.198) together with relations Aj1 = Ag+agr1, Apsr(1+Appy) =

oy Ly and Ap(y* — 9" + appa (M = 9 = A (BF - g5

< 24y

() = A (i) + <vwk“>Auy—y“U+akmfﬂ—g“U>

A7 (1 + Agpy) N Apfiy .
+ +12 ; H E+1 k—i—lH2 +Z ||?J l+1||2
k+1 1=0

—EZZWHVW~ZSW—V¢@ﬂE

‘|‘ak+1 <V\I’( ~l+1 €l+1) V@/J( l+1) k+1 _gk+1>

Qi1 ey ~
TszH - yk+1||§

- L .
= s (W) VO = ) 4 S )

+

k k
A . A |l FNIE
H S R - g, |vw@.e) - vew),
=0

o <@\I,@z+17£z+1> _ Vw(@ﬂrl)’ ShL _ gk+1>

Q1 [y sz+1 - gmlH%

A
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From L,-smoothness of 1 we have
_ _ _ L _
GE) (VO g =)+ S S 2 ).
Next, Fenchel-Young inequality (see inequality (4.123)) implies that
<@\I,<gl+1 E1) — Wap(gty, A gk+1>

> =5 [P, ) - Vo - e - s

il 24y

Putting all together and rearranging the terms we get

k+1

k
. A _ NE
et () 2 v () + 3 S I - IR - 3 5 |9 €) - v
=0

l 0
Proof of Lemma 4.5.2

The idea behind the proof of this lemma is exactly the same as for Lemma 4.9.8. We
start with applying Cauchy-Schwarz inequality to the second and the third terms, i.e.

~ R2 R? R2 + R?
Bo(Ri+Fy) < D6+ ok + Dhe* + Tk = 2Dhe? + %,
uln®,af +a") < ullntlla - laF e + ulln®lle - 1802 < ullnllaRe + wlln® |2 Ry
R2 R2 R+ R
< DI+ S5 2D+ 1k < D+ P

in the right-hand side of (4.63):

-1
AR+ AR < A+2Dh2522ak+1+ Zakﬂ (R} + R2)

k=0

\_v_/
Ay

-1

+ (c+2Du”) Y o [*3- (4.200)
k=0

Using Lemma 4.9.5 we get that with probability at least 1 — %

Il < ﬂ<1+\/m—ﬁ>ak<f<l+\/m—g> Jor
’ N(1+ 31ng)

= V2Ce. (4.201)

Using union bound and ay; < DAy we get that with probability > 1 —  inequalities
-1 N -1 _
AR} + Z ALR; < A+2Dh*6* A+ - Z Ay(R; + R;) 4 2C (c+ 2Du®) Age,

k=0
-1 -1

AR+ = Z AR: < A+2DR2S*A + = Z ALRE 420 (c+ 2Du?) Aie (4.202)
k 0
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hold for all [ = 1,..., N simultaneously. Therefore, with probability > 1 —  the inequality

-1

1
AR} < A+2DR?8Ai+2C (c+2Du’) Ae + 5 ) AvR;
k=0

-2
3 1 1 3 1
< —A+2DR6* [ A+ Z A | +2C 2Du?)e | A+ Ay ) += =) AR}
S 5 + (l+211>+ (C+ u)e l+211 +2 2kzzokk
S‘%rAz S%lz
3 =
< 3 (A +2DW?6° Ay +2C (e + 2Du?) Aje + kzzo AkR,'i) ,
holds for all [ = 1,..., N simultaneously. Unrolling the recurrence we get that with
probability > 1 —
3\ !
AR < (5) (A+2DI26 A, + 2C (e + 2Du?) A)
forall l =1,..., N. We emphasize that it is very rough estimate, but as for the convex

case we show next that such a bound does not spoil the final result too much. It implies

that with probability > 1 —

-1 I
> AR <1 (;) (A +2Dh?6* A, + 2C (c + 2Du?) Aje) (4.203)
k=0

for all [ = 1,..., N simultaneously. Moreover, since (4.202) holds we have in the same

probability event that inequalities
!
> AR < (z (g) + 2) (A+42Dh?*6* A+ 2C (c+ 2Du?) Aje) (4.204)

hold with probability > 1 — 8 for all [ = 1,..., N simultaneously with (4.203). Next
we apply delicate result from [92| which is presented in Section 4.9.3 as Lemma 4.9.4.

We consider random variables &¥ = a1 (0¥, a¥ + @"). Note that E [¢F | £°,... ¢ =

Op+1 <E [nk | 770’ s 777k71} 7ak> =0 and
£h)? - aialln*l3la* +a*|3 -
exp( 22( )2 ~ ’507”"5161 < E exp k+;2 2 ; ~22 |7707“.777k1
20705 4 (R} + R}) 20700 (R} + R3)

— E anH% 0 k—1 < 1
= exp ( — 5~ |07 n" | <exp(l)

k

E

due to Cauchy-Schwarz inequality and assumptions of the lemma. If we denote 67 =

20202, (R? + R2) and apply Lemma 4.9.4 with

N
B=8HCDR} (N (;) - 1) (A+2DR*G*R + 2C (c + 2Du*) HR})
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and b = 63, we get that for all [ = 1,..., N with probability > 1 — £

-1

- N B
kz:%gk < kz:%&,% (ln (E) + Inln (3)>

with some constant C'; > 0 which does not depend on B or b. Using union bound we

-1
< (C Zé% <1n (E) +Inln <§)>
k=0 p b

-1
eitherz 6% > B or
k=0

obtain that with probability > 1 —

-1
eitherz &,3 > B or
k=0

-1

> ¢

k=0

and it holds for all [ = 1,..., N simultaneously. Note that a1 < Agiq, € < Iiig,

0 < ch/% and with probability at least 1 — 3

-1 -1 -1
. ~ 2Ce ~
o = 2) ofai (Ri+RY) < 5 Y Aper - DAGRE + 1)
k=0 k=0 N2 (1 +.,/3In %) k=0
-1 .
< 2:CDAN Y An(Ry + RY)
k=0

(4.203)+(4.204) 3\
< 4eCDAN | 1 (—) +1 (A +2Dh?*6%*A, + 2C (c + 2Du2) Ala)

2
3 N
< AHCDR} (N (i) + 1) (A+2Dh*G*R} + 2C (c+ 2Du’) HRY)
B B
B 2

for all [ = 1,..., N simultaneously. Using union bound again we get that with probability

> 1 — 20 the inequality

-1
< o7 (ln <E) +1Inln (E)) (4.205)
k=0 b b

holds for all [ =1,..., N simultaneously.

-1
> ¢

k=0

Note that we also proved that (4.201) is in the same event together with (4.205) and
holds with probability > 1 —24. Putting all together in (4.63), we get that with probability
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at least 1 — 25 the inequality

-1 -1 -1

~ (4.63) _
AR+ AR < A+h8S " ap(Re+ Ri) + 0y appn (i, a + i)

k=0 k=0 k=0

-1
+Czoék+1||77k||§
k=0

(4.201)+(4.205) =1

< A+ 18> gy (R + Ry)
k=0
— N B
+uCh kZ:O o7 (ln (E) +Inln (3>) + 2cCe A
holds for all [ = 1,..., N simultaneously. For brevity, we introduce new notation: g(N) =

ln(%)—i—lnln(%) . . .
B/ 7 ~ 1 (neglecting constant factor). Using our assumptions o2 < Ce ,
(1+,/31n(%)>2 (neg & ) & P b= N2<1+,/31n(%)>2

e < Ijiﬁ, d < NC\’V/IZLN and definition 67 = 20703, (R + R2) we obtain that with probability

at least 1 — 25 the inequality

-1 -1 -1

AR+ AR, < A+ h8Y aa (R + B) +u Y o (0, a" + a¥)

k=0 k=0 k=0

-1
+e Y a3
k=0

A
S
>
Q
=
v
s
+
E
_|_
=

(hG ol 2HCg(N)> Ry -

R.+ R 4.206

holds for all [ = 1,..., N simultaneously, where in the last row we applied well-known

inequality: /Y ;a2 < > a; for a; > 0,4 = 1,...,m. Next we use Lemma 4.9.13
with A = % +2cHC, B = hG + uCy1\/2HCg(N), r, = Ry, 7 = Ek and get that with
0

+

probability at least 1 — 2/ inequalities

JRy = J Ry

R<— R_ 1<
l_\/zl7 ll_\/m
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hold for all [ = 1,..., N simultaneously with

3B,D + \/QB2D2 + 4 +8cHC
9

J = max { /Ao, , B1 = hG + uCy1+\/2HCg(N).

It implies that with probability at least 1 — 25 the inequality

-1 -1 -1

A+ ho Z a1 (Re + ék) + UZ Oék+1<77k7 a* + &k> + CZ akHH"Zk”%

2J (hG4+uC14/2HCg(N)
< (& +20HC) B3+ (1RGN
0

NvVAN —~

Z
2JD( hG+uC 2HCyg(
§A+(2CHC+ (Geu0ryrCy (Y >Z\/
2JD(hG+uC’1 2HCg(N
NVAy VAL

< A+ <2CHC—|—

<At <2cHC +2JD <hG +uCy\/2HCg(N ))

holds for all [ =1,..., N simultaneously.

Proof of Theorem 4.5.6

From Lemma 4.5.1 we have

k—1 k
~ A - a ~ ~ 5 2
Ay < (=5 = :—l;wHyl S jﬁ qu/(yl,gl) - V@D(yZ)HQ (4.207)
=0

for all k& > 0. By definition of z* we get that

Gr(") = gﬁg{—llz—zollﬁzaz( + (VU €)= )+ Bl - ~l||3)}

k

< gl =2+ 3 () + (VU €00 =)+ o~ 7
= Sy -+ a (V@) + (Vo). v =)+ Elly = 3'13)
+ 122 a(VU(F,€) = V(). y" — i)
< %uy*—youz+Aw<y*>+ial<w@ael>—w@l>,y*—gl>, (4.208)

=0

where the last inequality follows from u¢—strong convexity of ¥ and A = Zf—o ay. For

brevity, we introduce new notation: Ry, & Hy —y*||2 and Ry, &of |y* — g5+, for all & > 0.

