
ГОУ ВПО «Московский физико-технический институт (государственный

университет)»

Физтех-школа Прикладной Математики и Информатики

кафедра проблем передачи информации и анализа данных

Работа допущена к защите

зав. кафедрой

Соболевский А.Н.

« » 2020 г.

Выпускная квалификационная работа
на соискание степени

МАГИСТРА

Тема: Безградиентные и стохастические методы оптимизации,
децентрализованная распределённая оптимизация

Направление: 03.04.01 – Прикладные математика и физика (магистратура)

Выполнил студент гр. М05-875 Горбунов Эдуард Александрович

Научный руководитель,

д.ф.-м.н. Гасников Александр Владимирович

Москва – 2020

2

Contents

Глава 1. Аннотация . 5

Глава 2. Introduction . 6

Глава 3. Notations and Definitions . 7

Глава 4. Optimal Decentralized Distributed Algorithms for Stochastic

Convex Optimization . 9

4.1. Introduction . 9

4.1.1. Contributions . 11

4.2. Optimal Bounds for Stochastic Convex Optimization 12

4.3. Similar Triangles Method with Inexact Proximal Step 14

4.4. Stochastic Convex Optimization with Affine Constraints: Primal Approach 18

4.5. Stochastic Convex Optimization with Affine Constraints: Dual Approach . 20

4.5.1. Convex Dual Function . 21

4.5.2. Strongly Convex Dual Functions and Restarts Technique 23

4.5.3. Direct Acceleration for Strongly Convex Dual Function 30

4.6. Applications to Decentralized Distributed Optimization 36

4.7. Discussion . 44

4.7.1. Possible Extensions . 45

4.8. Application for Population Wasserstein Barycenter Calculation 46

4.8.1. Definitions and Properties . 46

4.8.2. SA Approach . 48

4.8.3. SAA Approach . 49

4.8.4. SA vs SAA comparison . 52

4.9. Missing Proofs, Technical Lemmas and Auxiliary Results 53

4.9.1. Basic Facts . 53

4.9.2. Useful Facts about Duality . 54

4.9.3. Auxiliary Results . 55

4.9.4. Missing Proofs from Section 4.3 56

Proof of Lemma 4.3.1 . 56

3

Proof of Lemma 4.3.2 . 56

Proof of Theorem 4.3.1 . 59

Proof of Corollary 4.3.1 . 60

4.9.5. Missing Proofs from Section 4.4 60

Proof of Theorem 4.4.1 . 60

Proof of Theorem 4.4.2 . 61

4.9.6. Missing Lemmas and Proofs from Section 4.5.1 62

Lemmas . 62

Proof of Theorem 4.5.1 . 72

4.9.7. Missing Proofs from Section 4.5.2 84

Proof of Theorem 4.5.5 . 84

Proof of Corollary 4.5.3 . 86

4.9.8. Missing Proofs from Section 4.5.3 87

Proof of Lemma 4.5.1 . 87

Proof of Lemma 4.5.2 . 89

Proof of Theorem 4.5.6 . 93

Proof of Corollary 4.5.5 . 97

4.9.9. Technical Results . 99

Глава 5. Stochastic Derivative Free Optimization Methods with Momentum104

5.1. Introduction . 104

5.2. Stochastic Momentum Three Points (SMTP) 107

5.2.1. Non-Convex Case . 109

5.2.2. Convex Case . 110

5.2.3. Strongly Convex Case . 111

5.3. Stochastic Momentum Three Points with Importance Sampling (SMTP_IS) 113

5.3.1. Non-convex Case . 113

5.3.2. Convex Case . 115

5.3.3. Strongly Convex Case . 116

5.4. Comparison of SMTP and SMTP_IS . 117

5.5. Experiments . 118

5.6. Conclusion . 120

5.7. Missing Proofs, Technical Lemmas and Auxiliary Results 120

4

5.7.1. Preliminaries . 120

5.7.2. Missing Proofs from Section 5.2 122

Non-Convex Case . 122

Convex Case . 123

Strongly Convex Case . 125

5.7.3. Missing Proofs from Section 5.3 128

Non-convex Case . 129

Convex Case . 131

Strongly Convex Case . 133

5.7.4. Auxiliary results . 137

References . 139

5

Chapter 1

Аннотация

Оптимизация является одним из ключевых инструментов во многих приложени­

ях. В частности, задачи оптимизации возникают в огромном числе задач машинного

обучения и анализа данных. В последние годы безградиентные методы оптимизации

стали основным инструментом в приложениях обучения с подкреплением и опти­

мального управления. Кроме того, огромный интерес исследователей привлекает

распределённая оптимизация: обучение многих глубоких нейросетевых моделей прак­

тически не возможно или требует слишком больших вычислительных и временных

ресурсов, если делать это не распределённо, а на одной компьютере/сервере. В этой

диссертации предлагаются новые безградиентные стохастические методы оптимиза­

ции, а также новые ускоренные стохастические методы распределённой оптимизации.

В первой части диссертации рассматривается задача стохастической децентрали­

зованной оптимизации. Предлагаются новые методы, использующие детерминирован­

ный прямой оракул и стохастический двойственный оракул, а также доказываются

оценки скорости сходимости с большой вероятностью на классах выпуклых и сильно

выпуклых гладких функций. На примере вычисления популяционного барицентра

Вассерштейна сравниваются прямой и двойственный подходы к решению этой задаче,

на основе новых результатов, полученных в данной работе.

Во второй части диссертации предлагается новый безградиентный метод (SMTP)

с моментным членом в форме «тяжёлого шарика» и анализируется его скорость

сходимости по математическому ожиданию для невыпуклых, выпуклых и сильно

выпуклых функций. Кроме того, предлагается модификация метода (SMTP_IS),

которая использует неравномерное сэмплирование направлений поиска, учитывающее

изменение свойств гладкости функции вдоль разных направлений, что позволяет

улучшить оценки скорости сходимости в предположении покомпонентной гладкости

целевой функции.

6

Chapter 2

Introduction

Optimization plays a central role in different applications. In particular, optimization

tasks appear in a huge number of machine learning problems. In recent years derivative-free

methods became a key tool in reinforcement learning. Moreover, distributed optimization

attracts a lot of attention from the machine learning community since the training of

deep neural networks is often impossible or takes prohibitively long time while training

is performed on a single machine. In this dissertation, we propose new derivative-free

methods, as well as novel accelerated stochastic distributed methods.

In Chapter 4 we focus on stochastic decentralized distributed optimization problems.

We propose new methods based on deterministic primal first-order oracle and stochastic

dual first-order oracle and derive optimal convergence rates with high probability for

smooth convex and strongly convex objectives. To illustrate the difference between the two

approaches, we consider the problem of the population Wasserstein barycenter calculation.

In Chapter 5, we focus on the problems when the objective function is available

only through the zeroth-order oracle. For this problem, we develop two new methods —

SMTP and SMTP_IS — and analyze their convergence for non-convex, convex, and strongly

convex objectives. Both methods are based on the heavy-ball method, and SMTP_IS uses

coordinate-wise smoothness of the objective function and importance sampling trick.

In both chapters, we provide a detailed introduction to the topic and literature review.

Full proofs of the proposed results are at the ends of the corresponding chapters as well

as technical lemmas and auxiliary results. All notations and definitions are introduced in

Chapter 3.

7

Chapter 3

Notations and Definitions

To denote standard inner product between two vectors 𝑥, 𝑦 ∈ R𝑛 we use ⟨𝑥, 𝑦⟩ def
=∑︀𝑛

𝑖=1 𝑥𝑖𝑦𝑖, where 𝑥𝑖 is 𝑖-th coordinate of vector 𝑥, 𝑖 = 1, . . . , 𝑛. Standard Euclidean norm

of vector 𝑥 ∈ R𝑛 is defined as ‖𝑥‖2
def
=
√︀
⟨𝑥, 𝑥⟩ and we use ‖ · ‖𝑝 to define ℓ𝑝-norm of the

vector 𝑥 ∈ R𝑑: ‖𝑥‖𝑝
def
= (
∑︀𝑛

𝑖=1 |𝑥𝑖|𝑝)
1/𝑝 for 𝑝 ≥ 1 and ‖𝑥‖∞

def
= max𝑖∈[𝑑] |𝑥𝑖|. We use ‖ · ‖*

to define the conjugate norm for the norm ‖ · ‖: ‖𝑥‖* def
= max {⟨𝑎, 𝑥⟩ | 𝑎 ∈ R𝑛, ‖𝑎‖ ≤ 1}.

By 𝜆max(𝐴) and 𝜆+min(𝐴) we mean maximal and minimal positive eigenvalues of matrix

𝐴 ∈ R𝑛×𝑛 respectively and we use 𝜒(𝐴)
def
= 𝜆max(𝐴)/𝜆+min(𝐴) to denote condition number of 𝐴.

To define vector of ones we use 1𝑛
def
= (1, . . . , 1)⊤ ∈ R𝑛 and omit the subscript 𝑛 when one

can recover the dimension from the context. Moreover, we use ̃︀𝑂(·), ̃︀Ω(·) and ̃︀Θ(·) that

define exactly the same as 𝑂(·), Ω(·) and Θ(·) but besides constants factors they can hide

polylogarithmical factors of the parameters of the method or the problem. Operator E[·]

denotes mathematical expectation with respect to all randomness and E𝑠∼𝒟[·] denotes

conditional expectation w.r.t. randomness coming from random vector 𝑠 which is sampled

from probability distribution 𝒟 on R𝑛. Conditional mathematical expectation with respect

to all randomness coming from random variable 𝜉 is denoted by E𝜉[·]. We use 𝐵𝑟(𝑦) ⊆ R𝑛 to

denote Euclidean ball centered at 𝑦 ∈ R𝑛 with radius 𝑟: 𝐵𝑟(𝑦)
def
= {𝑥 ∈ R𝑛 | ‖𝑥− 𝑦‖2 ≤ 𝑟}.

The Kronecker product of two matrices 𝐴 ∈ R𝑚×𝑚 with elements 𝐴𝑖𝑗, 𝑖, 𝑗 = 1, . . . ,𝑚 and

𝐵 ∈ R𝑛×𝑛 is such 𝑚𝑛×𝑚𝑛 matrix 𝐶 def
= 𝐴⊗𝐵 that

𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐴11𝐵 𝐴12𝐵 𝐴13𝐵 . . . 𝐴1𝑚𝐵

𝐴21𝐵 𝐴22𝐵 𝐴23𝐵 . . . 𝐴2𝑚𝐵
...

...
...

𝐴𝑚1𝐵 𝐴𝑚2𝐵 𝐴𝑚3𝐵 . . . 𝐴𝑚𝑚𝐵

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.1)

By 𝐼𝑛 we denote 𝑛× 𝑛 identity matrix and omit the subscript when the size of the matrix

is obvious from the context.

Below we list some classical definitions for optimization (see, for example, [1] for the

details).

Definition 3.0.1 (𝐿-smoothness). Function 𝑓 is called 𝐿-smooth in 𝑄 ⊆ R𝑛 with 𝐿 > 0

8

when it is differentiable and its gradient is 𝐿-Lipschitz continuous in 𝑄, i.e.

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖2 ≤ 𝐿‖𝑥− 𝑦‖2, ∀𝑥, 𝑦 ∈ 𝑄. (3.2)

From this definition one can obtain

|𝑓(𝑦)− 𝑓(𝑥)− ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩| ≤ 𝐿

2
‖𝑦 − 𝑥‖22, ∀𝑥, 𝑦 ∈ R𝑑, (3.3)

and if additionally 𝑓 is convex, i.e. 𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩, we have

‖∇𝑓(𝑥)‖22 ≤ 2𝐿(𝑓(𝑥)− 𝑓(𝑥*)), ∀𝑥 ∈ R𝑑. (3.4)

Definition 3.0.2 (𝜇-strong convexity). Differentiable function 𝑓 is called 𝜇-strongly convex

in 𝑄 ⊆ R𝑛 with 𝜇 ≥ 0 if

𝑓(𝑥) ≥ 𝑓(𝑦) + ⟨∇𝑓(𝑦), 𝑥− 𝑦⟩+
𝜇

2
‖𝑥− 𝑦‖22, ∀𝑥, 𝑦 ∈ 𝑄. (3.5)

If 𝜇 > 0 then there exists unique minimizer of 𝑓 on 𝑄 which we denote by 𝑥*, except

the situations when we explicitly specify 𝑥* in a different way. In the case when 𝜇 = 0,

i.e. 𝑓 is convex, we assume that there exists at least one minimizer 𝑥* of 𝑓 on 𝑄 and in

the case when the set of minimizers of 𝑓 on the set 𝑄 is not a singleton we choose 𝑥* to

be either arbitrary or closest to the starting point of a method. When we consider some

optimization method with a starting point 𝑥0 we use 𝑅 or 𝑅0 to denote the Euclidean

distance between 𝑥0 and 𝑥*.

9

Chapter 4

Optimal Decentralized Distributed Algorithms for

Stochastic Convex Optimization

The results proposed in this chapter were obtained by the author of this thesis in [2].

4.1. Introduction

In this chapter we are interested in the convex optimization problem

min
𝑥∈𝑄⊆R𝑛

𝑓(𝑥), (4.1)

where 𝑓 is a convex function and 𝑄 is closed and convex subset of R𝑛. More precisely, we

study particular case of (4.1) when the objective function 𝑓 could be represented as a

mathematical expectation

𝑓(𝑥) = E𝜉 [𝑓(𝑥, 𝜉)] , (4.2)

where 𝜉 is a random variable. Problems of this type play central role in a bunch of

applications of machine learning [3, 4] and mathematical statistics [5]. Typically 𝑥 represents

feature vector defining the model, only samples of 𝜉 are available and the distribution of 𝜉

is unknown. One possible way to minimize generalization error (4.2) is to solve empirical

risk minimization or finite-sum minimization problem instead, i.e. solve (4.1) with the

objective

𝑓(𝑥) =
1

𝑚

𝑚∑︁
𝑖=1

𝑓(𝑥, 𝜉𝑖), (4.3)

where 𝑚 should be sufficiently large to approximate the initial problem. Indeed, if

𝑓(𝑥, 𝜉) is convex and 𝑀 -Lipschitz continuous for all 𝜉, 𝑄 has finite diameter 𝐷 and

𝑥̂ = argmin𝑥∈𝑄 𝑓(𝑥), then (see [6, 7]) with probability at least 1− 𝛽

𝑓(𝑥̂)−min
𝑥∈𝑄

𝑓(𝑥) = 𝑂

(︃√︂
𝑀2𝐷2𝑛 ln(𝑚) ln (𝑛/𝛽)

𝑚

)︃
, (4.4)

and if additionally 𝑓(𝑥, 𝜉) is 𝜇-strongly convex for all 𝜉, then (see [8]) with probability at

least 1− 𝛽

𝑓(𝑥̂)−min
𝑥∈𝑄

𝑓(𝑥) = 𝑂

(︃
𝑀2𝐷2 ln(𝑚) ln (𝑚/𝛽)

𝜇𝑚
+

√︂
𝑀2𝐷2 ln (1/𝛽)

𝑚

)︃
. (4.5)

10

In other words, to solve (4.1)+(4.2) with 𝜀 functional accuracy via minimization of

empirical risk (4.3) it is needed to have 𝑚 = ̃︀Ω (𝑀2𝐷2𝑛/𝜀2) in the convex case and 𝑚 =̃︀Ω (max {𝑀2𝐷2/𝜇𝜀,𝑀2𝐷2/𝜀2}) in the 𝜇-strongly convex case where ̃︀Ω(·) hides a constant factor,

a logarithmic factor of 1/𝛽 and a polylogarithmic factor of 1/𝜀.