F
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Using this and another consequence of strong convexity, i.e. ¥(y) — ¥ (y*) > Sy — y*|3,

we obtain
Agp o A S~ A
k L * LR
L D i < AR - e) + YR
1=0

1=0
(4.207)+(4.208) ]

< SR+ Zaxwwl,s’) — V(i) y )
+Z L[ vuit e) - vu],. @

From Cauchy-Schwarz inequality and the well-known fact that ||a + b||3 < 2a? + 2b? for all

a,b € R™ we have
(VUG €) -V - = (B|[VUE.e)| - ve@).y - 1)
+(Vu.e) B Ve, .y - i)
"y il + (Ve ) - B[u €] - ).
[oie)-vew)|| < 2|B[vvee)] - vee|,
v2||u( ¢) - B[V e[

4.42

(4.42) .
< 25742 Hv\p(g’,sl) [v\p (7 ] H
for all [ > 0. Next, we introduce new notation

iR (Vo &) - B [VuG.e)] v - i)

2 1y
+Z_z |vet.e) - B [Vu@'.e) Hz (4.210)
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Putting all together in (4.209) we get

A,u k—1 A,LL 1 k

. ey = .

SRR YR < SR8y ailly — e
1=0 1=0

k

+Zaz <@\If(gl,§’) - E [@\If(yjl,gl)} o yjl>

4+ — o + —¢ a Qy H@\If@laﬁl) —E [@\Ij@l’gl)} Hz

k—1

A+ aally =3
=0

k—1
+ZO‘Z+1 <@\IJ(Q”1,§Z+1) [V\If( as! €z+1)] Ly gl+1>

=0

+— Z (07 %]

L

IN

VUG e — E [V\I!( Ta gl“)} 2(4.211)

To simplify previous inequality we define new vectors a' o vt — o, a o yl — gttt
gl (g, ) — [W(glﬂ,glﬂ)} for all I > 0. Note that ||a'||s = Ry, ||a'[|» = R
and a° = y° — ' = 0. Using this we can rewrite (4.211) in the following form:

bl

k—1 k—1
AkRk+ZAlRl < A+—Zal+1 Rl—f—Rl +M_Zal+1 ’I7 a —|—a)
=0 =0
9 k—1
+=5 ) a3, (4.212)
e

where we used A4 & % and triangle inequality, L.e. ||y* — g2 < [ly*—y!|2+ ly' =52 =
RH—EZ. Next, we apply Lemma 4.5.2 with h = u = ﬁ, c= %2 and get that with probability
W

at least 1 — 20
J*R?

R? < 4.21
where
ln ﬁ) +Inln (E 2 2
B b ol R,D(4'§9)1+ﬂ+ 1+u¢
1 Lw L¢
<1—|— 3ln %))
B = SHC’ DRO (N 1) <A+2Dh2G2R§

L\
+2C (M—w) (c+2Du?) HR§> ,
(4
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3/2
3BlD+\/932D2+ + 8¢ HC( )
2 b

ﬂ) - g(N)

Hy

and (' is some positive constant. However, J depends on A which is stochastic. That is,

J = max \/ Ao,

By = hG+uCl\/2HC(

to finish the proof we need first to get an upper bound for A. Recall that A = Z—‘j and

2040 HV\IJ (i€ — B [@\I/(QO,SO)] Hz (4.214)

Lemma 4.9.5 implies that

[V &) - B[vee.e)| > vaa+ m\/% <ew(-1).

32 N202 (14, /3m X )
Taking v = 3ln% and using ry > <Z—‘i> %< o . 5> ,e < {14};8 we get that with

probability at least 1 —

(Vo€ —E Vo) .y i) < ||VeE"e) -B Ve e)]|| - Iy -l
< (ﬂ) \/2C€R0
My
< <ﬂ> ”20HR0 (4.215)
- S 2 Ly\"2Ce  (L,\" 2CHR?
[reane -e[vael]) < (5) 52 S(E) A aa1s)

From this and ¢ < N?/RO— we obtain that with probability > 1 —

(4214)+(4.215)+(4.216)

S 0>
i def 1 2G N 262 N (ﬂ)/ W2CH
v LypyNAy N tp ) LypyNVAN

. <L¢>3/2 ACH
py ) Ly N?Ay

Using union bound we get that with probability at least 1 — 30




where ( > < )
In(¥) +Inln (£
. B8 b
g(N) = -,
(1 n 31n< >>
I 3/2 L 5/
_8H0< w) DRy (N (5 +1 A+2Dh2G2+20< ) (c+2Du?) H | |
Mo .
. A R 7
R 381D + \/9B%D2 + 4A + 8cHC (i_z)
J = max { v/ Ay, 5 7
3/2
By = hG +uCyy|2HC _1/’) ()
Hop
Note that

(4.228) 1 1 [y 2k
Ay, > —(1+=,/— ] .
Ly < i 2\ Lw)
It means that in order to achieve R3 < ¢ with probability at least 1 — 33 the method

requires N = O ( i—z In %) iterations and

~ Ly 05 1 1
re = O | max —w,ﬂln— In —
k=0 po &P ¢

oracle calls where 5() hides polylogarithmic factors depending on Ly, iy, Ro, € and 3.

WE

Proof of Corollary 4.5.5

Corollary 4.5.4 implies that with probability at least 1 — 373

ly™ll2 < 2Ry, V(™) < R

and the total number of oracle calls to get this is of order (4.76). Together with Theorem 4.5.2
it gives us that with probability at least 1 — 33

A

FEN) = fa) <28 ARV < o (4.217)

Y

where 3V & z(ATyN). Tt remains to show that 7V and 2" are close to each other with

high probability. Lemma 4.9.5 states that

P {H:f:N—E 16V, 2 (V24 mﬁ | y} <ow (-2 ).
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o2 B3 (1+,/3In %)2
Taking v = /3 1n% and using ry > % = we get that with probability at least
1-p

2¢2 V2Ce
N R[N | N < 20 gzE" _
Hx [l’ |y ”|2 = O-iRg Ry\/m’
[ =2, < BV =BV V]|, + B2 1N -2,
am  aCe G
T Ry Amax(ATA)
2C €
< ( m+G1> Ey (4.218)

It implies that with probability at least 1 — /3

[AZY — Az, < (Al 12V - 2V
(4.218) 2C €
< >\ma,x ATA o
< ( )( N (ATA) )Ry
— (\/20 el AmaX(ATA)> Ri, (4.219)
Y
and due to triangle inequality with probability > 1 — 8
1Az = (Ao — [|AZY — Azl
(4.219)
> ||A3~:NH2 - (V 2C + Gl )\max(ATA)> Ri (4220)
Yy

Applying Demyanov-Danskin theorem and L,-smoothness of ¢ with L, = 1/, we obtain
that with probability at least 1 — /3

12 = [[Ve(ATy")|l2 < [[Ve(ATyY) — Vo(ATy ) ||l2 + [[Ve(ATy")]2
* * >\max ATA %
< LAY — ATy ATy < YA A v R,
(4.71) N (ATA
< (ATAe | g (4.221)
PR,
and also
12V —iUNH + |2Y]]2

(4.218)+(4.221) | /Nmax (AT A)
< ( ATA +Gi + >—+R (4.222)

That is, we proved that with probability at least 1 — 3 points 2! and Z' lie in the ball
Br,(0). In this ball function f is Ls-Lipschitz continuous, therefore, with probability at
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least 1 —

f@Y) = f@Y) + @) = f@) = f@) = [f@Y) - f@Y)]

> f@Y) = Lylla™ =2,

(4.218) 2C L €
> iy ht iy ,
= J@) (\/ Amax(ATA) +G1> R, (4.223)

Combining inequalities (4.217), (4.220) and (4.223) and using union bound we get that
with probability at least 1 — 40

£ - 1) < <z+ ( ST +G1) %) 3
1432 < (14 V20 + Giv/ Al ATA) ) =

Finally, in order to get the bound for the total number of oracle calls from (4.76) we use

(4.70) together with 07, = 02 Anax(ATA) and (4.125).

4.9.9. Technical Results

Lemma 4.9.9. For the sequence agy1 > 0 such that

App1 = Ap + g1, A = 2Laj (4.224)
we have for all k >0
~ de k + 2
Qo < Gp1 o7 (4.225)

Moreover, A, = Q (NT2>

Proof. We prove (4.225) by induction. For k = 0 equation (4.224) gives us a; = 2La? <
o) = i Next we assume that (4.225) holds for all £k <! — 1 and prove it for k = I:

I+1 1
4.224) (4.225) 1 _ 11 +3
2Layy = ZO@ S antor (i+1) = a1 + ( 4L )

i=1 i=1

1+ VAP F12k+1 14+4/(2k+3)? < 2k+4 _ k42
4L — 4L — 4L

2L °

This quadratic inequality implies that oy, <

Finally, the relation A, = Q <NTQ> is proved in Lemma 1 from [16] (see also [1]). O

Lemma 4.9.10 (See Lemma 3 from [95] and Lemma 4 from [96]). For the sequence

agr1 > 0 such that

1
Ak+1 = Ak + Api, Ak-Jrl(l -+ Ak,u) = L&i-i-l’ Qg = AO = Z (4226)
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we have for all k >0

(4.227)

Qg1 =

L+ Ay \/(1 + A Ap(L+ Ay
2L 4172 L ’

) o 2%k
Az o (1 + 5&) , (4.228)
g < (1 + % 41+ %) Ay (4.229)

Proof. If we solve quadratic equation Aji1(1 + Agp) = Log,, Apr1 = Ay + auyr with

v

respect to agi1, we will get (4.227). Inequality (4.228) was established in Lemma 3 from
[95] and Lemma 4 from [96]. It remains to prove (4.229). Since va? + b? < a + b for all
a,b>0and A, > Ay = —Wehave

N @227 1+ App n \/(1 + Agp)? N Ap(1+ Agp)
BT oL 412 L

1 i 14 Agp Ay
< A TR TR g2
- 2L+2L + 2L + L+L k

+

< %+5Ak+A’”/ §=(1+% 1+%>Ak-
O
Lemma 4.9.11. Let A, B,D,rg,r1,...,7Nn, where N > 1, be non-negative numbers such
that
l7~2<A l1k+2r + B Vi=1 N.  (4.230)
o't = kao k N =1,..., V. .

Then for alll =0,..., N we have
r < Cro, (4.231)

where C' is such positive number that C? > max{2A + 2(B + D)C, 1}, i.e. one can choose
C=max{B+ D+ /(B+D)+2A,1}.

Proof. We prove (4.231) by induction. For [ = 0 the inequality r, < C'rq trivially follows
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since C' > 1. Next we assume that (4.231) holds for some | < N and prove it for [ + 1:

l

I
22 (k+2) rk+BN Z(k+2)r£
k=0

k=0

(4.230)

41 < \/§ AT(Q)

l l

(4231 DC BC
A k+2)+ — k+2
rov/2 F e +1)2k20(+)+N ;(+)
DC  (I+1)(1+2) BC [(1+1)(+2)
< 24/ A
< To\/_\/ + N1 5 + N 5
B N(N +1
< ro\/i\/A+Dc+ ]\?,/ ( 2+ )gro\/2A+2(B+D)C§CTO.
<c
m
Lemma 4.9.12. Let C,rg,r1,...,rNn, where N > 1, be non-negative numbers such that
r + Lli(km)w 2 Vi=1,...,N (4.232)
L="0 <N+1)3/2k:0 Tk+1) = Tttt h :
and C € (0,1/4). Then for alll =0,..., N we have
r < 2o, (4.233)

Proof. We prove (4.233) by induction. For [ = 0 the inequality r; < 2r( trivially follows.
Next we assume that (4.233) holds for some | < N —1 and prove it for [ + 1. From (4.232),
C <14y N>1and [ < N — 1 we have

3 2C(1 +2)"
ZT?H < (1 TNF R i
(4.232) oc .
< b e
k=0
(4283) 1

ry 4+

N Y2 | gp2 2
< 5 2(N—|—1)3/2l (I+1)7*-4r§ < 3rg,

which implies r;11 < 2ry. O

Lemma 4.9.13. Let A, B, D,rg,71,...,"N,T0,T15---,TN, 00,1, -..,Qn, where N > 1, be
non-negative numbers such that

-1 -1

B
ArE+ " A < Ark TO Z Qo (re +7), Vl=1,...,N, (4.234)
k=0
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where 7o =0, Ag =0 >0, Ai=A_1+ao; and oy < DA,y forl=1,...,N and D > 1.
Then for alll =1,..., N we have

CTO - CTO
< g < — 4.235
= VA4, TN T VAL ( )
Crg

and ro < NS where C' 1s such positive number that

BD B2D?
C’Zmax{\/AO, 5 + 1 +A+QBC'D},

. 2D2
i.e. one can choose C' = max {\/Ao, 3BDLVIBDEHAA

Proof. We prove (4.235) by induction. For [ = 1 the inequality 7y < %% trivially follows

since 79 = 0. What is more, (4.234) implies that

Alr% S AT’(Z) +

Balrg
NVAy Ale/_ =10 \/_
since C > y/Ap and C > A+ BCD > +\/ A+ BD+/Aj. Note that we also have ry < 3%.

Next we assume that (4.235) holds for some | < N — 1 and prove it for [ + 1:

e TO\/ A BDA, A+ BD\/_A Cro

(4.234)

!
. BT‘Q ~
At < Ard e ———= E +
eoo= TN AN — et (7 + i)

(4.235) =1

l
z Arg BCT’O Zak+1 BOT’O Zak+1 Broa;{m
Ny Ay

Ar 2 BOD’)“O Z \/— BCDTO Z \/_ BDTOAZTZ
\/_

BC Dr? BCDT’ BDryA;r
Ar? + 0(1 4+ 1)\/A, Ol\/A 0l
oty LY Y vl

< (A+2BCD)rj +

IN

IN

BD’/’()AZTZ

VAN
0 > - BDrof;  (A+2BCD)rg

VAN A

From this we have that 7 is not greater than the biggest root of the quadratic equation

corresponding to the last inequality, i.e.

BDrO B2D?*r32  (A+2BCD)r?
< +
2V A 4AN Ay

BD B2D? To CT’Q
— A+2BCD < .
( 2 +\/ 4 At ) VA T VA

IN

.

-~

<C
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It implies that

(4.234)

l
Br -
Al+17“l2+1 S A’I“(Q) + WIZ_ Z (07'3%] (’I“k + T‘k)

(4.235)

S A’r’g QBC’I“O Z (077N}

2BC’D7’O

NVA
A—|— QBCD < O’I"o

A ~ VAL

That is, we proved the statement of the lemma for

< Ard+ (l )V A; < Arg +2BCDrg,

Tl—i—l < To

BD B2D?
C’Zmax{\/Ag, 5 + 1 +A+2BC’D}.

In particular, via solving the equation

BD B2D?
C = 5 +\/ 1 +A+2BCD

w.r.t. C one can show that the choice C' = max{\/Ao, 3BD+V92BQD2+4A} satisfies the

assumption of the lemma on C.

]
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Chapter 5

Stochastic Derivative Free Optimization Methods with

Momentum

The theoretical results proposed in this chapter were obtained by the author of this
thesis in [97].

5.1. Introduction

In this paper, we consider the following minimization problem

min f(z), (5.1)

rER™?

where f : R™ — R is "smooth"but not necessarily a convex function in a Derivative-Free
Optimization (DFO) setting where only function evaluations are possible. The function
f is bounded from below by f(z*) where z* is a minimizer. Lastly and throughout the
paper, we assume that f is L-smooth.

DFO. In DFO setting [98, 99|, the derivatives of the objective function f are not accessible.
That is they are either impractical to evaluate, noisy (function f is noisy) [100]| or they
are simply not available at all. In standard applications of DFO, evaluations of f are only
accessible through simulations of black-box engine or software as in reinforcement learning
and continuous control environments [101]. This setting of optimization problems appears
also in applications from computational medicine [102| and fluid dynamics [103—-105] to
localization [106, 107] and continuous control [108, 109] to name a few.

The literature on DFO for solving (5.1) is long and rich. The first approaches were
based on deterministic direct search (DDS) and they span half a century of work [110-112].
However, for DDS methods complexity bounds have only been established recently by
the work of Vicente and coauthors [113, 114]. In particular, the work of Vicente [113]
showed the first complexity results on non-convex f and the results were extended to
better complexities when f is convex [114]|. However, there have been several variants of
DDS, including randomized approaches [115-120]. Only very recently, complexity bounds
have also been derived for randomized methods |27, 121-124]. For instance, the work of

[121, 124] imposes a decrease condition on whether to accept or reject a step of a set
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of random directions. Moreover, [125]| derived new complexity bounds when the random
directions are normally distributed vectors for both smooth and non-smooth f. They
proposed both accelerated and non-accelerated zero-order (ZO) methods. Accelerated
derivative-free methods in the case of inexact oracle information was proposed in [15]. An
extension of [125] for non-Euclidean proximal setup was proposed by [126] for the smooth
stochastic convex optimization with inexact oracle. In [127, 128] authors also consider
acceleration of ZO methods and, in particular, develop the method called SARP, proved
that its convergence rate is not worse than for non-accelerated ZO methods and showed
that in some cases it works even better.

More recently and closely related to our work, [129] proposed a new randomized direct
search method called Stochastic Three Points (STP). At each iteration k STP generates
a random search direction s, according to a certain probability law and compares the
objective function at three points: current iterate xj, a point in the direction of s, and a
point in the direction of —s; with a certain step size «aj. The method then chooses the

best of these three points as the new iterate:

Ty = argmin{ f(xy), f(xr + apsk), f(xr — arsk) }-

The key properties of STP are its simplicity, generality and practicality. Indeed, the
update rule for STP makes it extremely simple to implement, the proofs of convergence
results for STP are short and clear and assumptions on random search directions cover
a lot of strategies of choosing decent direction and even some of first-order methods fit
the STP scheme which makes it a very flexible in comparison with other zeroth-order
methods (e.g. two-point evaluations methods like in [125], [27], [123], [126] that try to
approximate directional derivatives along random direction at each iteration). Motivated
by these properties of STP we focus on further developing of this method.

Momentum. Heavy ball momentum! is a special technique introduced by Polyak in 1964
[130] to get faster convergence to the optimum for the first-order methods. In the original
paper, Polyak proved that his method converges locally with O (\/%log 1/s> rate for
twice continuously differentiable p-strongly convex and L-smooth functions. Despite the
long history of this approach, there is still an open question whether heavy ball method
converges to the optimum globally with accelerated rate when the objective function is

twice continuous differentiable, L-smooth and p-strongly convex. For this class of functions,

L We will refer to this as momentum.
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only non-accelerated global convergence was proved [131] and for the special case of
quadratic strongly convex and L-smooth functions Lessard et. al. [132] recently proved
asymptotic accelerated global convergence. However, heavy ball method performs well in
practice and, therefore, is widely used. One can find more detailed survey of the literature
about heavy ball momentum in [133].

Importance Sampling. Importance sampling has been celebrated and extensively studied
in stochastic gradient based methods [134] or in coordinate based methods [135]. Only
very recently, [136] proposed, STP_IS, the first DFO algorithm with importance sampling.
In particular, under coordinate-wise smooth function, they show that sampling coordinate
directions, can be generalized to arbitrary directions, with probabilities proportional to
the function coordinate smoothness constants, improves the leading constant by the same
factor typically gained in gradient based methods.

Contributions. Our contributions can be summarized into three folds.

e First ZO method with heavy ball momentum. Motivated by practical effectiveness

of first-order momentum heavy ball method, we introduce momentum into STP
method and propose new DFO algorithm with heavy ball momentum (SMTP). We
summarized the method in Algorithm 9, with theoretical guarantees for non-convex,
convex and strongly convex functions under generic sampling directions D. We
emphasize that the SMTP with momentum is not a straightforward generalization of
STP and Polyak’s method and requires insights from virtual iterates analysis from
[137].

To the best of our knowledge it is the first analysis of derivative-free method with
heavy ball momentum, i.e. we show that the same momentum trick that works for

the first order method could be applied for zeroth-order methods as well.

e First ZO method with both heavy ball momentum and importance sampling.