Stochastic first-order methods such as Stochastic Gradient Descent (SGD) [9–13] or

its accelerated variants like AC-SA [14] or Similar Triangles Method (STM) [15–17] are

very popular choice to solve either (4.1)+(4.2) or (4.1)+(4.3). In contrast with their

cheap iterations in terms of computational cost, these methods converge only to the

neighbourhood of the solution, i.e. to the ball centered at the optimality and radius

proportional to the standard deviation of the stochastic estimator. For the particular

case of finite-sum minimization problem one can solve this issue via variance-reduction

trick [18–21] and its accelerated variants [22–24]. Unfortunately, this technique is not

applicable in general for the problems of type (4.1)+(4.2). Another possible way to reduce

the variance is mini-batching. When the objective function is 𝐿-smooth one can accelerate

computations of batches using parallelization [16, 25–27] and it is one of the examples

where centralized distributed optimization appears naturally [28].

In other words, in some situations, e.g. when the number of samples 𝑚 is too big, it

is preferable in practice to split the data into 𝑞 blocks, assign each block to the separate

worker, e.g. processor, and organize computation of the gradient or stochastic gradient

in the parallel or distributed manner. Moreover, in view of (4.4)-(4.5) sometimes to solve

an expectation minimization problem it is needed to have such a big number of samples

that corresponding information (e.g. some objects like images, videos and etc.) cannot be

stored on 1 machine because of the memory limitations (see Section 4.8 for the detailed

example of such a situation). Then, we can rewrite the objective function in the following

form

𝑓(𝑥) =
1

𝑞

𝑞∑︁
𝑖=1

𝑓𝑖(𝑥), 𝑓𝑖(𝑥) = E𝜉𝑖 [𝑓(𝑥, 𝜉𝑖)] or 𝑓𝑖(𝑥) =
1

𝑠𝑖

𝑠𝑖∑︁
𝑗=1

𝑓(𝑥, 𝜉𝑖𝑗). (4.6)

Here 𝑓𝑖 corresponds to the loss on the 𝑖-th data block and could be also represented as an

expectation or a finite sum. So, the general idea for parallel optimization is to compute

gradients or stochastic gradients by each worker, then aggregate the results by the master

node and broadcast new iterate or needed information to obtain the new iterate back to

the workers.

The visual simplicity of the parallel scheme hides synchronization drawback and high

11

requirement to master node [29]. The big line of works is aimed to solve this issue via

periodical synchronization [30–33], error-compensation [34, 35], quantization [36–40] or

combination of these techniques [41, 42].

However, in this chapter we mainly focus on another approach to deal with aforementioned

drawbacks — decentralized distributed optimization [28, 43]. It is based on two basic

principles: every node communicates only with its neighbours and communications are

performed simultaneously. Moreover, this architecture is more robust, e.g. it can be applied

to time-varying (wireless) communication networks [44].

4.1.1. Contributions

One can consider this chapter as a continuation of work [45] where authors mentioned

the key ideas that form a basis of this work. However, in this chapter we provide formal

proofs of some results announced in [45] together with couple of new results that were not

mentioned. Our contributions include:

∙ Accelerated primal-dual method with biased stochastic dual oracle for

convex and smooth dual problem. We extent the result from the recent work

[46] to the case when we have an access to the biased stochastic gradients. We

emphasize that our analysis works for the minimization on whole space and we do

not assume that the sequence generated by the method is bounded. It creates extra

difficulties in the analysis, but we handle it via advanced technique for estimating

recurrences (see also [46, 47]).

∙ Two accelerated methods with stochastic dual oracle for strongly convex

and smooth dual problem. For the case when the dual function is strongly convex

with Lipschitz continuous gradient we analyze two methods: one is R-RRMA-AC-SA2

and another is SSTM_sc. The first one was described in [46], but in this dissertation

we formally state the method and prove high probability bounds for its convergence

rate. The second method is also well-known, but to the best of our knowledge there

were no convergence results for it in such generality that we handle. That is, we

consider SSTM_sc with biased stochastic oracle applied to the unconstrained smooth

and strongly convex minimization problem and prove high probability bounds for its

convergence rate together with the bound for the noise level. As for the convex case,

we also do not assume that the sequence generated by the method is bounded. Then

12

we show how it can be applied to solve stochastic optimization problem with affine

constraints using dual oracle.

∙ Analysis of STM applied to convex smooth minimization problem with

smooth convex composite term and inexact proximal step for unconstrained

minimization. Surprisingly, but before this work there were no analysis for STM in

this case. The closest work to ours in this topic is [48], but in [48] authors considered

optimization problems on bounded sets.

4.2. Optimal Bounds for Stochastic Convex Optimization

In this section our goal is to present the overview of the optimal methods and their

convergence rates for the stochastic convex optimization problem (4.1)+(4.2) in the case

when the gradient of the objective function is available only through (possibly biased)

stochastic estimators with “light tails” or, equivalently, with 𝜎2-subgaussian variance. That

is, we are interested in the situation when for an arbitrary 𝑥 ∈ 𝑄 one can get such

stochastic gradient ∇𝑓(𝑥, 𝜉) that

‖E𝜉 [∇𝑓(𝑥, 𝜉)]−∇𝑓(𝑥)‖2 ≤ 𝛿, (4.7)

E𝜉

[︃
exp

(︃
‖∇𝑓(𝑥, 𝜉)− E𝜉 [∇𝑓(𝑥, 𝜉)]‖22

𝜎2

)︃]︃
≤ exp(1), (4.8)

where 𝛿 ≥ 0 and 𝜎 ≥ 0. If 𝜎 = 0, let us suppose that ∇𝑓(𝑥, 𝜉) = E𝜉 [∇𝑓(𝑥, 𝜉)] almost

surely in 𝜉. When 𝜎 = 𝛿 = 0 we get that ∇𝑓(𝑥, 𝜉) = ∇𝑓(𝑥) almost surely in 𝜉 which is

equivalent to the deterministic first-order oracle. For clarity, we start with this simplest

case of stochastic oracle and provide an overview of the state-of-the-art results for this

particular case in Table 4.1. Note that for the methods mentioned in the table number of

oracle calls and number of iterations are identical. In the case when the gradient of 𝑓 is

bounded it is often enough to assume this only in some ball centered at the optimality

point 𝑥* with radius proportional to 𝑅 [17, 49, 50].

In this chapter we are mainly focus on smooth optimization problems and use different

modifications of Similar Triangles Method (STM) since it gives optimal rates in this case

and it is easy enough to analyze at least in the deterministic case. For convenience, we

state the method in this section as Algorithm 1. Interestingly, if we run STM with 𝜇 > 0 to

solve (4.1) with 𝜇-strongly convex and 𝐿-smooth objective, it will return 𝑥𝑁 such that

13

Assumptions on 𝑓 Method Citation # of oracle calls

𝜇-strongly convex,

𝐿-smooth
R-STM

[16]

[17]
𝑂
(︁√︁

𝐿
𝜇

ln
(︁
𝜇𝑅2

𝜀

)︁)︁

𝐿-smooth STM
[16]

[17]
𝑂

(︂√︁
𝐿𝑅2

𝜀

)︂
𝜇-strongly convex,

‖∇𝑓(𝑥)‖2 ≤𝑀
MD

[51]

[52]
𝑂
(︁
𝑀2

𝜇𝜀

)︁

‖∇𝑓(𝑥)‖2 ≤𝑀 MD
[51]

[52]
𝑂
(︁
𝑀2𝑅2

𝜀2

)︁

Table 4.1: Optimal number 𝑁 of deterministic first-order oracle calls in order to get such

a point 𝑥𝑁 that 𝑓(𝑥𝑁)− 𝑓(𝑥*) ≤ 𝜀. First column contains assumptions on 𝑓 in addition

to the convexity. MD states for Mirror Descent.

Algorithm 1 Similar Triangles Methods (STM), the case when 𝑄 = R𝑛

Require: 𝑥̃0 = 𝑧0 = 𝑥0, number of iterations 𝑁 , 𝛼0 = 𝐴0 = 0

1: for 𝑘 = 0, . . . , 𝑁 do

2: Set 𝛼𝑘+1 = (1+𝐴𝑘𝜇)/2𝐿 +
√︀

(1+𝐴𝑘𝜇)/4𝐿2 + 𝐴𝑘(1+𝐴𝑘𝜇)/𝐿, 𝐴𝑘+1 = 𝐴𝑘 + 𝛼𝑘+1

3: 𝑥̃𝑘+1 = (𝐴𝑘𝑥
𝑘+𝛼𝑘+1𝑧

𝑘)/𝐴𝑘+1

4: 𝑧𝑘+1 = 𝑧𝑘 −
(︀
∇𝑓(𝑥̃𝑘+1)− 𝜇𝑥̃𝑘+1

)︀
𝛼𝑘+1/(1+𝜇)

5: 𝑥𝑘+1 = (𝐴𝑘𝑥
𝑘+𝛼𝑘+1𝑧

𝑘+1)/𝐴𝑘+1

6: end for

Ensure: 𝑥𝑁

𝑓(𝑥𝑁) − 𝑓(𝑥*) ≤ 𝜀 after 𝑁 = 𝑂
(︁√︀

𝐿/𝜇 ln (𝐿𝑅2/𝜀)
)︁

iterations which is not optimal, see1

Table 4.1. To match the optimal bound in this case one should use classical restart of STM

which is run with 𝜇 = 0 [16].

We notice that another highly widespread in machine learning applications type of

problems is regularized or composite optimization problem

min
𝑥∈𝑄

𝑓(𝑥) + ℎ(𝑥), (4.9)

1 In some places we put references not to the first work where this bound was shown but to the

works where this complexity bound was shown for either more convenient or more relevant to our work

method.

14

where ℎ is a convex proximable function. For this case STM can be generalized via modifying

the update rule in the following way [16, 17]:

𝑧𝑘+1 = argmin
𝑧∈𝑄

{︃
1

2
‖𝑧 − 𝑧0‖22 +

𝑘+1∑︁
𝑙=0

𝛼𝑙

(︁⟨︀
∇𝑓(𝑥̃𝑙), 𝑧 − 𝑥̃𝑙

⟩︀
+ ℎ(𝑧) +

𝜇

2
‖𝑧 − 𝑥̃𝑙‖22

)︁}︃
. (4.10)

We address such problems with 𝐿ℎ-smooth composite term in the Appendix, see Section 4.3

for the details.

Next, we go back to the problem (4.1)+(4.2) and consider more general case when

𝛿 = 0 and 𝜎2 > 0. In this case one can construct unbiased estimator

∇𝑓(𝑥, {𝜉𝑖}𝑟𝑖=1) =
1

𝑟

𝑟∑︁
𝑖=1

∇𝑓(𝑥, 𝜉𝑖),

where 𝜉1, . . . , 𝜉𝑟 are i.i.d. samples and ∇𝑓(𝑥, {𝜉𝑖}𝑟𝑖=1) has 𝑟 times smaller variance than

∇𝑓(𝑥, 𝜉𝑖):

E𝜉1,...,𝜉𝑟

[︃
exp

(︃
‖∇𝑓(𝑥, {𝜉𝑖}𝑟𝑖=1)−∇𝑓(𝑥)‖22

𝜎2/𝑟

)︃]︃
≤ exp(1).

Then in order to get such a point 𝑥𝑁 that 𝑓(𝑥𝑁) − 𝑓(𝑥*) ≤ 𝜀 with probability at least

1− 𝛽 where 𝛽 ∈ (0, 1) and 𝑓 is 𝜇-strongly convex (𝜇 ≥ 0) and 𝐿-smooth one can run STM

for

𝑁 = 𝑂

(︃
min

{︃√︂
𝐿𝑅2

𝜀
,

√︃
𝐿

𝜇
ln

(︂
𝐿𝑅2

𝜀

)︂}︃)︃
(4.11)

iterations with small modification: instead of using ∇𝑓(𝑥̃𝑘+1) the method uses mini-batched

stochastic approximation ∇𝑓(𝑥̃𝑘+1, {𝜉𝑖}𝑟𝑘+1

𝑖=1) where the batch size is

𝑟𝑘+1 = Θ

(︃
max

{︃
1,

𝜎2𝛼𝑘+1 ln 𝑁
𝛽

(1 + 𝐴𝑘+1𝜇)𝜀

}︃)︃
. (4.12)

The total number of oracle calls is
𝑁∑︁
𝑘=1

𝑟𝑘 = 𝑂

(︃
𝑁 + min

{︃
𝜎2𝑅2

𝜀2
ln

(︃√︀
𝐿𝑅2/𝜀

𝛽

)︃
,
𝜎2

𝜇𝜀
ln

(︂
𝐿𝑅2

𝜀

)︂
ln

(︃√︀
𝐿/𝜇

𝛽

)︃}︃)︃
(4.13)

which is optimal up to logarithmic factors. We call this modification Stochastic STM (SSTM).

As for the deterministic case we summarize the state-of-the-art results for this case in

Table 4.2.

4.3. Similar Triangles Method with Inexact Proximal Step

In this section we focus on the composite optimization problem. i.e. problems of the

type

min
𝑥∈R𝑛

𝐹 (𝑥) = 𝑓(𝑥) + ℎ(𝑥), (4.14)

15

Assumptions on 𝑓 Method Citation # of oracle calls

𝜇-strongly convex,

𝐿-smooth
R-SSTM

[16]

[53]

[17]

̃︀𝑂 (︁max
{︁√︁

𝐿
𝜇

ln
(︁
𝜇𝑅2

𝜀

)︁
, 𝜎

2

𝜇𝜀

}︁)︁

𝐿-smooth SSTM
[16]

[53]

[17]

̃︀𝑂(︂max

{︂√︁
𝐿𝑅2

𝜀
, 𝜎

2𝑅2

𝜀2

}︂)︂
𝜇-strongly convex,

E𝜉
[︀
‖∇𝑓(𝑥, 𝜉)‖22

]︀
≤𝑀2

MD [51]

[52]
𝑂
(︁
𝑀2

𝜇𝜀

)︁
E𝜉

[︀
‖∇𝑓(𝑥, 𝜉)‖22

]︀
≤𝑀2 MD [51]

[52]
𝑂
(︁
𝑀2𝑅2

𝜀2

)︁
Table 4.2: Optimal (up to logarithmic factors) number of stochastic unbiased first-order

oracle calls in order to get such a point 𝑥𝑁 that 𝑓(𝑥𝑁) − 𝑓(𝑥*) ≤ 𝜀 with probability at

least 1− 𝛽, 𝛽 ∈ (0, 1) and 𝑓 is defined in (4.2). First column contains assumptions on 𝑓

in addition to the convexity. Blue terms in the last column correspond to the number of

iterations of the method.

where 𝑓(𝑥) is convex and 𝐿-smooth and ℎ(𝑥) is convex and 𝐿ℎ-smooth. Before we present

our method, let us introduce new notation.