In order to get more gain from momentum in the case when the sampling directions
are coordinate directions and the objective function is coordinate-wise L-smooth
(see Assumption 5.3.1), we consider importance sampling to the above method. In
fact, we propose the first zeroth-order momentum method with importance sampling
(SMTP_IS) summarized in Algorithm 10 with theoretical guarantees for non-convex,
convex and strongly convex functions. The details and proofs are left for Section 5.3

and Appendix 5.7.3.
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Algorithm 9 SMTP: Stochastic Momentum Three Points

Require: learning rates {v*},>0, starting point 2° € R4, D — distribution on R?, 0 <
B <1 — momentum parameter
1: Set v~ ! =0 and 2° = 2°
2: for k=0,1,... do

3: Sample s* ~ D

4: Let U_]f_ = BoF! + 5% and vF = poFt — §F
5: Let 2% = 2% — v*v¥ and AR LY
) k41 _ k+1 _ A*B & k41 k+1  A*8 &
6: Let 207 = a7 15V} and 277 = 2 15V
_ k1 _ : k k41 k+1
7 Set 2! = argmin { f(2*), f(25T), F(zF)}
¢ (
k41 ie k1l k1 k41 se k1l k1
a2 =27 vy, i 2T =20
_ k1 _ . k1 _ .
8: Set xXr = xli'i'l’ 1f Z’H‘l — zﬁ+1 and v = Uﬁ"'l’ lf Zk+1 — ZE—H
gk, i PR = ok ok, if P = ok
(
9: end for

e Practicality. We conduct extensive experiments on continuous control tasks from
the MuJoCo suite [101] following recent success of DFO compared to model-free
reinforcement learning [108, 109]. We achieve with SMTP_IS the state-of-the-art
results on across all tested environments on the continuous control outperforming

DFO [108] and policy gradient methods [138, 139].

We provide more detailed comparison of SMTP and SMTP_IS in Section 5.4 of the

Appendix.

5.2. Stochastic Momentum Three Points (SMTP)

Our analysis of SMTP is based on the following key assumption.
Assumption 5.2.1. The probability distribution D on R™ satisfies the following properties:
: def g . .
1. The quantity vp = BEupl|s||5 is finite.

2. There is a constant up > 0 for a norm || - ||p in R™ such that for all g € R"

E.pl(9:9)] = pollglp. (5:2)
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SMTP Importance SMTP_IS
Assumptions on f Theorem Theorem
Complexity Sampling Complexity
None 2l 521 | pi= sty rond i i 5.3.1
2 2, n .
Convex, Ry < oo | 1208M0 1 (20) | 522 | p = gobip | Mtz i, (20) | 5.3.2
D i= %
p-strongly convex # In (2%) 5.2.5 Pi = i » Z”"Ij Ligg (2%) 5.3.5
D i=1 1

Table 5.1: Summary of the new derived complexity results of SMTP and SMTP_IS. The
complexities for SMTP are under a generic sampling distribution D satisfying Assumption
5.2.1 while for SMTP_IS are under an arbitrary discrete sampling from a set of coordinate
directions following [136] where we propose an importance sampling that improves the
leading constant marked in red. Note that ro = f(z9) — f(x.) and that all assumptions
listed are in addition to L-smoothness. Complexity means number of iterations in order to
guarantee E||V f(z5)||p < & for the non-convex case, E [ (%) — f(2*)] <  for convex
and strongly convex cases. Ry < oo is the radius in || - ||5-norm of a bounded level set where
the exact definition is given in Assumption 5.2.2. We notice that for SMTP_IS || - ||p = || - |1
and || - |5 = || - || in non-convex and convex cases and || - ||[p = || - ||2 in the strongly
convex case.

Some examples of distributions that meet above assumption are described in Lemma 3.4
from [129]. For convenience we provide the statement of the lemma in the Appendix (see
Lemma 5.7.4).

Recall that one possible view on STP [129] is as following. If we substitute gradient
V f(2*) in the update rule for the gradient descent ¥+ = 2% — 4*V f(2*) by 4s* where s*
is sampled from distribution D satisfied Assumption 5.2.1 and then select z**! as the best
point in terms of functional value among x*, 2% — v¥s* 2% + 4% s* we will get exactly STP
method. However, gradient descent is not the best algorithm to solve unconstrained smooth
minimization problems and the natural idea is to try to perform the same substitution-trick
with more efficient first-order methods than gradient descent.

We put our attention on Polyak’s heavy ball method where the update rule could be

written in the following form:
o = BT £ V(2R 2R = ab — 4Rk (5.3)

As in STP, we substitute Vf(z*) by £s" and consider new sequences {v*};>o and
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{vF }1>0 defined in the Algorithm 9. However, it is not straightforward how to choose

next x*! and v* and the virtual iterates analysis [137] hints the update rule. We
consider new iterates 25! = F+! — ;’f—’gvﬁ and 2"t = At Yf—g ¥ and define ¢!

as argmin { f(2*), f(z5™), fF(2""")}. Next we update 2**! and v* in order to have the

kL kL and oF as between 25! 28T and of and Mt 2P

same relationship between z
and v*. Such scheme allows easily apply virtual iterates analysis and and generalize Key
Lemma from [129] which is the main tool in the analysis of STP.

By definition of 2**! we get that the sequence {f(2*)}1>0 is monotone:
fEFY < f(*) VE>o. (5.4)

Now, we establish the key result which will be used to prove the main complexity

results and remaining theorems in this section.

Lemma 5.2.1. Assume that f is L-smooth and D satisfies Assumption 5.2.1. Then for
the iterates of SMTP the following inequalities hold:

k kN2
v L(v"*)
————s"[I3

FER) < 164 = TS AE) ) + g I (5.5)
and . .
ki1 by _ b J L(v*)*vp
Buton [[()] < £:4) = TEB IV A5 + 5232, (5.0

5.2.1. Non-Convex Case

In this section, we show our complexity results for Algorithm 9 in the case when f is
allowed to be non-convex. In particular, we show that SMTP in Algorithm 9 guarantees
complexity bounds with the same order as classical bounds, i.e. 1/ V'K where K is the
number of iterations, in the literature. We notice that query complexity (i.e. number of
oracle calls) of SMTP coincides with its iteration complexity up to numerical constant factor.

For clarity and completeness, proofs are left for the appendix.

Theorem 5.2.1. Let Assumption 5.2.1 be satisfied and function f be L-smooth. Let SMTP
with v* = v > 0 produce points {2°,2%,..., 2571} and ZX is chosen uniformly at random

among them. Then

“AUE) - f6) | L

o] < O
B[IV4E)] < T

(5.7)
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% the complezity (5.7) reduces to

1 ((1=8)(f(2%) = f(z")) Loy
- ( + ) . (5.8)

YolD 2up(1 = B)
Then vy = \/2(175)2%%})#@*)) minimizes the right-hand side of (5.8) and for this choice

Moreover, if we choose v =

5

E[|VfE")llo] <

we have

\/2 )) L'VD
MD\/_

In other words, the above theorem states that SMTP converges no worse than STP

E[[VfE)ln] < (5.9)

for non-convex problems to the stationary point. In the next sections we also show that
theoretical convergence guarantees for SMTP are not worse than for STP for convex and
strongly convex problems. However, in practice SMTP significantly outperforms STP. So, the
relationship between SMTP and STP correlates with the known in the literature relationship

between Polyak’s heavy ball method and gradient descent.

5.2.2. Convex Case

In this section, we present our complexity results for Algorithm 9 when f is convex.
In particular, we show that this method guarantees complexity bounds with the same
order as classical bounds; i.e. 1/K, in the literature. We will need the following additional

assumption in the sequel.

Assumption 5.2.2. We assume that [ is convex, has a minimizer x* and has bounded
level set at 2°:
de * || *
Ry © max {||lz — 2*[|p | f(2) < F(z°)} < +oo, (5.10)

def

where ||€||5 = max {(&,z) | ||z||p < 1} defines the dual norm to || - ||p.

From the above assumption and Cauchy-Schwartz inequality we get the following

implication:

f(x) < fwo) = f(z) = fla.) < (Vf(2), 2 —2%) < [[Vf(@)lpllz —2"[lp < RollV S (2)llp,

which implies

IVf(z)llp = Va: f(z) < f(xo). (5.11)
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Theorem 5.2.2 (Constant stepsize) Let Assumptions 5.2.1 and 5.2.2 be satisfied and f
be L-smooth. If we set v¥ = v < (=R , then for the iterates of SMTP method the following

imequality holds:

k
R YD . LyypRo
E [f(") = f(a")] < (1 - m) (f(2°) = f(a")) + 0= Pn’ (5.12)
If we choose v = %T for some 0 < ¢ < LZZJRO and run SMTP for k = K iterations
where
ey €

then we will get E [f(2)] — f(a*) <

In order to get rid of factor In

w in the complexity we consider decreasing

stepsizes.

Theorem 5.2.3 (Decreasing stepsizes). Let Assumptions 5.2.1 and 5.2.2 be satisfied and

function f be L-smooth. If we set v¥ = %M’ where o = (lj‘ﬁ and 0 > %, then for the

iterates of SMTP method the following inequality holds:

2Lyp
£G4 - fe) < iman 1) - fe) s b G
where 77 = 2 Then, if we choose Y* = 22&2 where o = (1_“% and run SMTP for k = K
iterations where
1 2R? . 2(1 — B)2R?
K= 22 s {1 - R0 — @) Lo} - 22 s )
€ Hp HD

We notice that if we choose 3 sufficiently close to 1, we will obtain from the formula

(5.15) that K ~ 28l
ENE

5.2.3. Strongly Convex Case

In this section we present our complexity results for Algorithm 9 when f is p-strongly

convex.

Assumption 5.2.3. We assume that [ is p-strongly conver with respect to the norm

- 115

fly) = f(@) +(Vf(z),y —x) + g(Hy —x|p)’, Vr,yeR™ (5.16)
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It is well known that strong convexity implies

IVf(@)p > 20 (f(2) = f(2")). (5.17)

Theorem 5.2.4 (Solution-dependent stepsizes). Let Assumptions 5.2.1 and 5.2.3 be
satisfied and function f be L-smooth. If we set v* = %\/Q,u(f(zk) — f(z*)) for
some Oy € (0,2) such that 6 = il;(f){QGk —vp02} € (0,L/(2w), then for the iterates of SMTP,

the following inequality holds:

Oudp\"
BIAGH) - 1) < (1= 228) (1) - 50). (5.18)
Then, If we run SMTP for k = K iterations where
K = GZ% In (f(mo);f(x*)), e>0, (5.19)

where Kk dzef% is the condition number of the objective, we will get E [f(2%)] — f(z*) < e.

Note that the previous result uses stepsizes that depends on the optimal solution
f(z*) which is often not known in practice. The next theorem removes this drawback
without spoiling the convergence rate. However, we need an additional assumption on the

distribution D and one extra function evaluation.
Assumption 5.2.4. We assume that for all s ~ D we have ||s||2 = 1.

Theorem 5.2.5 (Solution-free stepsizes). Let Assumptions 5.2.1, 5.2.8 and 5.2.4 be
satisfied and function f be L-smooth. If additionally we compute f(zF + ts¥), set v* =
(A=B)f(*+t")=F ()L for t > 0 and assume that D is such that u% < L/u, then for the

iterates of SMTP the following inequality holds:

" e\ o L
E|f(z —f:v*g(——) flx™) — f(z")) + . 5.20
[f(z")] = f(=") ) (FE) = f@) S35 (5.20)
Moreover, for any € > 0 if we set t such that
deppp
0<t< Lf : (5.21)

and run SMTP for k = K iterations where

K= (2<f<x0> - f<a:*>>) | 522

Hp €

where K d:efﬁ is the condition number of f, we will have E [f(z%)] — f(z*) <e.
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5.3. Stochastic Momentum Three Points with Importance

Sampling (SMTP_IS)

In this section we consider another assumption, in a similar spirit to [136], on the

objective.

Assumption 5.3.1 (Coordinate-wise L-smoothness). We assume that the objective f has
coordinate-wise Lipschitz gradient, with Lipschitz constants Ly, ..., L, > 0, i.e.

L;

f(z+ he;) < f(z) + Vif(x)h + 7hz, Ve € R, h € R, (5.23)

where V; f(x) is i-th partial derivative of f at the point x.

For this kind of problems we modify SMTP and present STMP_IS method in Algorithm 10.
In general, the idea behind methods with importance sampling and, in particular, behind
SMTP_IS is to adjust probabilities of sampling in such a way that gives better convergence
guarantees. In the case when f satisfies coordinate-wise L-smoothness and Lipschitz

k¥ = e; with probability depending

constants L; are known it is natural to sample direction s
on L; (e.g. proportional to L;). One can find more detailed discussion of the importance
sampling in [134] and [135].

Now, we establish the key result which will be used to prove the main complexity

results of STMP_IS.

Lemma 5.3.1. Assume that f satisfies Assumption 5.3.1. Then for the iterates of SMTP_IS

the following inequalities hold:

PR < 768 = VSR + 0 (5:21)
and
1 1 1 2

5.3.1. Non-convex Case

Theorem 5.3.1. Assume that f satisfies Assumption 5.3.1. Let SMTP_IS with v¥ = -

wik

for some v > 0 produce points {2°, 2%, ..., 257} and Z% is chosen uniformly at random
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Algorithm 10 SMTP_IS: Stochastic Momentum Three Points with Importance Sampling

Require: stepsize parameters wy, ..., w, > 0, probabilities py,...,p, > 0 summing to 1,
starting point z° € R", 0 < 8 < 1 — momentum parameter
1: Set v =0 and 2° = 2°
2: for k=0,1,... do
3: Select 7, = ¢ with probability p; > 0

4: Choose stepsize v proportional to oy
5: Let v% = puF~! +¢;, and v* = po*~t —¢;,
6: Let xff“l =k - ’nyJr and 2" = zF — Rk
k
7. Let 2Tt =Mt — ngﬁ and 2P = ght! — %UE
8: Set ZF 1 = arg min { f(z%), F(5T), F(zF)}
iﬂ, if Zktl = Z_’T_+1 _’frl, if Zktl = z_]ﬁl
9: Set zFt! = { gt if PR = JF+1 and vl = VL f PRl = AL
xk, if 2kl = Sk Uk, if 2kl = Sk
(
10: end for
among them. Then
(1= B)(f(°) — f(z*)) Lipi
E[IVFfE")|l] < + 5.26
IVFE] < = T ﬂZ (5.26)
i=1,...,n Wi =1,..,n Wi =1

Moreover, if we choose v = 7—2(, then

B[IV/EI] < = iun — <(1_5)(f(j0) mkiCa) 2(17E 5 Zﬁf;) (5.27)

Wy

i=1,....,n

Note that if we choose vy = \/2(1_5)2“@ __f(x*)) in order to minimize right-hand side of

(5.27), we will get

¢2 (%) — f(am)) 3 b
IV £ )] N = (5.28)

i=1,...,n Wi

Note that for p; = Li/s, L, with w; = L; we have that the rates improves to

\/2 \/F» Zz 1L (529)

E[|VE)IL] <
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5.3.2. Convex Case

As for SMTP to tackle convex problems by SMTP_IS we use Assumption 5.2.2 with
|- llp =1 - ||1- Note that in this case Ry = max {||lz — z*||o | f(z) < f(z)}.

Theorem 5.3.2 (Constant stepsize). Let Assumptions 5.2.2 and 5.3.1 be satisfied. If we
set yF = L such that 0 < v < %, then for the iterates of SMTP_IS method the

4
k i=1,..., n Wi

following inequality holds:

" i, & B i
E k\ * 1 L) n 0y ) + 0 Vi
1 -] < (1= g5 | U -1+ e o
(5.30)
e(1-8) min £ RZ i Lj]gi
Moreover, if we choose v = ;’1;1;7 - for some 0 < & < —=—5 and run SMTP_IS
Ro 3 =Lt _min %
i=1 i i=1,...,n W3

for k = K iterations where

I (2(1”(:60) - f(x*))) | (5.31)

we will get B [f(z5)] — f(z*) < e. Moreover, for p; = Li/y, L, with w; = L;, the rate

improves to

£ 9

K = lediLi In (2(f(x0) — f(x*») . (5.32)

Theorem 5.3.3 (Decreasing stepsizes). Let Assumptions 5.2.2 and 5.3.1 be satisfied. If

P

. Z_:min iy .
we set v = ’LZ_% and v = %Jre, where a = (f—W and 6 > %, then for the iterates of

SMTP_IS method the following inequality holds:

1 2 " L;p;
E [f(z")] — f(a*) < ) — f(z* = 5.33
[£(4)] ﬂw%_%+1mw{ﬂw) ﬂm%MU—BPZ;w?}’ (5.33)
where n o 5. Moreover, if we choose k= afk‘iz where a = % and run SMTP_IS for

k = K iterations where

1 2R? o = Lip; 2(1 — B)?R?
K=o 2B e (1= () - pary, S B 2Ry
€  min % — Wi min %
i=1,...,d Wi i=1,....n Wi
(5.34)

we will get E [f(2X)] — f(z*) <e.
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5.3.3. Strongly Convex Case

Theorem 5.3.4 (Solution-dependent stepsizes). Let Assumptz’ons 5.2.83 (with || - ||p =
(1-8)0;, min i

|- 111) and 5.5.1 be satisfied. If we set v* = len ™ Du(f(2F) — f(x%)) for some
Wi, Z zpz
> L
01 € (0,2) such that 0 = 1nf{29k —6021 e |o, % , then for the iterates of SMTP_IS
i—l ,,,,, n wlzz

method the following inequality holds:

S\
Ou _nllin %
B - fa) < [1- —5= | (G@) - f6@). 63
iDi
=1 w?
If we run SMTP_IS for k = K iterations where
i LJ]};Z 0 *
K==L ZQm(ﬂm) ﬂx», £>0, (5.36)
O min o €

we will get B [f(z%)] — f(a*) <e.

The previous result based on the choice of ¥¥ which depends on the f(2*) — f(z*)
which is often unknown in practice. The next theorem does not have this drawback and
makes it possible to obtain the same rate of convergence as in the previous theorem using

one extra function evaluation.

Theorem 5.3.5 (Solution-free stepsizes). Let Assumptions 5.2.3 (with || - ||lp = | - ||2)
- 2P tte;, )~ f(2F
and 5.5.1 be satisfied. If additionally we compute f(2* +te;, ), set 4 = A=A ;tt”“) Gl
ik

fort >0, then for the iterates of SMTP_IS method the following inequality holds:

-----

0<t< (5.38)

P im<%ﬂﬁ)—ﬂﬁn>7 (5.39)
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SMTP Importance SMTP_IS
Assumptions on f Theorem Theorem
Compleixty Sampling Complexity
L Li 2 . Zl: L;
None mrgnl 521 | pi=stip ron 2 L 5.3.1
R2, nL _ RZ, nY ' L
Convex, Ry < 0o | “52" In (22) | 522 | py= gy | BmlEmly (2) | 530
pu-strongly convex % In (2%) 5.2.5 p; = ﬁ # In (2%) 5.3.5

Table 5.2: Comparison of SMTP with D = N (0, é) and SMTP_IS with p; = Li/s>r 1. Here
ro = f(27)

and Ry, corresponds to the Ry from Assumption 5.7.3 with || - ||lp = || - ||1-

— f(x*), Rog, corresponds to the Ry from Assumption 5.7.3 with || - [|p = || - ||2

we will get E [f(z%)] — f(z*) < e. Moreover, note that for p; = Li/s; L, with w; = L, the

rate improves to

- - (5.40)

D > 7 (2(f(fv°) 1)),

5.4. Comparison of SMTP and SMTP_IS

Here we compare SMTP when D is normal distribution with zero mean and % covariance
matrix with SMTP_IS with probabilities p; = Li/s°r, 1,. We choose such a distribution for
SMTP since it shows the best dimension dependence among other distributions considered in
Lemma 5.7.4. Note that if f satisfies Assumption 5.3.1, it is L-smooth with L = max L;.
So, we always have that )", L, < nL. Table 5.2 summarizes complexities in this ;:z;se.

We notice that for SMTP we have || - |[p = || - ||2- That is why one needs to compare
SMTP with SMTP_IS accurately. At the first glance, Table 5.2 says that for non-convex
and convex cases we get an extra n factor in the complexity of SMTP_IS when L; =
...= L, = L. However, it is natural since we use different norms for SMTP and SMTP_IS.
In the non-convex case for SMTP we give number of iterations in order to guarantee
E [||[Vf(zX)|l2] < e while for SMTP_IS we provide number of iterations in order to guarantee
E [|[Vf(ZX)|1] < e. From Holder’s inequality || - ||y < v/n]| - ||2 and, therefore, in order to
have E [||V f(z%)|l] < e for SMTP we need to ensure that E [[|V f(ZX)|.] < —=- That is,
to guarantee E [[|V f(z)|1] < e SMTP for aforementioned distribution needs to perform
iterations.

wron2L
&2

Analogously, in the convex case using Cauchy-Schwartz inequality || - |2 < /7 - |l
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we have that Ry, < v/nRy.. . Typically this inequality is tight and if we assume that

R R§ 4,21 Li
Rog., > C= e

2
7 \/22, we will get that SMTP_IS complexity is —==2=

factor.

In (2%) up to constant

That is, in all cases SMTP_IS shows better complexity than SMTP up to some constant

factor.