Definition 4.3.1. Assume that function 𝑔(𝑥) defined on R𝑛 is such that there exists

(possibly non-unique) 𝑥* satisfying 𝑔(𝑥*) = min𝑥∈R𝑛 𝑔(𝑥). Then for arbitrary 𝛿 > 0 we

say that 𝑥̂ is 𝛿-solution of the problem 𝑔(𝑥)→ min𝑥∈R𝑛 and write 𝑥̂ = argmin𝛿𝑥∈R𝑛 𝑔(𝑥) if

𝑔(𝑥̂)− 𝑔(𝑥*) ≤ 𝛿.

Note that 𝛿-solution could be non-unique, but for our purposes in such cases it is

enough to use any point from the set of 𝛿-solutions. In the analysis we will need the

following result.

Lemma 4.3.1 (See also Theorem 9 from [48]). Let 𝑔(𝑥) be convex, 𝐿-smooth, 𝑥* is such

that 𝑔(𝑥*) = min𝑥∈R𝑛 𝑔(𝑥) and 𝑥̂ = argmin𝛿𝑥∈R𝑛 𝑔(𝑥) for some 𝛿 > 0. Then for all 𝑥 ∈ R𝑛

⟨∇𝑔(𝑥̂), 𝑥̂− 𝑥⟩ ≤
√

2𝐿𝛿‖𝑥̂− 𝑥‖2. (4.15)

The main method of this section is stated as Algorithm 2. In the STM_IPS we use

functions 𝑔𝑘+1(𝑧) which are defined for all 𝑘 = 0, 1, . . . as follows:

𝑔𝑘+1(𝑧) =
1

2
‖𝑧𝑘 − 𝑧‖22 + 𝛼𝑘+1

(︀
𝑓(𝑥̃𝑘+1) + ⟨∇𝑓(𝑥̃𝑘+1), 𝑧 − 𝑥̃𝑘+1⟩+ ℎ(𝑧)

)︀
. (4.16)

16

Algorithm 2 Similar Triangles Methods with Inexact Proximal Step (STM_IPS)

Require: 𝑥̃0 = 𝑧0 = 𝑥0 — starting point, 𝑁 — number of iterations

1: Set 𝛼0 = 𝐴0 = 0

2: for 𝑘 = 0, 1, . . . , 𝑁 − 1 do

3: Choose 𝛼𝑘+1 such that 𝐴𝑘 + 𝛼𝑘+1 = 2𝐿𝛼2
𝑘+1, 𝐴𝑘+1 = 𝐴𝑘 + 𝛼𝑘+1

4: 𝑥̃𝑘+1 = (𝐴𝑘𝑥
𝑘+𝛼𝑘+1𝑧

𝑘)/𝐴𝑘+1

5: 𝑧𝑘+1 = argmin
𝛿𝑘+1

𝑧∈R𝑛 𝑔𝑘+1(𝑧), where 𝑔𝑘+1(𝑧) is defined in (4.16) and 𝛿𝑘+1 = 𝛿‖𝑧𝑘 −

𝑧𝑘+1‖22
6: 𝑥𝑘+1 = (𝐴𝑘𝑥

𝑘+𝛼𝑘+1𝑧
𝑘+1)/𝐴𝑘+1

7: end for

Ensure: 𝑥𝑁

Each 𝑔𝑘+1(𝑧) is 1-strongly convex function with, as a consequence, unique minimizer

𝑧𝑘+1 def
= argmin𝑧∈R𝑛 𝑔𝑘+1(𝑧).

Let us discuss a little bit the proposed method. First of all, if we slightly modify the

method and choose 𝛿𝑘+1 = 0, then we will get STM which is well-studied in the literature.

Secondly, it may seem that in order to run the method we need to know ‖𝑧𝑘 − 𝑧𝑘+1‖2, but

in fact we do not need it. If 𝑔𝑘+1(𝑧) is 𝐿𝑘+1-smooth and 𝜇𝑘+1-strongly convex, then one

can run STP for 𝑇 = 𝑂
(︁√︀

𝐿𝑘+1/𝜇𝑘+1 ln 𝐿𝑘+1/𝛿
)︁

iterations with 𝑧𝑘 as a starting point to solve

the problem 𝑔𝑘+1(𝑧)→ min𝑧∈R𝑛 and get 𝑧𝑘+1 = argmin
𝛿𝑘+1

𝑧∈R𝑛 𝑔𝑘+1(𝑧). Note that in this case

we do not need to know 𝑧𝑘+1. Moreover, we do not assume that iterates of STM_IPS are

bounded and instead of assuming it we prove such result which makes the analysis a little

bit more technical then ones for STP. Finally, we notice that one can prove the results we

present below even with such 𝛼𝑘+1 that 𝐴𝑘+1 = 𝐴𝑘 +𝛼𝑘+1 = 𝐿𝛼2
𝑘+1. It improves numerical

constants in the upper bounds a little bit, but for simplicity we use the same choice of

𝛼𝑘+1 as for the stochastic case.

We start our analysis with the following lemma.

Lemma 4.3.2 (see also Theorem 1 from [54]). Assume that 𝑓(𝑥) is convex and 𝐿-smooth,

ℎ(𝑥) is convex and 𝐿ℎ-smooth and 𝛿 < 1
2
. Then after 𝑁 ≥ 1 iterations of Algorithm 2 we

have

𝐴𝑁
(︀
𝐹 (𝑥𝑁)− 𝐹 (𝑥*)

)︀
≤ 1

2
𝑅2

0 −
1

2
𝑅2
𝑁 + 𝛿

𝑁−1∑︁
𝑘=0

√
𝑘 + 2 ̃︀𝑅2

𝑘+1, (4.17)

where 𝑥* is the solution of (4.14) closest to the starting point 𝑧0, 𝑅𝑘+1
def
= ‖𝑥*−𝑧𝑘+1‖2, ̃︀𝑅0

def
=

17

𝑅0
def
= ‖𝑥* − 𝑧0‖2, ̃︀𝑅𝑘+1

def
= max{ ̃︀𝑅𝑘, 𝑅𝑘+1} for 𝑘 = 0, 1, . . . , 𝑁 − 1 and 𝛿 def

=
√︁

(𝐿ℎ+2𝐿)𝛿

(1−
√
2𝛿)2𝐿

.

Below we state our main result of this section.

Theorem 4.3.1. Let 𝑓(𝑥) be convex and 𝐿-smooth, ℎ(𝑥) be convex and 𝐿ℎ-smooth and

𝛿 ≤ 1
4
. Assume that for a given number of iterations 𝑁 ≥ 1 the number 𝛿 def

= 2
√︁

(𝐿ℎ+2𝐿)𝛿

(1−
√
2𝛿)2𝐿

satisfies 𝛿 ≤ 𝐶

(𝑁+1)3/2
with some positive constant 𝐶 ∈ (0, 1/4). Then after 𝑁 iteration of

Algorithm 2 we have

𝐹 (𝑥𝑁)− 𝐹 (𝑥*) ≤ 3𝑅2
0

2𝐴𝑁
. (4.18)

Corollary 4.3.1. Under assumptions of Theorem 4.3.1 we get that for an arbitrary 𝜀 > 0

after

𝑁 = 𝑂

(︃√︂
𝐿𝑅2

0

𝜀

)︃
(4.19)

iterations of Algorithm 2 we have 𝐹 (𝑥𝑁) − 𝐹 (𝑥*) ≤ 𝜀. Moreover, we get that 𝛿 should

satisfy

𝛿 = 𝑂

(︂
𝐿

(𝐿ℎ + 𝐿)𝑁3

)︂
. (4.20)

That is, if the auxiliary problem 𝑔𝑘+1(𝑧) → min𝑧∈R𝑛 is solved with good enough

accuracy, then STM_IPS requires the same number of iterations as STM to achieve 𝐹 (𝑥𝑁)−

min𝑥∈R𝑛 𝐹 (𝑥) ≤ 𝜀.

Finally, we notice that one can set 𝛿𝑘+1 in Algorithm 2 in a different way in order to

get the same convergence guarantees, e.g. one can use 𝛿𝑘+1 = 𝛿 ̃︀𝑅2
𝑘+1 and the order of 𝛿

given by (4.20) will be the same. In this case inequalities (4.128) and (4.130) transform to

⟨∇𝑔𝑘+1(𝑧
𝑘+1), 𝑧𝑘+1 − 𝑥*⟩ ≤

√︁
2(𝛼𝑘+1𝐿ℎ + 1)𝛿 ̃︀𝑅2

𝑘+1 · ‖𝑧
𝑘+1 − 𝑥*‖2

and

⟨𝑧𝑘+1 − 𝑧𝑘 + 𝛼𝑘+1∇𝑓(𝑥̃𝑘+1) + 𝛼𝑘+1∇ℎ(𝑧𝑘+1), 𝑧𝑘+1 − 𝑥*⟩ ≤ 𝛿
√
𝑘 + 2 ̃︀𝑅2

𝑘+1,

respectively, where 𝛿 def
= 2

√︁
(𝐿ℎ+2𝐿)𝛿

𝐿
. Then the remaining part of the proof remains the

same and gives the same result up to small changes in the numerical constants.

18

4.4. Stochastic Convex Optimization with Affine Constraints:

Primal Approach

Now, we are going to make the next step towards decentralized distributed optimization

and consider convex optimization problem with affine constraints:

min
𝐴𝑥=0,𝑥∈𝑄

𝑓(𝑥), (4.21)

where 𝐴 ⪰ 0 and Ker𝐴 ̸= {0}. Up to a sign we can define the dual problem in the following

way

min
𝑦
𝜓(𝑦), where (4.22)

𝜙(𝑦) = max
𝑥∈𝑄
{⟨𝑦, 𝑥⟩ − 𝑓(𝑥)} , (4.23)

𝜓(𝑦) = 𝜙(𝐴⊤𝑦) = max
𝑥∈𝑄
{⟨𝑦, 𝐴𝑥⟩ − 𝑓(𝑥)} = ⟨𝐴⊤𝑦, 𝑥(𝐴⊤𝑦)⟩ − 𝑓(𝑥(𝐴⊤𝑦)),(4.24)

where 𝑥(𝑦)
def
= argmax𝑥∈𝑄 {⟨𝑦, 𝑥⟩ − 𝑓(𝑥)}. Since Ker𝐴 ̸= {0} the solution of the dual

problem (4.22) is not unique. We use 𝑦* to denote the solution of (4.22) with the smallest

ℓ2-norm 𝑅𝑦
def
= ‖𝑦*‖2.

However, in this section we are interested only in primal approaches to solve (4.21)

and, in particular, the main goal of this section is to present first-order methods that are

optimal both in terms of ∇𝑓(𝑥) and 𝐴⊤𝐴𝑥 calculations. Before we start our analysis let

us notice that typically in decentralized optimization matrix 𝐴 from (4.21) is chosen as a

square root of Laplacian matrix 𝑊 of communication network [29] (see Section 4.6 for the

details). In asynchronous case the square root
√
𝑊 is replaced by incidence matrix 𝑀 [55]

(𝑊 = 𝑀⊤𝑀). Then in asynchronous case instead of accelerated methods for (4.22) one

should use accelerated block-coordinate descent methods [15, 55–57].

To solve problem (4.21) we use the following trick [45, 49]: instead of (4.21) we

consider penalized problem

min
𝑥∈𝑄

𝐹 (𝑥) = 𝑓(𝑥) +
𝑅2
𝑦

𝜀
‖𝐴𝑥‖22, (4.25)

where 𝜀 > 0 is the desired accuracy of the solution in terms of 𝑓(𝑥) that we want to

achieve. The motivation behind this trick is revealed in the following theorem.

Theorem 4.4.1 (See also Remark 4.3 from [49]). Assume that 𝑥𝑁 ∈ 𝑄 is such that

𝐹 (𝑥𝑁)−min
𝑥∈𝑄

𝐹 (𝑥) ≤ 𝜀. (4.26)

19

Then

𝑓(𝑥𝑁)− min
𝐴𝑥=0,𝑥∈𝑄

𝑓(𝑥) ≤ 𝜀, ‖𝐴𝑥𝑁 ||2 ≤
2𝜀

𝑅𝑦

. (4.27)

We start with the analysis of the case when 𝑓 is 𝐿-smooth and convex.

Theorem 4.4.2. Let 𝑓 be convex and 𝐿-smooth, 𝑄 = R𝑛 and ℎ(𝑥) = 𝑅2
𝑦‖𝐴𝑥‖22/𝜀. Assume

that full gradients of 𝑓 and ℎ are available. Then STM_IPS (see Algorithm 2, Section 4.3)

applied to solve problem (4.25) requires

𝑂

(︃√︂
𝐿𝑅2

𝜀

)︃
calculations of ∇𝑓(𝑥), (4.28)

̃︀𝑂(︃√︂𝐿𝑅2

𝜀
𝜒(𝐴⊤𝐴)

)︃
calculations of 𝐴⊤𝐴𝑥 (4.29)

to produce point 𝑥𝑁 such that (4.26) holds.

That is, number of 𝐴⊤𝐴𝑥 calculations matches the optimal bound for deterministic

convex and 𝐿-smooth problems of type (4.1) multiplied by
√︀
𝜒(𝐴⊤𝐴) up to logarithmic

factors (see Table 4.1).

We believe that using the same recurrence technique that we use in Sections 4.3

and 4.5 one can generalize this result for the case when instead of ∇𝑓(𝑥) only stochastic

gradient ∇𝑓(𝑥, 𝜉) (see inequalities (4.7)-(4.8)) is available. To the best of our knowledge it

is not done in the literature for the case when 𝑄 = R𝑛. Moreover, it is also possible to

extend our approach to handle strongly convex case via variants of STM.