5.5. Experiments

Experimental Setup. We conduct extensive experiments on challenging non-convex
problems on the continuous control task from the MuJoCO suit [101]. In particular,
we address the problem of model-free control of a dynamical system. Policy gradient
methods for model-free reinforcement learning algorithms provide an off-the-shelf model-free
approach to learn how to control a dynamical system and are often benchmarked in a
simulator. We compare our proposed momentum stochastic three points method SMTP
and the momentum with importance sampling version SMTP_IS against state-of-art DFO
based methods as STP_IS [136] and ARS [108]. Moreover, we also compare against classical
policy gradient methods as TRPO [138] and NG [139]. We conduct experiments on several
environments with varying difficulty Swimmer-v1, Hopper-v1, HalfCheetah-v1, Ant-v1,
and Humanoid-v1.

Note that due to the stochastic nature of problem where f is stochastic, we use
the mean of the function values of f(z"), f(z%) and f(z*), see Algorithm 9, over K
observations. Similar to the work in [136], we use K = 2 for Swimmer-vi, K = 4 for
both Hopper-vl and HalfCheetah-v1, K = 40 for Ant-v1 and Humanoid-v1. Similar
to [136], these values were chosen based on the validation performance over the grid
that is K € {1,2,4,8,16} for the smaller dimensional problems Swimmer-v1, Hopper-vi,
HalfCheetah-v1 and K € {20,40,80,120} for larger dimensional problems Ant-v1, and
Humanoid-v1. As for the momentum term, for SMTP we set § = 0.5. For SMTP_IS, as
the smoothness constants are not available for continuous control, we use the coordinate
smoothness constants of a # parameterized smooth function fg (multi-layer perceptron)
that estimates f. In particular, consider running any DFO for n steps; with the queried
sampled {z;, f(z;)}7,, we estimate f by solving 6,1 = argming 3°,(f(z;) — f(z4; )% See
[136] for further implementation details as we follow the same experimental procedure.

In contrast to STP_IS, our method (SMTP) does not required sampling from directions in
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Swimmer-v1 Hopper-v1l HalfCheetah-v1
o o o 5000
g 300 @ 3000 5
2 2 2 4000
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Figure 5.1: SMTP is far superior to STP on all 5 different MuJoCo tasks particularly on the
high dimensional Humanoid-v1 problem. The horizontal dashed lines are the thresholds

used in Table 5.3 to demonstrate complexity of each method.

the canonical basis; hence, we use directions from standard Normal distribution in each
iteration. For SMTP_IS, we follow a similar procedure as [136] and sample from columns of
a random matrix B.

Similar to the standard practice, we perform all experiments with 5 different initialization
and measure the average reward, in continuous control we are maximizing the reward
function f, and best and worst run per iteration. We compare algorithms in terms of
reward vs. sample complexity.

Comparison Against STP. Our method improves sample complexity of STP and
STP_IS significantly. Especially for high dimensional problems like Ant-v1 and Humanoid-v1,
sample efficiency of SMTP is at least as twice as the STP. Moreover, SMTP_IS helps in some
experiments by improving over SMTP. However, this is not consistent in all environments.
We believe this is largely due to the fact that SMTP_IS can only handle sampling from
canonical basis similar to STP_IS.

Comparison Against State-of-The-Art. We compare our method with state-of-
the-art DFO and policy gradient algorithms. For the environments, Swimmer-v1, Hopper-vi,
HalfCheetah-v1 and Ant-v1, our method outperforms the state-of-the-art results. Whereas

for Humanoid-v1, our methods results in a comparable sample complexity.
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Table 5.3: For each MuJoCo task, we report the average number of episodes required to
achieve a predefined reward threshold. Results for our method is averaged over five random
seeds, the rest is copied from [108| (N/A means the method failed to reach the threshold.

UNK means the results is unknown since they are not reported in the literature.)

Threshold ~ STP STP;s  SMTP  SMTP;s ARS(V1-t) ARS(V2-t) NG-lin TRPO-nn

Swimmer-vi 325 320 110 80 100 100 427 1450 N/A
Hopper-v1 3120 3970 2400 1264 1408 51840 1973 13920 10000
HalfCheetah-v1 3430 13760 4420 1872 1624 8106 1707 11250 4250
Ant-v1 3580 107220 43860 19890 14420 58133 20800 39240 73500
Humanoid-v1 6000 N/A 530200 161230 207160 N/A 142600 130000 UNK

5.6. Conclusion

We have proposed, SMTP, the first heavy ball momentum DFO based algorithm with
convergence rates for non-convex, convex and strongly convex functions under generic
sampling direction. We specialize the sampling to the set of coordinate bases and further
improve rates by proposing a momentum and importance sampling version SMPT_IS
with new convergence rates for non-convex, convex and strongly convex functions too.
We conduct large number of experiments on the task of controlling dynamical systems.
We outperform two different policy gradient methods and achieve comparable or better

performance to the best DFO algorithm (ARS) on the respective environments.

5.7. Missing Proofs, Technical Lemmas and Auxiliary Results

5.7.1. Preliminaries
We first list the main assumptions.
Assumption 5.7.1. (L-smoothness) We say that f is L-smooth if:
IVf(z) =Vl < Llz —yll Vo,y € R" (5.41)
Assumption 5.7.2. The probability distribution D on R™ satisfies the following properties:
1. The quantity yp i E.-pl|s||3 is positive and finite.

2. There is a constant pp > 0 and norm || - |p on R™ such that for all g € R™

E.-pl(g,5)| = pollgllp- (5.42)
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We establish the key lemma which will be used to prove the theorems stated in the

paper.

Lemma 5.7.1. Assume that f is L-smooth and D satisfies Assumption 5.7.2. Then for
the iterates of SMTP the following inequalities hold:

FE) < 70 = T+ 5 (5.49
and
Bap 1] £ 1)~ ZL2 974 o+ 2002 (5.44)
Proof. By induction one can show that
gk P e (5.45)

- 5
That is, for k = 0 this recurrence holds and update rules for 2*, z¥ and v*~! do not brake

it. From this we get

k k
E+1 k+1_75k k k, k V"B

2y = Ty m%:x _'VU+_1_5“$
k k k
Y VB g g
_ xk_l_ﬁvi:xk_l_ﬁvkl_l_BSk
k
(5.2 2k — v s
1-p
Similarly,
k k
R =T
k k k
_ Tk k. Y0 k1 7k
= 1_5117—3: 1—5U +1—BS
(5.45) g 7k
=z —l—l_ﬂs.
It implies that
k+1 (3.3) k k k+1 L k+1 k|12
F(5) < f(27) +(Vf(25), 2y —zk>—|—§||z+ —2"5
k kN2
k Y K\ Lk L(V) k(2
— _ \V/ N
P4 = T3 V1), + g7 s 11
and
k E\2
gl L(v")
f(ZﬁH) < f(Zk) + — ﬂ<vf(zk>’3k> + WHS'CH%
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Unifying these two inequalities we get

k L k\2
AR+ gl

which proves (5.43). Finally, taking the expectation Eg p of both sides of the previous

FEY < min{f (), F(E} = f(2h) -

inequality and invoking Assumption 5.7.2, we obtain

k
Baen [f(F)] < £ = TE2I9 ()0 + 5

5.7.2. Missing Proofs from Section 5.2
Non-Convex Case

Theorem 5.7.1. Let Assumptions 5.7.1 and 5.7.2 be satisfied. Let SMTP with v¥ =~ > 0

produce points {2°, 21, ... 2571} and ZX is chosen uniformly at random among them.
Then
_ 1 - B)(f(=°) = f(=7)) Lyyp
E |V o] < + : 5.46
IVE)l) < =2 ST ) (5.46)
Moreover, if we choose v = 70 the complexity (5.46) reduces to
~ L (=B = fa)) Lyoyp )
E[|[VfE")|p] < ( + . 5.47
Then o = \/2(1_@2(];(;02)_]0(9”*)) minimizes the right-hand side of (5.47) and for this choice
we have
- \/2 z¥)) L’YD
IVFE")llp] < (5.48)
[ ] MD\/_

Proof. Taking full expectation from both sides of inequality (5.44) we get

(1=B)E [f(Z*) — f(zF)] L L
Yip 2up(1 = 3)

E [|Vf()llp] <

Further, summing up the results for K = 0,1, ..., K — 1, dividing both sides of the obtained

inequality by K and using tower property of the mathematical expectation we get

(1=0)(f(2°) = f(z*)) L Ly
Kryup 2up(1 —B)

[WNK%:KZEWfMdg

The last part where v = 7—\} is straightforward. m
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Convex Case

Assumption 5.7.3. We assume that [ is convex, has a minimizer x* and has bounded

level set at x°:

Ry & max{”x — 2t | f(z) < f(2°)} < +o0, (5.49)

where ||£||D max{(f, x) | |z||p < 1} defines the dual norm to || - ||p.

Theorem 5.7.2 (Constant stepsize). Let Assumptions 5.7.1, 5.7.2 and 5.7.3 be satisfied.

(=B)Ro

If we set v =~ < , then for the iterates of SMTP method the following inequality

holds:
BIAH) - 1) < (1- L) (FG) — f) + 5220 (5.50)
- (1= 5)Ro 2(1 = B)up '
If we choose v = (LI'VW for some 0 < ¢ < LZZJRO and run SMTP for k = K iterations
where
e U €

then we will get E [f(2")] — f(a*) <

Proof. From the (5.44) and monotonicity of {f(z*)}1>0 we have

L 2
Beo[f()] < SN - {E5IVIE I+ 575

S - GG~ ) R

Taking full expectation, subtracting f(z*) from the both sides of the previous inequality

and using the tower property of mathematical expectation we get

BIAC — )] < (1 28 B — )] 4 gn e (532

Since v < (IIL@ the term 1 — is positive and we can unroll the recurrence (5.52):

YUD
(1-B)Ro

- k . ) L2y R N .
Bl -] < (125 ) 00— + 5 = (- 5m)

| _ D )k(f( ) — fa*)) + Ly*vp i(l_ VD >l
* . 2(1— B)? (1- AR,
’ 0y _ f(p* L*yp ) (1—B)Ry
(£ = f) + 20-58)?2 o
: 0y ¥ LVVDRO

IN

(-
(- %m)
( (1 )Ro)

—-f
THD
—-f

IN

) L
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Lastly, putting v = €242 and k = K from (5.51) in (5.50) we have

LypRo
) K
B - ) = (1= 28 ) () - f6) + 5
S . €
< ew{-K 2B () - S + 5
(551 € €
== 5 + 5 = £.

Next we use technical lemma from [39]. We provide the original proof for completeness.