We conjecture that the same technique in the case when 𝑓 is 𝜇-strongly convex

and 𝐿-smooth gives the method that requires such number of 𝐴⊤𝐴𝑥 calculations that

matches the second rows of Tables 4.1 and 4.2 in the corresponding cases with additional

factor
√︀
𝜒(𝐴⊤𝐴) and logarithmic factors. Recently such bounds were shown in [58] for

the distributed version of Multistage Accelerated Stochastic Gradient method from [59].

However, this bounds were shown for the case when the stochastic gradient is unbiased.

Next, we assume that 𝑄 is closed and convex and 𝑓 is 𝜇-strongly convex, but possibly

non-smooth function with bounded gradients: ‖∇𝑓(𝑥)‖2 ≤𝑀 for all 𝑥 ∈ 𝑄. Let us start

with the case 𝜇 = 0. Then, to achieve (4.26) one can run Sliding method from [53, 60]

considering 𝑓(𝑥) as a composite term. In this case Sliding requires

𝑂

(︃√︂
𝜆max(𝐴⊤𝐴)𝑅2

𝑦𝑅
2

𝜀2

)︃
calculations of 𝐴⊤𝐴𝑥, (4.30)

20

𝑂

(︂
𝑀2𝑅2

𝜀2

)︂
calculations of ∇𝑓(𝑥). (4.31)

In the case when 𝑄 is a compact set and∇𝑓(𝑥) is not available and unbiased stochastic

gradient ∇𝑓(𝑥, 𝜉) is used instead (see inequalities (4.7)-(4.8) with 𝛿 = 0) one can show

[53, 60] that Stochastic Sliding (S-Sliding) method can achieve (4.26) with probability

at least 1− 𝛽, 𝛽 ∈ (0, 1), and it requires the same number of calculations of 𝐴⊤𝐴𝑥 as in

(4.30) up to logarithmic factors and

̃︀𝑂(︂(𝑀2 + 𝜎2)𝑅2

𝜀2

)︂
calculations of ∇𝑓(𝑥, 𝜉). (4.32)

When 𝜇 > 0 one can apply restarts technique on top of S-Sliding (RS-Sliding)

[45, 61] and get that to guarantee (4.26) with probability at least 1 − 𝛽, 𝛽 ∈ (0, 1)

RS-Sliding requires

̃︀𝑂
⎛⎝√︃𝜆max(𝐴⊤𝐴)𝑅2

𝑦

𝜇𝜀

⎞⎠ calculations of 𝐴⊤𝐴𝑥, (4.33)

̃︀𝑂(︂𝑀2 + 𝜎2

𝜇𝜀

)︂
calculations of ∇𝑓(𝑥, 𝜉). (4.34)

We notice that bounds presented above for the non-smooth case are proved only for

the case when 𝑄 is bounded. For the case of unbounded 𝑄 the convergence results with

such rates were proved only in expectation. Moreover, it would be interesting to study

S-Sliding and RS-Sliding in the case when 𝛿 > 0, i.e. stochastic gradient is biased, but

we leave these questions for future works.

4.5. Stochastic Convex Optimization with Affine Constraints:

Dual Approach

In this section we assume that one can construct a dual problem for (4.21). If 𝑓 is

𝜇-strongly convex in ℓ2-norm, then 𝜓 and 𝜙 have 𝐿𝜓–Lipschitz continuous and 𝐿𝜙–Lipschitz

continuous in ℓ2-norm gradients respectively [62, 63], where 𝐿𝜓 = 𝜆max(𝐴⊤𝐴)/𝜇 and 𝐿𝜙 = 1/𝜇.

In our proofs we often use Demyanov–Danskin theorem [63] which states that

∇𝜓(𝑦) = 𝐴𝑥(𝐴⊤𝑦), ∇𝜙(𝑦) = 𝑥(𝑦). (4.35)

We notice that in this section we do not assume that 𝐴 is symmetric or positive semidefinite.

21

Below we propose a primal-dual method for the case when 𝑓 is additionally Lipschitz

continuous on some ball and two methods for the problems when the primal function is

also 𝐿-smooth and Lipschitz continuous on some ball. In the subsections below we assume

that 𝑄 = R𝑛.

4.5.1. Convex Dual Function

In this section we assume that the dual function 𝜙(𝑦) could be rewritten as an

expectation, i.e. 𝜙(𝑦) = E𝜉 [𝜙(𝑦, 𝜉)], where stochastic realisations 𝜙(𝑦, 𝜉) are differentiable

in 𝑦 functions almost surely in 𝜉. Then, we can also represent 𝜓(𝑦) as an expectation:

𝜓(𝑦) = E𝜉 [𝜓(𝑦, 𝜉)]. Consider the stochastic function 𝑓(𝑥, 𝜉) which is defined implicitly as

follows:

𝜙(𝑦, 𝜉) = max
𝑥∈R𝑛
{⟨𝑦, 𝑥⟩ − 𝑓(𝑥, 𝜉)} . (4.36)

Similarly to the deterministic case we introduce 𝑥(𝑦, 𝜉)
def
= argmax𝑥∈R𝑛 {⟨𝑦, 𝑥⟩ − 𝑓(𝑥, 𝜉)}

which satisfies ∇𝜙(𝑦, 𝜉) = 𝑥(𝑦, 𝜉) due to Demyanov-Danskin theorem, where the gradient

is taken w.r.t. 𝑦. As a simple corollary, we get ∇𝜓(𝑦, 𝜉) = 𝐴𝑥(𝐴⊤𝑦). Finally, introduced

notations and obtained relations imply that 𝑥(𝑦) = E𝜉[𝑥(𝑦, 𝜉)] and ∇𝜓(𝑦) = E𝜉[∇𝜓(𝑦, 𝜉)].

Consider the situation when 𝑥(𝑦, 𝜉) is known only through the noisy observations

𝑥̃(𝑦, 𝜉) = 𝑥(𝑦, 𝜉) + 𝛿(𝑦, 𝜉) and assume that the noise is bounded in expectation, i.e. there

exists non-negative deterministic constant 𝛿𝑦 ≥ 0, such that

‖E𝜉[𝛿(𝑦, 𝜉)]‖2 ≤ 𝛿𝑦, ∀𝑦 ∈ R𝑛. (4.37)

Assume additionally that 𝑥(𝑦, 𝜉) satisfies so-called “light-tails” inequality:

E𝜉

[︃
exp

(︃
‖𝑥̃(𝑦, 𝜉)− E𝜉 [𝑥̃(𝑦, 𝜉)]‖22

𝜎2
𝑥

)︃]︃
≤ exp(1), ∀𝑦 ∈ R𝑛, (4.38)

where 𝜎𝑥 is some positive constant. It implies that we have an access to the biased gradient

∇̃𝜓(𝑦, 𝜉)
def
= 𝐴𝑥̃(𝑦, 𝜉) which satisfies following relations:⃦⃦⃦

E𝜉

[︁
∇̃𝜓(𝑦, 𝜉)

]︁
−∇𝜓(𝑦)

⃦⃦⃦
2
≤ 𝛿, ∀𝑦 ∈ R𝑛, (4.39)

E𝜉

⎡⎢⎣exp

⎛⎜⎝
⃦⃦⃦
∇̃𝜓(𝑦, 𝜉)− E𝜉

[︁
∇̃𝜓(𝑦, 𝜉)

]︁⃦⃦⃦2
2

𝜎2
𝜓

⎞⎟⎠
⎤⎥⎦ ≤ exp(1), ∀𝑦 ∈ R𝑑, (4.40)

22

where 𝛿 def
=
√︀
𝜆max(𝐴⊤𝐴)𝛿𝑦 and 𝜎𝜓

def
=
√︀
𝜆max(𝐴⊤𝐴)𝜎𝑥. We will use ∇̃Ψ(𝑦, 𝜉𝑘) to denote

batched stochastic gradient:

∇̃Ψ(𝑦, 𝜉𝑘) =
1

𝑟𝑘

𝑟𝑘∑︁
𝑙=1

∇̃𝜓(𝑦, 𝜉𝑙), 𝑥̃(𝑦, 𝜉𝑘) =
1

𝑟𝑘

𝑟𝑘∑︁
𝑙=1

𝑥̃(𝑦, 𝜉𝑙) (4.41)

The size of the batch 𝑟𝑘 could always be restored from the context, so, we do not specify

it here. Note that the batch version satisfies⃦⃦⃦
E
[︁
∇̃Ψ(𝑥, 𝜉𝑘)

]︁
−∇𝜓(𝑥)

⃦⃦⃦
2
≤ 𝛿, ∀𝑥 ∈ R𝑛, (4.42)

E

⎡⎢⎣exp

⎛⎜⎝
⃦⃦⃦
∇̃Ψ(𝑥, 𝜉𝑘)− E

[︁
∇̃Ψ(𝑥, 𝜉𝑘)

]︁⃦⃦⃦2
2

𝑂(𝜎2
𝜓/𝑟2𝑘)

⎞⎟⎠
⎤⎥⎦ ≤ exp(1), ∀𝑥 ∈ R𝑛, (4.43)

where in the last inequality we used combination of Lemmas 4.9.3 and 4.9.5 (see two

inequalities after (4.161) for the details). We call this approach SPDSTM (Stochastic Primal­

Dual Similar Triangles Method, see Algorithm 3). Note that Algorithm 4 from [46] is a

special case of SPDSTM when 𝛿 = 0, i.e. stochastic gradient is unbiased, up to a factor 2 in

the choice of 𝐿̃.

Algorithm 3 SPDSTM

Require: 𝑦0 = 𝑧0 = 𝑦0 = 0, number of iterations 𝑁 , 𝛼0 = 𝐴0 = 0

1: for 𝑘 = 0, . . . , 𝑁 do

2: Set 𝐿̃ = 2𝐿𝜓

3: Set 𝐴𝑘+1 = 𝐴𝑘 + 𝛼𝑘+1, where 2𝐿̃𝛼2
𝑘+1 = 𝐴𝑘 + 𝛼𝑘+1

4: 𝑦𝑘+1 = (𝐴𝑘𝑦
𝑘+𝛼𝑘+1𝑧

𝑘)/𝐴𝑘+1

5: 𝑧𝑘+1 = 𝑧𝑘 − 𝛼𝑘+1∇̃Ψ(𝑦𝑘+1, 𝜉𝑘)

6: 𝑦𝑘+1 = (𝐴𝑘𝑦
𝑘+𝛼𝑘+1𝑧

𝑘+1)/𝐴𝑘+1

7: end for

Ensure: 𝑦𝑁 , 𝑥̃𝑁 = 1
𝐴𝑁

∑︀𝑁
𝑘=0 𝛼𝑘𝑥̃(𝐴⊤𝑦𝑘, 𝜉𝑘).

Below we present the main convergence result of this section.

Theorem 4.5.1 (see also Theorem 2 from [46]). Assume that 𝑓 is 𝜇-strongly convex and

‖∇𝑓(𝑥*)‖2 = 𝑀𝑓 . Let 𝜀 > 0 be a desired accuracy. Next, assume that 𝑓 is 𝐿𝑓 -Lipschitz

continuous on the ball 𝐵𝑅𝑓 (0) with 𝑅𝑓 = Ω̃

(︂
max

{︂
𝑅𝑦

𝐴𝑁
√
𝜆max(𝐴⊤𝐴)

,

√
𝜆max(𝐴⊤𝐴)𝑅𝑦

𝜇
, 𝑅𝑥

}︂)︂
,

where 𝑅𝑦 is such that ‖𝑦*‖2 ≤ 𝑅𝑦, 𝑦* is the solution of the dual problem (4.22), and

23

𝑅𝑥 = ‖𝑥(𝐴⊤𝑦*)‖2. Assume that at iteration k of Algorithm 3 batch size is chosen according

to the formula 𝑟𝑘 ≥ max
{︁

1,
𝜎2
𝜓̃︀𝛼𝑘 ln(𝑁/𝛽)

𝐶𝜀

}︁
, where ̃︀𝛼𝑘 = 𝑘+1

2𝐿̃
, 0 < 𝜀 ≤ 𝐻𝐿̃𝑅2

0

𝑁2 , 0 ≤ 𝛿 ≤ 𝐺𝐿̃𝑅0

(𝑁+1)2

and 𝑁 ≥ 1 for some numeric constant 𝐻 > 0, 𝐺 > 0 and 𝐶 > 0. Then with probability

≥ 1 − 4𝛽, where 𝛽 ∈ (0, 1/4) is such that
1+

√︁
ln 1
𝛽√︁

ln 𝑁
𝛽

≤ 2, after 𝑁 = ̃︀𝑂 (︁√︁𝑀𝑓

𝜇𝜀
𝜒(𝐴⊤𝐴)

)︁
iterations where 𝜒(𝐴⊤𝐴) = 𝜆max(𝐴⊤𝐴)

𝜆+min(𝐴
⊤𝐴)

, the outputs 𝑥̃𝑁 and 𝑦𝑁 of Algorithm 3 satisfy the

following condition

𝑓(𝑥̃𝑁)− 𝑓(𝑥*) ≤ 𝑓(𝑥̃𝑁) + 𝜓(𝑦𝑁) ≤ 𝜀, ‖𝐴𝑥̃𝑁‖2 ≤
𝜀

𝑅𝑦

(4.44)

with probability at least 1− 4𝛽. What is more, to guarantee (4.44) with probability at least

1− 4𝛽 Algorithm 3 requires

̃︀𝑂(︃max

{︃
𝜎2
𝑥𝑀

2
𝑓

𝜀2
𝜒(𝐴⊤𝐴) ln

(︃
1

𝛽

√︃
𝑀𝑓

𝜇𝜀
𝜒(𝐴⊤𝐴)

)︃
,

√︃
𝑀𝑓

𝜇𝜀
𝜒(𝐴⊤𝐴)

}︃)︃
(4.45)

calls of the biased stochastic oracle ∇̃𝜓(𝑦, 𝜉), i.e. 𝑥̃(𝑦, 𝜉).

4.5.2. Strongly Convex Dual Functions and Restarts Technique

In this section we assume that primal functional 𝑓 is additionally 𝐿-smooth. It implies

that the dual function 𝜓 in (4.22) is additionally 𝜇𝜓-strongly convex in 𝑦0 + (Ker𝐴⊤)⊥

where 𝜇𝜓 = 𝜆+min(𝐴
⊤𝐴)/𝐿 [62, 63] and 𝜆+min(𝐴⊤𝐴) is the minimal positive eigenvalue of 𝐴⊤𝐴.

From weak duality −𝑓(𝑥*) ≤ 𝜓(𝑦*) and (4.24) we get the key relation of this section

(see also [64–66])

𝑓(𝑥(𝐴⊤𝑦))− 𝑓(𝑥*) ≤ ⟨∇𝜓(𝑦), 𝑦⟩ = ⟨𝐴𝑥(𝐴⊤𝑦), 𝑦⟩ (4.46)

This inequality implies the following theorem.