Lemma 5.7.2 (Lemma 6 from [39]). Let a sequence {a*}1>o satisfy inequality a*** <
(1 —~y*ka)a® + (v*)2N for any positive v* <~y with some constants o > 0, N > 0,7y > 0.
Further, let 6 > % and take C such that N < O‘TQC and ag < C. Then, it holds

C

k
<
RV

2
ak+0 "

if we set v* =

Proof. We will show the inequality for a* by induction. Since inequality ay < C' is one of
our assumptions, we have the initial step of the induction. To prove the inductive step,

consider

ak+1 < (1 _,yka)ak + (’yk)QN < (1 20 ) oC c

— o————.
ak +0 al{:+9+ a(ak—i—@)?

To show that the right-hand side is upper bounded by ol

6C
FrTe one needs to have, after

multiplying both sides by (ak + 0)(ak + o + 0)(6C) 71,

2a ak+a+0
1— k 0 —— < ak+0
( (m+9)m +a+0)+a g Skt
which is equivalent to
B ak+a+6 <
ak+60 —
The last inequality is trivially satisfied for all £ > 0. n

Theorem 5.7.3 (Decreasing stepsizes). Let Assumptions 5.7.1, 5.7.2 and 5.7.3 be satisfied.

If we set v* = ﬁ, where o = (1—MBD)R0 and 0 > %, then for the iterates of SMTP method

the following inequality holds:

1
nk +1

E /()] - fz") < max{f(wo)—f(w*) 2Ly } (5.53)

"ab(1 - p)?
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where n ) 5- Then, if we choose VF = aQQkiQ where o = (1_“% and run SMTP for k = K
iterations where
1 2R? S ) 2(1 — B)*Rj
K=~ 20 max {(1- BP(f(a) ~ f(&), Iy} — 520, e>0,  (554)
€ Hp Hp

Proof. In (5.52) we proved that

E[f(") = f(a")] < <1 - %) E[f(z") — f(z)] + Q(L%V;)Q

Having that, we can apply Lemma 5.7.2 to the sequence E [f(z*) — f(2*)]. The constants

for the lemma are: N = 2(51—7;)2, o = T35 and C = max{f(xo) —f(ﬁ*),%}.

Lastly, choosing v* = oc22kC:-2 is equivalent to the choice 6 = % In this case, we have afl = 2,
2

C' = max {f(xo) — f(z"), OL*%)Q} and n = § = 0‘72 = 2(1—NTD)2RS' Putting these parameters

and K from (5.54) in the (5.53) we get the result. O

Strongly Convex Case

Assumption 5.7.4. We assume that [ is p-strongly convexr with respect to the norm
I 115

) > @)+ (Vf(@)y =)+ S(lly - allp)’, Va,y € R, (5.55)
It is well known that strong convexity implies
IV f(@)p = 20 (f(2) = f(z7)). (5.56)

Theorem 5.7.4 (Solution-dependent stepsizes). Let Assumptions 5.7.1, 5.7.2 and 5.7.4

be satisfied. If we set v* = %\/Qu(f(zk) — f(z*)) for some 0 € (0,2) such that

0 = }gﬁ{%k — ypb} € (0, L), then for the iterates of SMTP the following inequality

1
holds:

Oudp\”
BIAGH] - ) < (1- P21 (1) - ). (5.57)
If we run SMTP for k = K iterations where
K = GZ% In (f(g’o) - f(x*)) . e>0, (5.58)

where Kk d:efﬁ is the condition number of the objective, we will get E [f(2")] — f(z*) <e.
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Proof. From (5.44) and 7* = %2 /2,(f(z*) — f(z*)) we have

B [f)] ~ £a) < () - fa") - LE2I9 o + 20T
L~ s - T )
IR ) o))
< 1) - ) - IR - pa))
OB oty — g

< (1m0 (16 - s

Using 6 = Igg {20 — ypb3} € (0, ﬁ) and taking the full expectation from the previous
= D

inequality we get

BIAC - )] < (1- 222 BLAGH - 1)

2 k+1
< (1-"2) (e - )
Lastly, from (5.57) we have
B -sw) < (1-220) () - 1)
< e -k (1) - )
o3

Assumption 5.7.5. We assume that for all s ~ D we have ||s||2 = 1.

Theorem 5.7.5 (Solution-free stepsizes). Let Assumptions 5.7.1, 5.7.2, 5.7.4 and 5.7.5 be

satisfied. If additionally we compute f(2* +1ts¥), set 4* = (l_ﬁ)V(zkEsk)_f(zk)l fort >0 and
assume that D is such that p% < %, then for the iterates of SMTP the following inequality
holds:

k [bH ’ 0 L2
BN - 1) < (1-228) (1) - fe) + . (59)
Moreover, for any € > 0 if we set t such that
4 2
0<t<y —HDH (5.60)

L2’
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and run SMTP for k = K iterations where

K= (2(f(rv°) - f(:v*))) | 1

Hp €

where K d:efﬁ is the condition number of f, we will have E [f(zK)] — f(z*) <e.

Proof. Recall that from (5.43) we have

Vk ky k L(Vk)z
RN ICORDIRE et

If we minimize the right hand side of the previous inequality as a function of v*, we will
A-B{VF(=*),5*)
L

f(zk+l) S f(Zk) o

L However, this stepsize

get that the optimal choice in this sense is fyffpt =
is impractical for derivative-free optimization, since it requires to know Vf(z*). The
natural way to handle this is to approximate directional derivative (V f(2*), s*) by finite

difference w and that is what we do. We choose 7* = (1_5)|f(zk2:sk)_f(zk)‘ =

=BUTHAA | (=AU IC] =BITIEM & kL 5k From this we get

(V(zF), s%) P L
2L 215

FEMY < ) - 7 (6%)%.

Next we estimate |0%|:

5 = SO s - ) - 1T 1)
1-p
Lt
<3<3) (1—-7)
- Lt

<

[f(2" 4 ts7) = f(25) = (Vf ("), ts7)]

(1—p)t
5

L
St =

It implies that

(V(z"), s5) L (1— B)22
1) = oL + 21—-p8)2 4
_ (Vf(z5), 5  Lt?
SRACE A7 A

f(zkz—i-l)

IN

and after taking full expectation from the both sides of the obtained inequality we get

B [/(4) = fa)] SB[ - £6)] = B VAR, ] + %

Note that from the tower property of mathematical expectation and Jensen’s inequality

we have

E (V)] = E[Bau [[(VI(), s | ]
> B[ (B [(VAE). )] | )]

(5.42) ) g (B:56) N .
> E[pIVIEIID] > 2uppE [f(2*) = f(2")].
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Putting all together we get

2

E [f(:4) - f(a)] < (1 - M) B [f(:5) - f(")] + 22

Due to p2 < ﬁ we have

8
1=0
L*t?
8
Lastly, from (5.59) we have
2 242
BIAC) - s < (1-22) (F6) - 56 +
(5.60) 2 . e
< o { K2 () - 1)+ 5
(521) e €
< 5 + 5 = E.
0
5.7.3. Missing Proofs from Section 5.3
Again by definition of 251 we get that the sequence {f(2*)}x>0 is monotone:
fEY < f(2%) VE>o. (5.62)

Lemma 5.7.3. Assume that f satisfies Assumption 5.8.1. Then for the iterates of SMTP_IS

the following inequalities hold:

k L;, (7F)?

k+1y < kb i , k i \ Vi

P € £ = IV )]+ 5 (563
and
1 1
Egp [f(")] < f(2F) - e [V 1V f ()] ] 2] + WE [Lie (7)) ] 2]

(5.64)

Proof. In the similar way as in Lemma 5.7.1 one can show that

k

2P = gk ﬂvk_l (5.65)

155
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and
k
Vi
Z_/T_—i—l _ Lk — Beiw
k
SRl ok Vi e,
1 —
It implies that
(5.23) k Ly (4F)?
k+1 < ki k i \ Vi
and
k kN2
k41 k i k Ly, (77)

Unifying these two inequalities we get
" Li,(+)?
FEE) < mindfE), ) = £ IV 5
which proves (5.63). Finally, taking the expectation E[- | 2*] conditioned on z* from the

both sides of the previous inequality we obtain

1
1-p

1

WE [Lik (75)2 | Zk] .

E [f(*) | ] < f(z5) = 7==E Vi S 24 +

Non-convex Case

Theorem 5.7.6. Assume that f satisfies Assumption 5.5.1. Let SMTP_IS with v¥ = -

for some v > 0 produce points {2°, 2%, ..., 257} and Z¥ is chosen uniformly at random

among them. Then

~ (1 - B)(f(a") = f(z*)) v ~ Lip;
E[|VfE)h] < K> min B + 305 o E ; R (5.66)

Moreover, if we choose v = ]—%, then

B[V < —— iﬁn _ ((1—5>(f(x0)_f(x*)) Ly Lp) (5,67




Note that if we choose vy = \/2(1_6)2(’((””?)__’0@*)) i order to minimize right-hand side of

(5.67), we will get

¢2 (Flat) = £(a)) 32 L

E[|Vf(E" < 5.68
IvsE) < (5.69
Note that for p; = Li/s, L, with w; = L; we have that the rates improves to
2(f(2°) = fla*)d XL, Ls
E[[VFE")IL] < \/ S (5.69)

VK
Proof. Recall that from (5.64) we have

1

E[f(z") [ £7] < f(2") - 50 =9)

E L, ()] ]
(5.70)

=B DIV 2] +

Using our choice 7} = -~ we derive
*k

. Di
E [/}, f(2)] | 2] —VZ IVf ) >IVf(z )HlZ:HlllnnE

and

" Lip
E (L, ()| 4] =72 25
i=1 i

Putting it in (5.70) and taking full expectation from the both sides of obtained inequality
we get

v min £ 5

E[f(z")] <E[f(z")] - %/BZEHVJC(Z]C)HI + 2(17_ 7 Z Lwé’

%

whence
(1-5) (E[f(z"] —E[f(z")]) v “~ Lip;
HVf(zk)Hl < ~ _nlnn p_zz -+ 2(1—6) _IIllln p_z ; w? .