Theorem 4.5.2. Consider function 𝑓 and its dual function 𝜓 defined in (4.24) such that

problems (4.21) and (4.22) have solutions. Assume that 𝑦𝑁 is such that ‖∇𝜓(𝑦𝑁)‖2 ≤ 𝜀/𝑅𝑦

and 𝑦𝑁 ≤ 2𝑅𝑦, where 𝜀 > 0 is some positive number and 𝑅𝑦 = ‖𝑦*‖2 where 𝑦* is any

minimizer of 𝜓. Then for 𝑥𝑁 = 𝑥(𝐴⊤𝑦𝑁) following relations hold:

𝑓(𝑥𝑁)− 𝑓(𝑥*) ≤ 2𝜀, ‖𝐴𝑥𝑁‖2 ≤
𝜀

𝑅𝑦

, (4.47)

where 𝑥* is any minimizer of 𝑓 .

24

Proof. Applying Cauchy-Schwarz inequality to (4.46) we get

𝑓(𝑥𝑁)− 𝑓(𝑥*)
(4.46)
≤ ‖∇𝜓(𝑦𝑁)‖2 · ‖𝑦𝑁‖2 ≤

𝜀

𝑅𝑦

· 2𝑅𝑦 = 2𝜀.

The second part (4.47) immediately follows from ‖∇𝜓(𝑦𝑁)‖2 ≤ 𝜀/𝑅𝑦 and Demyanov­

Danskin theorem which implies ∇𝜓(𝑦𝑁) = 𝐴𝑥𝑁 .

That is why, in this section we mainly focus on the methods that provides optimal

convergence rates for the gradient norm. In particular, we consider Recursive Regularization

Meta-Algorithm from (see Algorithm 4) [67] with AC-SA2 (see Algorithm 6) as a subroutine

(i.e. RRMA-AC-SA2) which is based on AC-SA algorithm (see Algorithm 5) from [68]. We

notice that RRMA-AC-SA2 is applied for a regularized dual function

𝜓(𝑦) = 𝜓(𝑦) +
𝜆

2
‖𝑦 − 𝑦0‖22, (4.48)

where 𝜆 > 0 is some positive number which will be defined further. Function 𝜓 is 𝜆-strongly

convex and 𝐿̃𝜓-smooth in R𝑛 where 𝐿̃𝜓 = 𝐿𝜓 + 𝜆. For now, we just assume w.l.o.g. that 𝜓

is (𝜇𝜓 + 𝜆)-strongly convex in R𝑛, but we will go back to this question further.

In this section we consider the same oracle as in Section 4.5, but we additionally

assume that 𝛿 = 0, i.e. stochastic first-order oracle is unbiased. To define batched version

of the stochastic gradient we will use the following notation:

∇Ψ(𝑦, 𝜉𝑡, 𝑟𝑡) =
1

𝑟𝑡

𝑟𝑡∑︁
𝑙=1

∇𝜓(𝑦, 𝜉𝑙), 𝑥(𝑦, 𝜉𝑡, 𝑟𝑡) =
1

𝑟𝑡

𝑟𝑡∑︁
𝑙=1

𝑥(𝑦, 𝜉𝑙). (4.49)

As before in the cases when the batch-size 𝑟𝑡 can be restored from the context, we will

use simplified notation ∇Ψ(𝑦, 𝜉𝑡) and 𝑥(𝑦, 𝜉𝑡). In the AC-SA algorithm we use batched

Algorithm 4 RRMA-AC-SA2 [67]

Require: 𝑦0 — starting point, 𝑚 — total number of iterations

1: 𝜓0 ← 𝜓, 𝑦0 ← 𝑦0, 𝑇 ←
⌊︁
log2

𝐿̃𝜓
𝜆

⌋︁
2: for 𝑘 = 1, . . . , 𝑇 do

3: Run AC-SA2 for 𝑚/𝑇 iterations to optimize 𝜓𝑘−1 with 𝑦𝑘−1 as a starting point and

get the output 𝑦𝑘

4: 𝜓𝑘(𝑦)← 𝜓(𝑦) + 𝜆
∑︀𝑘

𝑙=1 2𝑙−1‖𝑦 − 𝑦𝑙‖22
5: end for

Ensure: 𝑦𝑇 .

25

stochastic gradients of functions 𝜓𝑘 which are defined as follows:

∇Ψ𝑘(𝑦, 𝜉
𝑡) =

1

𝑟𝑡

𝑟𝑡∑︁
𝑙=1

∇𝜓𝑘(𝑦, 𝜉𝑙), (4.50)

∇𝜓𝑘(𝑦, 𝜉) = ∇𝜓(𝑦, 𝜉) + 𝜆(𝑦 − 𝑦0) + 𝜆
𝑘∑︁
𝑙=1

2𝑙(𝑦 − 𝑦𝑙).

Algorithm 5 AC-SA [68]

Require: 𝑧0 — starting point, 𝑚 — number of iterations, 𝜓𝑘 — objective function

1: 𝑦0𝑎𝑔 ← 𝑧0, 𝑦0𝑚𝑑 ← 𝑧0

2: for 𝑡 = 1, . . . ,𝑚 do

3: 𝛼𝑡 ← 2
𝑡+1

, 𝛾𝑡 ← 4𝐿̃𝜓
𝑡(𝑡+1)

4: 𝑦𝑡𝑚𝑑 ←
(1−𝛼𝑡)(𝜆+𝛾𝑡)
𝛾𝑡+(1−𝛼2

𝑡)𝜆
𝑦𝑡−1
𝑎𝑔 + 𝛼𝑡((1−𝛼𝑡)𝜆+𝛾𝑡)

𝛾𝑡+(1−𝛼2
𝑡)𝜆

𝑧𝑡−1

5: 𝑧𝑡 ← 𝛼𝑡𝜆
𝜆+𝛾𝑡

𝑦𝑡𝑚𝑑 + (1−𝛼𝑡)𝜆+𝛾𝑡
𝜆+𝛾𝑡

𝑧𝑡−1 − 𝛼𝑡
𝜆+𝛾𝑡
∇Ψ𝑘(𝑦

𝑡
𝑚𝑑, 𝜉

𝑡)

6: 𝑦𝑡𝑎𝑔 ← 𝛼𝑡𝑧
𝑡 + (1− 𝛼𝑡)𝑥𝑡−1

𝑎𝑔

7: end for

Ensure: 𝑦𝑚𝑎𝑔.

Algorithm 6 AC-SA2 [67]

Require: 𝑧0 — starting point, 𝑚 — number of iterations, 𝜓𝑘 — objective function

1: Run AC-SA for 𝑚/2 iterations to optimize 𝜓𝑘 with 𝑧0 as a starting point and get the

output 𝑦1

2: Run AC-SA for 𝑚/2 iterations to optimize 𝜓𝑘 with 𝑦1 as a starting point and get the

output 𝑦2

Ensure: 𝑦2.

The following theorem states the main result for RRMA-AC-SA2 that we need in the

section.

Theorem 4.5.3 (Corollary 1 from [67]). Let 𝜓 be 𝐿𝜓-smooth and 𝜇𝜓-strongly convex

function and 𝜆 = Θ
(︀
(𝐿𝜓 ln2𝑁)/𝑁2

)︀
for some 𝑁 > 1. If the Algorithm 4 performs 𝑁

iterations in total2 with batch size 𝑟 for all iterations, then it will provide such a point 𝑦

that

E
[︀
‖∇𝜓(𝑦)‖22 | 𝑦0, 𝑟

]︀
≤ 𝐶

(︃
𝐿2
𝜓‖𝑦0 − 𝑦*‖22 ln4𝑁

𝑁4
+
𝜎2
𝜓 ln6𝑁

𝑟𝑁

)︃
, (4.51)

2 It means that the overall number of performed iterations preformed during the calls of AC-SA2

equals 𝑁 .

26

where 𝐶 > 0 is some positive constant and 𝑦* is a solution of the dual problem (4.22).

Let us show that w.l.o.g. we can assume in this section that function 𝜓 defined in

(4.24) is 𝜇𝜓-strongly convex everywhere with 𝜇𝜓 = 𝜆+min(𝐴
⊤𝐴)/𝐿. In fact, from 𝐿-smoothness

of 𝑓 we have only that 𝜓 is 𝜇𝜓-strongly convex in 𝑦0 +
(︀
Ker(𝐴⊤)

)︀⊥ (see [62, 63] for the

details). However, the structure of the considered here methods is such that all points

generated by the RRMA-AC-SA2 and, in particular, AC-SA lie in 𝑦0 +
(︀
Ker(𝐴⊤)

)︀⊥.

Theorem 4.5.4. Assume that Algorithm 5 is run for the objective 𝜓𝑘(𝑦) = 𝜓(𝑦) +

𝜆
∑︀𝑘

𝑙=1 2𝑙−1‖𝑦 − 𝑦𝑙‖22 with 𝑧0 as a starting point, where 𝑧0, 𝑦1, . . . , 𝑦𝑘 are some points from

𝑦0 +
(︀
Ker(𝐴⊤)

)︀⊥ and 𝑦0 ∈ R𝑛. Then for all 𝑡 ≥ 0 we have 𝑦𝑡𝑚𝑑, 𝑧𝑡, 𝑦𝑡𝑎𝑔 ∈ 𝑦0 +
(︀
Ker(𝐴⊤)

)︀⊥.

Proof. We prove the statement of the theorem by induction. For 𝑡 = 0 the statement

is trivial, since 𝑦0𝑚𝑑 = 𝑦0𝑎𝑔 = 𝑧0 ∈ 𝑦0 +
(︀
Ker(𝐴⊤)

)︀⊥. Assume that 𝑦𝑡𝑚𝑑, 𝑧𝑡, 𝑦𝑡𝑎𝑔 ∈ 𝑦0 +(︀
Ker(𝐴⊤)

)︀⊥ for some 𝑡 ≥ 0 and prove it for 𝑡 + 1. Since 𝑦0 +
(︀
Ker(𝐴⊤)

)︀⊥ is a convex

set and 𝑦𝑡+1
𝑚𝑑 is a convex combination of 𝑦𝑡𝑎𝑔 and 𝑧𝑡 we have 𝑦𝑡+1

𝑚𝑑 ∈ 𝑦0 +
(︀
Ker(𝐴⊤)

)︀⊥.

Next, the point 𝛼𝑡𝜆
𝜆+𝛾𝑡

𝑦𝑡+1
𝑚𝑑 + (1−𝛼𝑡)𝜆+𝛾𝑡

𝜆+𝛾𝑡
𝑧𝑡 also lies in 𝑦0 +

(︀
Ker(𝐴⊤)

)︀⊥ since it is convex

combination of the points lying in this set. Due to (4.48), (4.49) and (4.50) we have that

∇Ψ𝑘(𝑦
𝑡+1
𝑚𝑑 , 𝜉

𝑡) = 𝐴𝑥(𝐴⊤𝑦𝑡+1
𝑚𝑑 , 𝜉

𝑡) + 𝜆(𝑦𝑡+1
𝑚𝑑 − 𝑦0) + 𝜆

∑︀𝑘
𝑙=1 2𝑙(𝑦𝑡+1

𝑚𝑑 − 𝑦𝑙). The first term lies

in
(︀
Ker(𝐴⊤)

)︀⊥ since Im(𝐴) =
(︀
Ker(𝐴⊤)

)︀⊥ and the second and the third terms also lie

in
(︀
Ker(𝐴⊤)

)︀⊥ since 𝑦𝑡+1
𝑚𝑑 , 𝑦

0, 𝑦1, . . . , 𝑦𝑘 ∈ 𝑦0 +
(︀
Ker(𝐴⊤)

)︀⊥. Putting all together we get

𝑧𝑡+1 ∈ 𝑦0 +
(︀
Ker(𝐴⊤)

)︀⊥. Finally, 𝑦𝑡+1
𝑎𝑔 lies in 𝑦0 +

(︀
Ker(𝐴⊤)

)︀⊥ as a convex combination of

points from this set.

Corollary 4.5.1. Assume that Algorithm 4 is run for the objective 𝜓𝑘(𝑦) = 𝜓(𝑦) +

𝜆
∑︀𝑘

𝑙=1 2𝑙−1‖𝑦 − 𝑦𝑙‖22 with 𝑦0 as a starting point. Then for all 𝑘 ≥ 0 we have 𝑦𝑘 ∈

𝑦0 +
(︀
Ker(𝐴⊤)

)︀⊥.

Proof. We prove this result by induction. For 𝑡 = 0 the statement is trivial since 𝑦0 = 𝑦0.

Next, assume that 𝑦0, 𝑦1, . . . , 𝑦𝑘 ∈ 𝑦0+
(︀
Ker(𝐴⊤)

)︀⊥ and prove that 𝑦𝑘+1 ∈ 𝑦0+
(︀
Ker(𝐴⊤)

)︀⊥.

Our assumption implies that the assumptions from Theorem 4.5.4 and applying the result

of the theorem we get that 𝑦1 and 𝑦2 from the method AC-SA2 applied to the 𝜓𝑘 also lie in

𝑦0 +
(︀
Ker(𝐴⊤)

)︀⊥. That is, the output of AC-SA2 applied for 𝜓𝑘 lies in 𝑦0 +
(︀
Ker(𝐴⊤)

)︀⊥.

Now we are ready to present our approach which was sketched in [45] of constructing

an accelerated method for the strongly convex dual problem using restarts of RRMA-AC-SA2.

27

To explain the main idea we start with the simplest case: 𝜎2
𝜓 = 0, 𝑟 = 0. It means that

there is no stochasticity in the method and the bound (4.51) can be rewritten in the

following form:

‖∇𝜓(𝑦)‖2 ≤
√
𝐶𝐿𝜓‖𝑦0 − 𝑦*‖2 ln2𝑁

𝑁2
≤
√
𝐶𝐿𝜓‖∇𝜓(𝑦0)‖2 ln2𝑁

𝜇𝜓𝑁2
, (4.52)

where we used inequality ‖∇𝜓(𝑦0)‖ ≥ 𝜇𝜓‖𝑦0 − 𝑦*‖ which follows from the 𝜇𝜓-strong

convexity of 𝜓. It implies that after 𝑁̄ = 𝑂̃(
√︀

𝐿𝜓/𝜇𝜓) iterations of RRMA-AC-SA2 the method

returns such 𝑦1 = 𝑦 that ‖∇𝜓(𝑦1)‖2 ≤ 1
2
‖∇𝜓(𝑦0)‖2. Next, applying RRMA-AC-SA2 with

𝑦1 as a starting point for the same number of iterations we will get new point 𝑦2 such

that ‖∇𝜓(𝑦2)‖2 ≤ 1
2
‖∇𝜓(𝑦1)‖2 ≤ 1

4
‖∇𝜓(𝑦0)‖2. Then, after 𝑙 = 𝑂(ln(𝑅𝑦‖∇𝜓(𝑦0)‖2/𝜀)) of such

restarts we can get the point 𝑦𝑙 such that ‖∇𝜓(𝑦𝑙)‖2 ≤ 𝜀/𝑅𝑦 with total number of gradients

computations 𝑁̄ 𝑙 = 𝑂̃
(︁√︀

𝐿𝜓/𝜇𝜓 ln(𝑅𝑦‖∇𝜓(𝑦0)‖2/𝜀)
)︁
.