Summing up previous inequality for £ = 0,1,..., K — 1 and dividing both sides of the
result by K, we get

S (1 - A ~ f(a) Ly,
?kZOE[HVﬂ ] < K win 3075 mmg_zl

It remains to notice that = Z E [IVF(Z9)[1] = E[|[Vf(EX)|l1]. The last part where
v = :’} is straightforward. ]
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Convex Case

Theorem 5.7.7 (Constant stepsize). Let Assumptions 5.2.2 and 5.5.1 be satisfied. If we
set ¥ = L such that 0 < v < %, then for the iterates of SMTP_IS method the

'k

i=1,...,n

following inequality holds:

) i, & L
E LA * 1 =1, n 0y * 0 %)
(5.71)
e(1-p) min p—’ R§ i Ljfz”
Moreover, if we choose v = ifl;'; for some 0 < & < —="t and run SMTP_IS
Ro 30—t _min %
i=1 Y3 i=1,..., n wy

for k = K iterations where

€

I (Q(f(xo) - f(w*))) | (5.72)

we will get E [f(zK)} — f(z*) < e. Moreover, for p; = Li/s, 1, with w; = L;, the rate

improves to

K= éR%nzn:Li In (2(“””0) — f(x*>>> . (5.73)

Proof. Recall that from (5.64) we have

1 1
B[ | 4] < 1) = 725E AV O | )+ g [Eah? | 2]
(5.74)
Using our choice ¥ = wi% we derive
B[V f(H)]] = Z VS 2 AV FE b mpin

and

Putting it in (5.74) and taking full expectation from the both sides of obtained inequality

we get

B/~ )] + g7y 2 5

(5.75)
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Due to our choice of v < % we have that the factor |1 — —%= min 2 | is
min 2t (1-B)Ro ;= w;

i=1,...,n Wi

non-negative and, therefore,

B [/(-) - fa")] < (1—(1+,min &) (F(=") — F("))

) k
< <1 T E?“f?) (F) - Fa)
g Lip; g Pi :
* (2(1 —B)? ; w? ) - (1 " (1— B)Ryitoom wz)
N
7z:Irllmn Wi " v Ro o Lip;
<\ whm | U IO g E

.....

Then, putting v = o " and k = K from (5.31) in (5.30) we have
Ro 3 "3
N\ K
€ }7nllin % .
E[f(z")] - fa") = |1-—3%" (F(°) = f(a") + 5
B3 e
=1 "

]

Theorem 5.7.8 (Decreasing stepsizes). Let Assumptions 5.2.2 and 5.3.1 be satisfied. If
min 2i
i=1,...,n Wi

we set ¥ = J—k and v = %M, where a = AR and 6 > %, then for the iterates of
K

SMTP_IS method the following inequality holds:

1 2 " L;p;
E[f(z")] - f(a*) < 0) — f(a* L 5.76
A =16 < max{f(:v ) = @) i ; o } (5.76)
where n o 5. Moreover, if we choose vk = afk‘iz where o = % and run SMTP_IS for

k = K iterations where

K=1. %max{u AP - 1S L”ji} G N

WA
=1 ¢

..........
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we will get E [f(2X)] — f(z*) <e.

Proof. In (5.75) we proved that

v min 2

k+1 * i=1,...,n k * 72 " Lipi
E[f") = f@)] < |1- G E[f(z*) — f(a")] + DI

=1 v

for the lemma are: N = T 5)2 Z ’é”, o= 1_—"7: and C' = max {f(a:o) — f(z*), I 1 5 ;

2
a?k+2

Lastly, note that choosing v* is equivalent to choice 6§ = % In this case we have

aﬁzQandC:max{f(xo) = (@), @ 2z 3 } andn =9 = 72 = ;TLT;Q;% Putting
these parameters and K from (5.34) in the (5 3) we get the result. O

Strongly Convex Case

Theorem 5.7.9 (Solution-dependent stepsizes). Let Assumptwns 5.2.83 (with || - ||p =
(1-8)0k

|- 1l1) and 5.5.1 be satisfied. If we set vF = - gle" wl V2u(f (%) — f(z*)) for some
K =1 w’L
Zn: Lip;
w?
O € (0,2) such that 0 = inf{20,, — 02} € | 0, —=~—— |, then for the iterates of SMTP_IS
k>0 k u i L}
method the following inequality holds:
k
O ;nllin 5—22
B[] - S < [1- —2220 | (fe0) - f6@). 69
i=1 w%
If we run SMTP_IS for k = K iterations where
i Luligl 0 *
K:ei—l'lpgln(f(m)gf(M), £ 0, (5.79)
e
we will get E [f(2%)] — f(a*) <e.
Proof. Recall that from (5.64) we have
1

E[f(") [ 2] < £(=) - E [/Vi f(z")] | 2] + E [L;,(3)" | 2] -

(5.80)

1
1-3 2(1-p)?
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Using our choice 7 = oot T \/ 2u(f f(z*)) we derive

(1—05)0 i_rrllinn o ",
E [V f(z*) | 2] = — V2u(F(F) = F@) Y | Vif ()]
> =1
=1
2
-0 (in, 2)
> R V2u(f (%) = fa DIV
3 L
=1 "
(5.17) 2(1 — )6 _min Z_%f
> T p(f(2F) = fla)
> L
=1
and
2(1 — 3)%0? _min Z—é " L,
E [L;,(v/)* | 2] = — 5 u(f(z") —f(ﬂi*))z >

Putting it in (5.80) and taking full expectation from the both sides of obtained inequality

we get
,u._nllin Z—%
E[f(") = f@)] < | 1= (20 - 0*)——— | E[f(") - f@a")].
iPi
=1 wf
i ngz
Using 6 = 1nf{291C — 67} € | 0, —=—— | we obtain
P2

k+1

IN
—
I
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Lastly, from (5.35) we have

E[f(:")] - f@") < |1-—F""—| (f(«°)—f(@")
Z ngz
=1 "
2
O ‘_Irllin %
< exp —K—F (f(2%) = f(z"))
Lipi
w?
=1 "
(5.36)
< e
O
Theorem 5.7.10 (Solution-free stepsizes). Let Assumptions 5.2.3 (with || - ||p = - ||2)
and 5.5.1 be satisfied. If additionally we compute f(2* +te;, ), set yF = (1_6)|f(zk;tiik)_f(zk)|
k
fort >0, then for the iterates of SMTP_IS method the following inequality holds:
pi\" 2o
k * . ? 0 *
E[f(z")] - f@z") < (1 —Mi:fnl,lj{nfi) (f(@°) = f(z")) + Ml—ln%;Psz (5.81)
in 2o
dep i
0<t< . : (5.82)
szLz
i=1

K1 <2(f(fv0) - f(f*))) 7 (5.83)

.....

we will get E [f(zK)] — f(z*) < e. Moreover, note that for p; = Li/s>, L, with w; = L;, the

rate 1mproves to

P > (2(f(:v°) - f(x*))) | 5.8

o £
Proof. Recall that from (5.63) we have

Vi i\ Vi
FEE) € 1) = IV () + e
If we minimize the right hand side of the previous inequality as a function of v¥, we will

_ . k
get that the optimal choice in this sense is ’yfpt = w However, this stepsize
ik

is impractical for derivative-free optimization, since it requires to know V,, f(2*). The
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natural way to handle this is to approximate directional derivative V;, f(z*) by finite
f(&Fttei )—F(=%) (1=B)|f (zF+tes, ) f(2F)

and that is what we do. We choose 7 = =

difference

t L; t
(1—B)|Zz:f(zk)‘ + (1—5)‘f(zkz;zizk)_f(zk)‘ . (1_5)|Z:: (") d_Ef (])Cpt _|_5k From this we get
Vi f(Z5) L
k+1 < ky | Kk Kk 5k 2'
Next we estimate |0F|:
1-5
o = S G ) = = 19, SN
S(LtV tten) — 1)~ Vi I

62) (1-f) Lyt* (1-B)t
- Lyt 2 2

It implies that

|vlkf(zk>|2 le (1 — 6)2t2

f(ZkJrl) < f(zk) - 2Lik + 2(1 _ ﬁ)Z ) 4
_ |Vz'kf(2k>|2 Liktz
= ") -—5 I T s

and after taking expectation E [ | zk] conditioned on z* from the both sides of the obtained

inequality we get

E [f(zk—i—l) | Zk} < () - %E {M | zk] n t2E[ L | Zk}

L, 8
Note that
Vi )2k D ol
E ke = - (3
[ Ly, = ;Li|v s
> [|Vf(z")[3 min %
(5.56) k * D
> 2u(f(z") ~ f(z")) min .
since || - ||p = || - ||2, and

Putting all together we get

B [f(:H)] ] < ()~ min 2 (769 = 1) + 5 Do miL
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Taking full expectation from the previous inequality we get

. 2 n
""" v i=1
Since p < L; for all 7 = 1,...,n we have
N\ k
BIGH )] < (1-pmin ) (56 - 1)
t2 n k—1 l
+ <§ piL,) (1 —p —Z>
i=1 =0
L
< (1 —p min p—’) (f(=") = f(=)
2 00 !
H(FEn) S (r-ram )
i g t? -
= (1-mmin ) G- s g i 7 2"

=l,...

K 2
K * Di 0 * t
BIAC) - ) < (- min ) () - 1) + g
(5.38) ; €
<" e - in 21 () - 1) + 5
(529) e €
> 5 + 5 =£&.
O
5.7.4. Auxiliary results
Lemma 5.7.4 (Lemma 3.4 from [129]). Let g € R™.
1. If D is the uniform distribution on the unit sphere in R", then
1
=1 and E,. ,S) |~ — : 5.85
D D Hg > \/%HQHQ ( )
Hence, D satisfies Assumption 5.2.1 with yp =1, || |lp = || - |2 and up ~ \/21”7

2. If D s the normal distribution with zero mean and identity over n as covariance

matriz (i.e. s ~ N(0,%)) then

V2
=1 and E.,p|(g,s)|= ﬁ”gﬂz (5.86)

Hence, D satisfies Assumption 5.2.1 with yp =1, || - |[[p = - |l and pp = \/%
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3. If D is the uniform distribution on {e1,...,e,}, then
1
yp=1 and Eyp[{gs)|=—lgll. (5.87)
Hence, D satisfies Assumption 5.2.1 withyp =1, || - [[p = || - |1 and pp =+

4. If D is an arbitrary distribution on {ei,...,e,} given by P{s =e;} =p; >0, then

vo=1 and Eyp |{g.5)|=|lgllp = szlgz (5.88)

Hence, D satisfies Assumption 5.2.1 with yp =1 and pup = 1.

5. If D is a distribution on D = {us,...,u,} where uy,...,u, form an orthonormal

basis of R™ and P {s = u;} = p;, then

def -
=1 and Eop|lg.5)| = lglo 2> pilgil (5.89)

i=1

Hence, D satisfies Assumption 5.2.1 with vp =1 and pup = 1.
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