In the case when 𝜎2
𝜓 ̸= 0 we need to modify this approach. The first ingredient

to handle the stochasticity is large enough batch size for the 𝑙-th restart: 𝑟𝑙 should be

Ω (𝜎2
𝜓/(𝑁̄‖∇𝜓(𝑦𝑙−1)‖22)). However, in the stochastic case we do not have an access to the

∇𝜓(𝑦𝑙−1), so, such batch size is impractical. One possible way to fix this issue is to

independently sample large enough number 𝑟𝑙 ∼ 𝑅2
𝑦/𝜀2 of stochastic gradients additionally,

which is the second ingredient of our approach, in order to get good enough approximation

∇Ψ(𝑦𝑙−1, 𝜉𝑙−1, 𝑟𝑙) of ∇𝜓(𝑦𝑙−1) and use the norm of such an approximation which is close

to the norm of the true gradient with big enough probability in order to estimate needed

batch size 𝑟𝑙 for the optimization procedure. Using this, we can get the bound of the

following form:

E
[︀
‖∇𝜓(𝑦𝑙)‖22 | 𝑦𝑙−1, 𝑟𝑙, 𝑟𝑙

]︀
≤ 𝐴𝑙

def
=
‖∇𝜓(𝑦𝑙−1)‖22

8

+
‖∇Ψ(𝑦𝑙−1, 𝜉𝑙−1, 𝑟𝑙)−∇𝜓(𝑦𝑙−1)‖22

32
.

The third ingredient is the amplification trick: we run 𝑝𝑙 = Ω(ln(1/𝛽)) independent

trajectories of RRMA-AC-SA2, get points 𝑦𝑙,1, . . . , 𝑦𝑙,𝑝𝑙 and choose such 𝑦𝑙,𝑝(𝑙) among of

them that ‖∇𝜓(𝑦𝑙,𝑝(𝑙))‖2 is close enough to min𝑝=1,...,𝑝𝑙 ‖∇𝜓(𝑦𝑙,𝑝)‖2 with high probability,

i.e. ‖∇𝜓(𝑦𝑙,𝑝(𝑙))‖22 ≤ 2 min𝑝=1,...,𝑝𝑙 ‖∇𝜓(𝑦𝑙,𝑝)‖22+𝜀2/8𝑅2
𝑦 with probability at least 1−𝛽 for fixed

∇Ψ(𝑦𝑙−1, 𝜉𝑙−1, 𝑟𝑙). We achieve it due to additional sampling of 𝑟𝑙 ∼ 𝑅2
𝑦/𝜀2 stochastic gradients

at 𝑦𝑙,𝑝 for each trajectory and choosing such 𝑝(𝑙) corresponding to the smallest norm of

the obtained batched stochastic gradient. By Markov’s inequality for all 𝑝 = 1, . . . , 𝑝𝑙

P
{︀
‖∇𝜓(𝑦𝑙,𝑝)‖22 ≥ 2𝐴𝑙 | 𝑦𝑙−1, 𝑟𝑙, 𝑟𝑙

}︀
≤ 1

2
,

28

hence

P

{︂
min

𝑝=1,...,𝑝𝑙
‖∇𝜓(𝑦𝑙,𝑝)‖22 ≥ 2𝐴𝑙 | 𝑦𝑙−1, 𝑟𝑙, 𝑟𝑙

}︂
≤ 1

2𝑝𝑙
.

That is, for 𝑝𝑙 = log2(1/𝛽) we have that with probability at least 1− 2𝛽

‖∇𝜓(𝑦𝑙,𝑝(𝑙))‖22 ≤
‖∇𝜓(𝑦𝑙−1)‖22

2
+
‖∇Ψ(𝑦𝑙−1, 𝜉𝑙−1, 𝑟𝑙)−∇𝜓(𝑦𝑙−1)‖22

8
+

𝜀2

8𝑅2
𝑦

for fixed ∇Ψ(𝑦𝑙−1, 𝜉𝑙−1, 𝑟𝑙) which means that

‖∇𝜓(𝑦𝑙,𝑝(𝑙))‖22 ≤
‖∇𝜓(𝑦𝑙−1)‖22

2
+

𝜀2

4𝑅2
𝑦

with probability at least 1− 3𝛽. Therefore, after 𝑙 = log2(2𝑅
2
𝑦‖∇𝜓(𝑦0)‖22/𝜀2) of such restarts

our method provide the point 𝑦𝑙,𝑝(𝑙) such that with probability at least 1− 3𝑙𝛽

‖∇𝜓(𝑦𝑙,𝑝(𝑙))‖22 ≤
‖∇𝜓(𝑦0)‖22

2𝑙
+

𝜀2

4𝑅2
𝑦

𝑙−1∑︁
𝑘=0

2−𝑘 ≤ 𝜀2

2𝑅2
𝑦

+
𝜀2

4𝑅2
𝑦

· 2 =
𝜀2

𝑅2
𝑦

.

The approach informally described above is stated as Algorithm 7.

Algorithm 7 Restarted-RRMA-AC-SA2

Require: 𝑦0 — starting point, 𝑙 — number of restarts, {𝑟𝑘}𝑙𝑘=1, {𝑟𝑘}𝑙𝑘=1 — batch-sizes,

{𝑝𝑘}𝑙𝑘=1 — amplification parameters

1: Choose the smallest integer 𝑁̄ > 1 such that
𝐶𝐿2

𝜓 ln4 𝑁̄

𝜇2𝜓𝑁̄
4 ≤ 1

32

2: 𝑦0,𝑝(0) ← 𝑦0

3: for 𝑘 = 1, . . . , 𝑙 do

4: Compute ∇Ψ(𝑦𝑘−1,𝑝(𝑘−1), 𝜉𝑘−1,𝑝(𝑘−1), 𝑟𝑘)

5: 𝑟𝑘 ← max
{︁

1,
64𝐶𝜎2

𝜓 ln6 𝑁̄

𝑁̄‖∇Ψ(𝑦𝑘−1,𝑝(𝑘−1),𝜉𝑘−1,𝑝(𝑘−1),𝑟𝑘)‖22

}︁
6: Run 𝑝𝑘 independent trajectories of RRMA-AC-SA2 for 𝑁̄ iterations with batch-size

𝑟𝑘 with 𝑦𝑘−1,𝑝(𝑘−1) as a starting point and get outputs 𝑦𝑘,1, . . . , 𝑦𝑘,𝑝𝑘

7: Compute ∇Ψ(𝑦𝑘,1, 𝜉𝑘,1, 𝑟𝑘), . . . ,∇Ψ(𝑦𝑘,𝑝𝑘 , 𝜉𝑘,𝑝𝑘 , 𝑟𝑘)

8: 𝑝(𝑘)← argmin𝑝=1,...,𝑝𝑘
‖∇Ψ(𝑦𝑘,𝑝, 𝜉𝑘,𝑝, 𝑟𝑘)‖2

9: end for

Ensure: 𝑦𝑙,𝑝(𝑙).

Theorem 4.5.5. Assume that 𝜓 is 𝜇𝜓-strongly convex and 𝐿𝜓-smooth. If Algorithm 7 is

29

run with

𝑙 = max

{︂
1, log2

2𝑅2
𝑦‖∇𝜓(𝑦0)‖22

𝜀2

}︂

𝑟𝑘 = max

⎧⎪⎨⎪⎩1,
4𝜎2

𝜓

(︁
1 +

√︁
3 ln 𝑙

𝛽

)︁2
𝑅2
𝑦

𝜀2

⎫⎪⎬⎪⎭ ,

𝑟𝑘 = max

{︃
1,

64𝐶𝜎2
𝜓 ln6 𝑁̄

𝑁̄‖∇Ψ(𝑦𝑘−1,𝑝(𝑘−1), 𝜉𝑘−1,𝑝(𝑘−1), 𝑟𝑘)‖22

}︃
,

𝑝𝑘 = max

{︂
1, log2

𝑙

𝛽

}︂

𝑟𝑘 = max

⎧⎪⎨⎪⎩1,
128𝜎2

𝜓

(︁
1 +

√︁
3 ln 𝑙𝑝𝑘

𝛽

)︁2
𝑅2
𝑦

𝜀2

⎫⎪⎬⎪⎭ (4.53)

for all 𝑘 = 1, . . . , 𝑙 where 𝑁̄ > 1 is such that
𝐶𝐿2

𝜓 ln4 𝑁̄

𝜇2𝜓𝑁̄
4 ≤ 1

32
, 𝛽 ∈ (0, 1/3) and 𝜀 > 0, then

with probability at least 1− 3𝛽

‖∇𝜓(𝑦𝑙,𝑝(𝑙))‖2 ≤
𝜀

𝑅𝑦

(4.54)

and the total number of the oracle calls equals

𝑙∑︁
𝑘=1

(𝑟𝑘 + 𝑁̄𝑝𝑘𝑟𝑘 + 𝑝𝑘𝑟𝑘) = ̃︀𝑂(︃max

{︃√︃
𝐿𝜓
𝜇𝜓
,
𝜎2
𝜓𝑅

2
𝑦

𝜀2

}︃)︃
. (4.55)

Corollary 4.5.2. Under assumptions of Theorem 4.5.5 we get that with probability at

least 1− 3𝛽

‖𝑦𝑙,𝑝(𝑙) − 𝑦*‖2 ≤
𝜀

𝜇𝜓𝑅𝑦

, (4.56)

where 𝛽 ∈ (0, 1/3) the total number of the oracle calls is defined in (4.55).

Proof. Inequalities (4.54) and 𝜇𝜓‖𝑦 − 𝑦*‖2 ≤ ‖∇𝜓(𝑦)‖2 which follows from 𝜇𝜓-strong

convexity of 𝜓 imply that

‖𝑦𝑙,𝑝(𝑙) − 𝑦*‖2 ≤
‖∇𝜓(𝑦𝑙,𝑝(𝑙))‖2

𝜇𝜓

(4.54)
≤ 𝜀

𝜇𝜓𝑅𝑦

.

Now we are ready to present convergence guarantees for the primal function and

variables.

30

Corollary 4.5.3. Let the assumptions of Theorem 4.5.5 hold. Assume that 𝑓 is 𝐿𝑓 -Lipschitz

continuous on 𝐵𝑅𝑓 (0) where

𝑅𝑓 =

(︃
𝜇𝜓

8
√︀
𝜆max(𝐴⊤𝐴)

+

√︀
𝜆max(𝐴⊤𝐴)

𝜇
+
𝑅𝑥

𝑅𝑦

)︃
𝑅𝑦

and 𝑅𝑥 = ‖𝑥(𝐴⊤𝑦*)‖2. Then, with probability at least 1− 4𝛽

𝑓(𝑥𝑙)− 𝑓(𝑥*) ≤

(︃
2 +

𝐿𝑓

8𝑅𝑦

√︀
𝜆max(𝐴⊤𝐴)

)︃
𝜀, ‖𝐴𝑥𝑙‖ ≤ 9𝜀

8𝑅𝑦

, (4.57)

where 𝛽 ∈ (0, 1/4), 𝜀 ∈ (0, 𝜇𝜓𝑅
2
𝑦) 𝑥

𝑙 def
= 𝑥(𝐴⊤𝑦𝑙,𝑝(𝑙), 𝜉𝑙,𝑝(𝑙), 𝑟𝑙) and to achieve it we need the

total number of oracle calls equals

𝑙∑︁
𝑘=1

(𝑟𝑘 + 𝑁̄𝑝𝑘𝑟𝑘 + 𝑝𝑘𝑟𝑘) = ̃︀𝑂(︃max

{︃√︃
𝐿

𝜇
𝜒(𝐴⊤𝐴),

𝜎2
𝑥𝑀

2

𝜀2
𝜒(𝐴⊤𝐴)

}︃)︃
(4.58)

where 𝑀 = ‖∇𝑓(𝑥*)‖2.

4.5.3. Direct Acceleration for Strongly Convex Dual Function

We consider first the following minimization problem:

min
𝑦∈R𝑛

𝜓(𝑦), (4.59)

where 𝜓(𝑦) is 𝜇𝜓-strongly convex and 𝐿𝜓-smooth. We use the same notation to define

the objective in (4.59) as for the dual function from (4.22) because later in the section

we apply the algorithm introduced below to the (4.22), but for now it is not important

that 𝜓 is a dual function for (4.21) and we prefer to consider more general situation. As in

Section 4.5.1, we do not assume that we have an access to the exact gradient of 𝜓(𝑦) and

consider instead of it biased stochastic gradient ∇̃𝜓(𝑦, 𝜉) satisfying inequalities (4.39) and

(4.40) with 𝛿 ≥ 0 and 𝜎𝜓 ≥ 0. In the main method of this section batched version of the

stochastic gradient is used:

∇̃Ψ(𝑦, 𝜉𝑘) =
1

𝑟𝑘

𝑟𝑘∑︁
𝑙=1

∇̃𝜓(𝑦, 𝜉𝑙), (4.60)

where 𝑟𝑘 is the batch-size that we leave unspecified for now. Note that ∇̃Ψ(𝑦, 𝜉𝑘) satisfies

inequalities (4.42) and (4.43).

We use Stochastic Similar Triangles Method which is stated in this section as

Algorithm 8 to solve problem (4.59). To define the iterate 𝑧𝑘+1 we use the following

31

sequence of functions:

𝑔0(𝑧)
def
=

1

2
‖𝑧 − 𝑧0‖22 + 𝛼0

(︁
𝜓(𝑦0) + ⟨∇̃Ψ(𝑦0, 𝜉0), 𝑧 − 𝑦0⟩+

𝜇𝜓
2
‖𝑧 − 𝑦0‖22

)︁
,

𝑔𝑘+1(𝑧)
def
= 𝑔𝑘(𝑧) + 𝛼𝑘+1

(︁
𝜓(𝑦𝑘+1) + ⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑧 − 𝑦𝑘+1⟩+

𝜇𝜓
2
‖𝑧 − 𝑦𝑘+1‖22

)︁
=

1

2
‖𝑧 − 𝑧0‖22 +

𝑘+1∑︁
𝑙=0

𝛼𝑙

(︁
𝜓(𝑦𝑙) + ⟨∇̃Ψ(𝑦𝑙, 𝜉𝑙), 𝑧 − 𝑦𝑙⟩+

𝜇𝜓
2
‖𝑧 − 𝑦𝑙‖22

)︁
(4.61)

We notice that 𝑔𝑘(𝑧) is (1 + 𝐴𝑘𝜇𝜓)-strongly convex.

Algorithm 8 Stochastic Similar Triangles Methods for strongly convex problems

(SSTM_sc)

Require: 𝑦0 = 𝑧0 = 𝑦0 — starting point, 𝑁 — number of iterations

1: Set 𝛼0 = 𝐴0 = 1/𝐿𝜓

2: Get ∇̃Ψ(𝑦0, 𝜉0) to define 𝑔0(𝑧)

3: for 𝑘 = 0, 1, . . . , 𝑁 − 1 do

4: Choose 𝛼𝑘+1 such that 𝐴𝑘+1 = 𝐴𝑘 + 𝛼𝑘+1, 𝐴𝑘+1(1 + 𝐴𝑘𝜇𝜓) = 𝛼2
𝑘+1𝐿𝜓

5: 𝑦𝑘+1 = (𝐴𝑘𝑦
𝑘+𝛼𝑘+1𝑧

𝑘)/𝐴𝑘+1

6: 𝑧𝑘+1 = argmin𝑧∈R𝑛 𝑔𝑘+1(𝑧), where 𝑔𝑘+1(𝑧) is defined in (4.61)

7: 𝑦𝑘+1 = (𝐴𝑘𝑦
𝑘+𝛼𝑘+1𝑧

𝑘+1)/𝐴𝑘+1

8: end for

Ensure: 𝑥𝑁

Lemma 4.5.1. Assume that Algorithm 8 is run to solve problem (4.59) with 𝜓(𝑦) being

𝜇𝜓-strongly convex and 𝐿𝜓-smooth. Then, for all 𝑘 ≥ 0 we have

𝐴𝑘𝜓(𝑦𝑘) ≤ 𝑔𝑘(𝑧
𝑘)−

𝑘−1∑︁
𝑙=0

𝐴𝑙𝜇𝜓
2
‖𝑦𝑙 − 𝑦𝑙+1‖22

+
𝑘∑︁
𝑙=0

𝛼𝑙
2𝜇𝜓

⃦⃦⃦
∇̃Ψ(𝑦𝑙, 𝜉𝑙)−∇𝜓(𝑦𝑙)

⃦⃦⃦2
2
. (4.62)

Lemma 4.5.2. Let the sequences of non-negative numbers {𝛼𝑘}𝑘≥0, random non-negative

variables {𝑅𝑘}𝑘≥−1, { ̃︀𝑅𝑘}𝑘≥−1 and random vectors {𝜂𝑘}𝑘≥0, {𝑎𝑘}𝑘≥0, {𝑎̃𝑘}𝑘≥0 satisfy inequality

𝐴𝑙𝑅
2
𝑙 +

𝑙−1∑︁
𝑘=0

𝐴𝑘 ̃︀𝑅2
𝑘 ≤ 𝐴+ ℎ𝛿

𝑙∑︁
𝑘=0

𝛼𝑘(𝑅𝑘−1 + ̃︀𝑅𝑘)

+𝑢
𝑙−1∑︁
𝑘=0

𝛼𝑘+1⟨𝜂𝑘, 𝑎𝑘 + 𝑎̃𝑘⟩+ 𝑐
𝑙−1∑︁
𝑘=0

𝛼𝑘+1‖𝜂𝑘‖22, (4.63)

32

for all 𝑙 = 1, . . . , 𝑁 , where ℎ, 𝛿, 𝑢 and 𝑐 are some non-negative constants and 𝐴𝑘+1 =

𝐴𝑘 +𝛼𝑘+1, 𝛼𝑘+1 ≤ 𝐷𝐴𝑘 for some 𝐷 ≥ 1, 𝐴0 = 𝛼0 > 0. Assume that for each 𝑘 ≥ 1 vector

𝑎𝑘 is a function of 𝜂0, . . . , 𝜂𝑘−1, 𝑎0 is a deterministic vector, 𝑢 ≥ 1, sequence of random

vectors {𝜂𝑘}𝑘≥0 satisfy

E
[︀
𝜂𝑘 | 𝜂0, . . . , 𝜂𝑘−1

]︀
= 0, E

[︂
exp

(︂
‖𝜂𝑘‖22
𝜎2
𝑘

)︂
| 𝜂0, . . . , 𝜂𝑘−1

]︂
≤ exp(1), (4.64)

∀𝑘 ≥ 0, 𝜎2
𝑘 ≤ 𝐶𝜀

𝑁2
(︁
1+

√︁
3 ln 𝑁

𝛽

)︁2 for some 𝐶 > 0, 𝜀 > 0, 𝛽 ∈ (0, 1), sequences {𝑎𝑘}𝑘≥0 and

{𝑎̃𝑘}𝑘≥0 are such that ‖𝑎𝑘‖2 ≤ 𝑅𝑘 and ‖𝑎̃𝑘‖2 ≤ ̃︀𝑅𝑘, 𝑅𝑘 and ̃︀𝑅𝑘 depend only on 𝜂0, . . . , 𝜂
𝑘

and ̃︀𝑅0 = 0. If additionally 𝛿 ≤ 𝐺𝑅0

𝑁
√
𝐴𝑁

and 𝜀 ≤ 𝐻𝑅2
0

𝐴𝑁
Then with probability at least 1− 2𝛽

the inequalities

𝑅𝑙 ≤
𝐽𝑅0√
𝐴𝑙
, ̃︀𝑅𝑙−1 ≤

𝐽𝑅0√
𝐴𝑙−1

(4.65)

and

ℎ𝛿

𝑙−1∑︁
𝑘=0

𝛼𝑘+1(𝑅𝑘 + ̃︀𝑅𝑘) + 𝑢
𝑙−1∑︁
𝑘=0

𝛼𝑘+1⟨𝜂𝑘, 𝑎𝑘 + 𝑎̃𝑘⟩+ 𝑐
𝑙−1∑︁
𝑘=0

𝛼𝑘+1‖𝜂𝑘‖22

≤
(︁

2𝑐𝐻𝐶 + 2𝐽𝐷
(︁
ℎ𝐺+ 𝑢𝐶1

√︀
2𝐻𝐶𝑔(𝑁)

)︁)︁
𝑅2

0 (4.66)

hold for all 𝑙 = 1, . . . , 𝑁 simultaneously, where 𝐶1 is some positive constant, 𝑔(𝑁) =
ln(𝑁𝛽)+ln ln(𝐵𝑏)(︁
1+

√︁
3 ln(𝑁𝛽)

)︁2 ,

𝐵 = 8𝐻𝐶𝐷𝑅2
0

(︃
𝑁

(︂
3

2

)︂𝑁
+ 1

)︃(︀
𝐴+ 2𝐷ℎ2𝐺2𝑅2

0 + 2𝐶
(︀
𝑐+ 2𝐷𝑢2

)︀
𝐻𝑅2

0

)︀
,

𝑏 = 2𝜎2
0𝛼

2
1𝑅

2
0 and

𝐽 = max

⎧⎨⎩√︀𝐴0,
3𝐵1𝐷 +

√︁
9𝐵2

1𝐷
2 + 4𝐴

𝑅2
0

+ 8𝑐𝐻𝐶

2

⎫⎬⎭ ,

𝐵1 = ℎ𝐺+ 𝑢𝐶1

√︀
2𝐻𝐶𝑔(𝑁).

Theorem 4.5.6. Assume that the function 𝜓 is 𝜇𝜓-strongly convex and 𝐿𝜓-smooth,

𝑟𝑘 = Θ

(︃
max

{︃
1,

(︂
𝜇𝜓
𝐿𝜓

)︂3/2 𝑁2𝜎2
𝜓 ln 𝑁

𝛽

𝜀

}︃)︃
,

i.e. 𝑟𝑘 ≥ 1
𝐶

max

{︃
1,
(︁
𝜇𝜓
𝐿𝜓

)︁3/2 𝑁2𝜎2
𝜓

(︁
1+

√︁
3 ln 𝑁

𝛽

)︁2

𝜀

}︃
with positive constants 𝐶 > 0, 𝜀 > 0 and

𝑁 ≥ 1. If additionally 𝛿 ≤ 𝐺𝑅0

𝑁
√
𝐴𝑁

and 𝜀 ≤ 𝐻𝑅2
0

𝐴𝑁
where 𝑅0 = ‖𝑦* − 𝑦0‖2 and Algorithm 8 is

run for 𝑁 iterations, then with probability at least 1− 3𝛽

‖𝑦𝑁 − 𝑦*‖22 ≤
𝐽2𝑅2

0

𝐴𝑁
, (4.67)

33

where 𝛽 ∈ (0, 1/3),

𝑔(𝑁) =
ln
(︁
𝑁
𝛽

)︁
+ ln ln

(︁
𝐵̂
𝑏

)︁
(︂

1 +

√︂
3 ln

(︁
𝑁
𝛽

)︁)︂2 , 𝑏 =
2𝜎2

1𝛼
2
1𝑅

2
0

𝑟1
, 𝐷

(4.229)
= 1 +

𝜇𝜓
𝐿𝜓

+

√︂
1 +

𝜇𝜓
𝐿𝜓

,

𝐵̂ = 8𝐻𝐶

(︂
𝐿𝜓
𝜇𝜓

)︂3/2

𝐷𝑅4
0

(︃
𝑁

(︂
3

2

)︂𝑁
+ 1

)︃(︃
𝐴+ 2𝐷ℎ2𝐺2

+2𝐶

(︂
𝐿𝜓
𝜇𝜓

)︂3/2 (︀
𝑐+ 2𝐷𝑢2

)︀
𝐻

)︃
,

ℎ = 𝑢 =
2

𝜇𝜓
, 𝑐 =

2

𝜇2
𝜓

,

𝐴 =
1

𝜇𝜓
+

2𝐺

𝐿𝜓𝜇𝜓𝑁
√
𝐴𝑁

+
2𝐺2

𝜇2
𝜓𝑁

2
+

(︂
𝐿𝜓
𝜇𝜓

)︂3/4
2
√

2𝐶𝐻

𝐿𝜓𝜇𝜓𝑁
√
𝐴𝑁

+

(︂
𝐿𝜓
𝜇𝜓

)︂3/2
4𝐶𝐻

𝐿𝜓𝜇2
𝜓𝑁

2𝐴𝑁
,

𝐽 = max

⎧⎪⎪⎨⎪⎪⎩
√︃

1

𝐿𝜓
,
3𝐵̂1𝐷 +

√︂
9𝐵̂2

1𝐷
2 + 4𝐴+ 8𝑐𝐻𝐶

(︁
𝐿𝜓
𝜇𝜓

)︁3/2

2

⎫⎪⎪⎬⎪⎪⎭ ,

𝐵̂1 = ℎ𝐺+ 𝑢𝐶1

√︃
2𝐻𝐶

(︂
𝐿𝜓
𝜇𝜓

)︂3/2

𝑔(𝑁)

and 𝐶1 is some positive constant. In other words, to achieve ‖𝑦𝑁−𝑦*‖22 ≤ 𝜀 with probability

at least 1 − 3𝛽 Algorithm 8 needs 𝑁 = ̃︀𝑂 (︁√︁𝐿𝜓
𝜇𝜓

)︁
iterations and ̃︀𝑂 (︁max

{︁√︁
𝐿𝜓
𝜇𝜓
,
𝜎2
𝜓

𝜀

}︁)︁
oracle calls where ̃︀𝑂(·) hides polylogarithmic factors depending on 𝐿𝜓, 𝜇𝜓, 𝑅0, 𝜀 and 𝛽.

Next, we apply the SSTM_sc for the problem (4.22) when the objective of the primal

problem (4.21) is 𝐿-smooth, 𝜇-strongly convex and 𝐿𝑓 -Lipschitz continuous on some ball

which will be specified next, i.e. we consider the same setup as in Section 4.5 but we

additionally assume that the primal functional 𝑓 has 𝐿-Lipschitz continuous gradient. As

in Section 4.5 we also consider the case when the gradient of the dual functional is known

only through biased stochastic estimators, see (4.36)–(4.43) and the paragraphs containing

these formulas.

In Section 4.5 and 4.5.2 we mentioned that in the considered case dual function 𝜓

is 𝐿𝜓-smooth on R𝑛 and 𝜇𝜓-strongly convex on 𝑦0 + (Ker𝐴⊤)⊥ where 𝐿𝜓 = 𝜆max(𝐴⊤𝐴)/𝜇

and 𝜇𝜓 = 𝜆+min(𝐴
⊤𝐴)/𝐿. Using the same technique as in the proof of Theorem 4.5.4 we show

next that w.l.o.g. one can assume that 𝜓 is 𝜇𝜓-strongly convex on R𝑛 since ∇̃Ψ(𝑦, 𝜉𝑘) lies

34

in Im𝐴 = (Ker𝐴⊤)⊥ by definition of ∇̃Ψ(𝑦, 𝜉𝑘). For this purposes we need the explicit

formula for 𝑧𝑘+1 which follows from the equation ∇𝑔𝑘+1(𝑧
𝑘+1) = 0:

𝑧𝑘+1 =
𝑧0

1 + 𝐴𝑘+1𝜇𝜓
+

𝑘+1∑︁
𝑙=0

𝛼𝑙𝜇𝜓
1 + 𝐴𝑘+1𝜇𝜓

𝑦𝑙 − 1

1 + 𝐴𝑘+1𝜇𝜓

𝑘+1∑︁
𝑙=0

𝛼𝑙∇̃Ψ(𝑦𝑙, 𝜉𝑙). (4.68)

Theorem 4.5.7. For all 𝑘 ≥ 0 we have that the iterates of Algorithm 8 𝑦𝑘, 𝑧𝑘, 𝑦𝑘 lie in

𝑦0 +
(︀
Ker(𝐴⊤)

)︀⊥.

Proof. We prove the statement of the theorem by induction. For 𝑘 = 0 the statement is

trivial, since 𝑦0 = 𝑧0 = 𝑦0. Assume that for some 𝑘 ≥ 0 we have 𝑦𝑡, 𝑧𝑡, 𝑦𝑡 ∈ 𝑦0+
(︀
Ker(𝐴⊤)

)︀⊥
for all 0 ≤ 𝑡 ≤ 𝑘 and prove it for 𝑘 + 1. Since 𝑦0 +

(︀
Ker(𝐴⊤)

)︀⊥ is a convex set and 𝑦𝑘+1

is a convex combination of 𝑦𝑘 and 𝑧𝑘 we have 𝑦𝑘+1 ∈ 𝑦0 +
(︀
Ker(𝐴⊤)

)︀⊥. Next, the point
𝑧0

1+𝐴𝑘+1𝜇𝜓
+

𝑘+1∑︀
𝑙=0

𝛼𝑙𝜇𝜓
1+𝐴𝑘+1𝜇𝜓

𝑦𝑙 also lies in 𝑦0 +
(︀
Ker(𝐴⊤)

)︀⊥ since it is convex combination of

the points lying in this set which follows from 𝐴𝑘+1 =
∑︀𝑘+1

𝑙=0 𝛼𝑙. By definition ∇̃Ψ(𝑦𝑙, 𝜉𝑙) of

we have that ∇̃Ψ(𝑦𝑙, 𝜉𝑙) lies in Im𝐴 = (Ker𝐴⊤)⊥ for all 𝑦𝑙. Putting all together and using

(4.68) we get 𝑧𝑘+1 ∈ 𝑦0 +
(︀
Ker(𝐴⊤)

)︀⊥. Finally, 𝑦𝑘+1 lies in 𝑦0 +
(︀
Ker(𝐴⊤)

)︀⊥ as a convex

combination of points from this set.

This theorem makes it possible to apply the result from Theorem 4.5.6 for SSTM_sc

which is run on the problem (4.22).

Corollary 4.5.4. Under assumptions of Theorem 4.5.6 we get that after 𝑁 = ̃︀𝑂 (︁√︁𝐿𝜓
𝜇𝜓

ln 1
𝜀

)︁
iterations of Algorithm 8 which is run on the problem (4.22) with probability at least 1− 3𝛽

‖∇𝜓(𝑦𝑁)‖2 ≤
𝜀

𝑅𝑦

, (4.69)

where 𝛽 ∈ (0, 1/3) and the total number of oracles calls equals

̃︀𝑂(︃max

{︃√︃
𝐿𝜓
𝜇𝜓
,
𝜎2
𝜓𝑅

2
𝑦

𝜀2

}︃)︃
. (4.70)

If additionally 𝜀 ≤ 𝜇𝜓𝑅
2
𝑦, then with probability at least 1− 3𝛽

‖𝑦𝑁 − 𝑦*‖2 ≤
𝜀

𝜇𝜓𝑅𝑦

, (4.71)

‖𝑦𝑁‖2 ≤ 2𝑅𝑦 (4.72)

Proof. Theorem 4.5.6 implies that with probability at least 1− 3𝛽 we have

‖𝑦𝑁 − 𝑦*‖22 ≤
𝐽2𝑅2

0

𝐴𝑁
.

35

Using this and 𝐿𝜓-smoothness of 𝜓 we get that with probability ≥ 1− 3𝛽

‖∇𝜓(𝑦𝑁)‖22 = ‖∇𝜓(𝑦𝑁)−∇𝜓(𝑦*)‖22 ≤ 𝐿2
𝜓‖𝑦𝑁 − 𝑦*‖22 ≤

𝐿2
𝜓𝐽

2𝑅2
0

𝐴𝑁
.

Since 𝐴
(4.228)
≥ 1

𝐿𝜓

(︁
1 + 1

2

√︁
𝜇𝜓
𝐿𝜓

)︁2𝑘
, it implies that after 𝑁 = ̃︀𝑂 (︁√︁𝐿𝜓

𝜇𝜓
ln 1

𝜀

)︁
iterations of

SSTM_sc we will get (4.69) with probability at least 1− 3𝛽 and the number of oracle calls

will be
𝑁∑︁
𝑘=0

𝑟𝑘 = ̃︀𝑂(︃max

{︃√︃
𝐿𝜓
𝜇𝜓
,
𝜎2
𝜓𝑅

2
𝑦

𝜀2

}︃)︃
.

Next, from 𝜇𝜓-strong convexity of 𝜓(𝑦) we have that with probability at least 1− 3𝛽

‖𝑦𝑁 − 𝑦*‖2 ≤
‖∇𝜓(𝑦𝑁)‖2

𝜇𝜓
≤ 𝜀

𝜇𝜓𝑅𝑦

and from this we obtain that with probability at least 1− 3𝛽

‖𝑦𝑁‖2 ≤ ‖𝑦𝑁 − 𝑦*‖2 + ‖𝑦*‖2 ≤
𝜀

𝜇𝜓𝑅𝑦

+𝑅𝑦 ≤ 2𝑅𝑦.

Corollary 4.5.5. Let the assumptions of Theorem 4.5.6 hold. Assume that 𝑓 is 𝐿𝑓 -Lipschitz

continuous on 𝐵𝑅𝑓 (0) where

𝑅𝑓 =

(︃√︃
2𝐶

𝜆max(𝐴⊤𝐴)
+𝐺1 +

√︀
𝜆max(𝐴⊤𝐴)

𝜇

)︃
𝜀

𝑅𝑦

+𝑅𝑥,

𝑅𝑥 = ‖𝑥(𝐴⊤𝑦*)‖2, 𝜀 ≤ 𝜇𝜓𝑅
2
𝑦 and 𝛿𝑦 ≤ 𝐺1𝜀

𝑁𝑅𝑦
for some positive constant 𝐺1. Assume

additionally that the last batch-size 𝑟𝑁 is slightly bigger than other batch-sizes, i.e.

𝑟𝑁 ≥ 1

𝐶
max

{︃
1,

(︂
𝜇𝜓
𝐿𝜓

)︂3/2 𝑁2𝜎2
𝜓

(︁
1 +

√︁
3 ln 𝑁

𝛽

)︁2
𝑅2
𝑦

𝜀2
,

𝜎2
𝜓

(︁
1 +

√︁
3 ln 𝑁

𝛽

)︁2
𝑅2
𝑦

𝜀2

}︃
. (4.73)

Then, with probability at least 1− 4𝛽

𝑓(𝑥̃𝑁)− 𝑓(𝑥*) ≤

(︃
2 +

(︃√︃
2𝐶

𝜆max(𝐴⊤𝐴)
+𝐺1

)︃
𝐿𝑓
𝑅𝑦

)︃
𝜀, (4.74)

‖𝐴𝑥̃𝑁‖2 ≤
(︁

1 +
√

2𝐶 +𝐺1

√︀
𝜆max(𝐴⊤𝐴)

)︁ 𝜀

𝑅𝑦

, (4.75)

36

where 𝛽 ∈ (0, 1/4), 𝑥̃𝑁 def
= 𝑥̃(𝐴⊤𝑦𝑁 , 𝜉𝑁 , 𝑟𝑁) and to achieve it we need the total number of

oracle calls including the cost of computing 𝑥̃𝑁 equals

̃︀𝑂(︃max

{︃√︃
𝐿

𝜇
𝜒(𝐴⊤𝐴),

𝜎2
𝑥𝑀

2

𝜀2
𝜒(𝐴⊤𝐴)

}︃)︃
(4.76)

where 𝑀 = ‖∇𝑓(𝑥*)‖2.

4.6. Applications to Decentralized Distributed Optimization

In this section we apply our results to the decentralized optimization problems.

But let us consider first the centralized or parallel architecture. As we mentioned in the

introduction, when the objective function is 𝐿-smooth one can compute batches in parallel

[16, 25–27] in order to accelerate the work of the method and (4.11)-(4.13) imply that

𝑂

(︃
𝜎2𝑅2/𝜀2√︀
𝐿𝑅2/𝜀

)︃
or 𝑂

(︃
𝜎2/𝜇𝜀√︀

𝐿/𝜇 ln (𝜇𝑅2/𝜀)

)︃
(4.77)

number of workers in such a parallel scheme gives the method with working time

proportional to the number of iterations defined in (4.11). However, number of workers

defined in (4.77) could be too big in order to use such an approach in practice. But still

computing the batches in parallel even with much smaller number of workers could reduce

the working time of the method if the communication is fast enough and it follows from

(4.13).

Besides the computation of batches in parallel for the general type of problem

(4.1)+(4.2), parallel optimization is often applied to the finite-sum minimization problems

(4.1)+(4.3) or (4.1)+(4.6) that we rewrite here in the following form:

min
𝑥∈𝑄⊆R𝑛

𝑓(𝑥) =
1

𝑚

𝑚∑︁
𝑘=1

𝑓𝑘(𝑥). (4.78)

We notice that in this section 𝑚 is a number of workers and 𝑓𝑘(𝑥) is known only for the

𝑘-th worker. Consider the situation when workers are connected in a network and one

can construct a spanning tree for this network. Assume that the diameter of the obtained

graph equals 𝑑, i.e. the height of the tree — maximal distance (in terms of connections)

between the root and a leaf [29]. If we run STM on such a spanning tree then we will get

that the number of communication rounds will be 𝑑 times larger than number of iterations

defined in (4.11).

37

Now let us consider decentralized case when workers can communicate only with

their neighbours. Next, we describe the method of how to reflect this restriction in the

problem (4.78). Consider the Laplacian matrix 𝑊 ∈ R𝑚×𝑚 of the network with vertices 𝑉

and edges 𝐸 which is defined as follows:

𝑊 𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1, if (𝑖, 𝑗) ∈ 𝐸,

deg(𝑖), if 𝑖 = 𝑗,

0 otherwise,

(4.79)

where deg(𝑖) is degree of 𝑖-th node, i.e. number of neighbours of the 𝑖-th worker. Since we

consider only connected networks the matrix 𝑊 has unique eigenvector 1𝑚
def
= (1, . . . , 1)⊤ ∈

R𝑚 corresponding to the eigenvalue 0. It implies that for all vectors 𝑎 = (𝑎1, . . . , 𝑎𝑚)⊤ ∈ R𝑚

the following equivalence holds:

𝑎1 = . . . = 𝑎𝑚 ⇐⇒ 𝑊𝑎 = 0. (4.80)

Now let us think about 𝑎𝑖 as a number that 𝑖-th node stores. Then, using (4.80) we can use

Laplacian matrix to express in the short matrix form the fact that all nodes of the network

store the same number. In order to generalize it for the case when 𝑎𝑖 are vectors from R𝑛

we should consider the matrix 𝑊 def
= 𝑊 ⊗ 𝐼𝑛 where ⊗ represents the Kronecker product

(see (3.1)). Indeed, if we consider vectors 𝑥1, . . . , 𝑥𝑚 ∈ R𝑛 and x =
(︀
𝑥⊤1 , . . . , 𝑥

⊤
𝑚

)︀
∈ R𝑛𝑚,

then (4.80) implies

𝑥1 = . . . = 𝑥𝑚 ⇐⇒ 𝑊x = 0. (4.81)

For simplicity, we also call𝑊 as a Laplacian matrix and it does not lead to misunderstanding

since everywhere below we use 𝑊 instead of 𝑊 . The key observation here that computation

of 𝑊𝑥 requires one round of communications when the 𝑘-th worker sends 𝑥𝑘 to all its

neighbours and receives 𝑥𝑗 for all 𝑗 such that (𝑘, 𝑗) ∈ 𝐸, i.e. 𝑘-th worker gets vectors

from all its neighbours. Note, that 𝑊 is symmetric and positive semidefinite [29] and, as

a consequence,
√
𝑊 exists. Moreover, we can replace 𝑊 by

√
𝑊 in (4.81) and get the

equivalent statement:

𝑥1 = . . . = 𝑥𝑚 ⇐⇒
√
𝑊x = 0. (4.82)

Using this we can rewrite the problem (4.78) in the following way:

min√
𝑊x=0,

𝑥1,...,𝑥𝑚∈𝑄⊆R𝑛

𝑓(x) =
1

𝑚

𝑚∑︁
𝑘=1

𝑓𝑘(𝑥𝑘). (4.83)

38

We are interested in the general case when 𝑓𝑘(𝑥𝑘) = E𝜉𝑘 [𝑓𝑘(𝑥𝑘, 𝜉𝑘)] where {𝜉𝑘}𝑚𝑘=1 are

independent. This type of objective can be considered as a special case of (4.6). Then, as

it was mentioned in the introduction it is natural to use stochastic gradients ∇𝑓𝑘(𝑥𝑘, 𝜉𝑘)

that satisfy

‖E𝜉𝑘 [∇𝑓𝑘(𝑥𝑘, 𝜉𝑘)]−∇𝑓𝑘(𝑥𝑘)‖2 ≤ 𝛿, (4.84)

E𝜉𝑘

[︃
exp

(︃
‖∇𝑓𝑘(𝑥𝑘, 𝜉𝑘)− E𝜉𝑘 [∇𝑓𝑘(𝑥𝑘, 𝜉𝑘)]‖22

𝜎2

)︃]︃
≤ exp(1). (4.85)

Then, the stochastic gradient

∇𝑓(x, 𝜉)
def
= ∇𝑓(x, {𝜉𝑘}𝑚𝑘=1)

def
=

1

𝑚

𝑚∑︁
𝑘=1

∇𝑓𝑘(𝑥𝑘, 𝜉𝑘)

satisfies (see also (4.43))

E𝜉

[︃
exp

(︃
‖∇𝑓(x, 𝜉)− E𝜉 [∇𝑓(x, 𝜉)]‖22

𝜎2
𝑓

)︃]︃
≤ exp(1)

with 𝜎2
𝑓 = 𝑂 (𝜎2/𝑚).

As always, we start with the smooth case with 𝑄 = R𝑛 and assume that each 𝑓𝑘

is 𝐿-smooth, 𝜇-strongly convex and satisfies ‖∇𝑘𝑓𝑘(𝑥𝑘)‖2 ≤ 𝑀 on some ball 𝐵𝑅𝑀 (𝑥*)

where we use ∇𝑘𝑓(𝑥𝑘) to emphasize that 𝑓𝑘 depends only on the 𝑘-th 𝑛-dimensional

block of x. Since the functional 𝑓(x) in (4.83) has separable structure, it implies that 𝑓 is

𝐿/𝑚-smooth, 𝜇/𝑚-strongly convex and satisfies ‖∇𝑓(x)‖2 ≤ 𝑀/√𝑚 on 𝐵√
𝑚𝑅𝑀 (x*). Indeed,

for all x,y ∈ R𝑛

‖x− y‖22 =
𝑚∑︁
𝑘=1

‖𝑥𝑘 − 𝑦𝑘‖22,

‖∇𝑓(x)−∇𝑓(y)‖2 =

⎯⎸⎸⎷ 1

𝑚2

𝑚∑︁
𝑘=1

‖∇𝑘𝑓𝑘(𝑥𝑘)−∇𝑘𝑓𝑘(𝑦𝑘)‖22

≤

⎯⎸⎸⎷𝐿2

𝑚2

𝑚∑︁
𝑘=1

‖𝑥𝑘 − 𝑦𝑘‖22 =
𝐿

𝑚
‖x− y‖2,

𝑓(x) =
1

𝑚

𝑚∑︁
𝑘=1

𝑓𝑘(𝑥𝑘) ≥
1

𝑚

𝑚∑︁
𝑘=1

(︁
𝑓(𝑦𝑘) + ⟨∇𝑘𝑓𝑘(𝑦𝑘), 𝑥𝑘 − 𝑦𝑘⟩+

𝜇

2
‖𝑥𝑘 − 𝑦𝑘‖22

)︁
= 𝑓(y) + ⟨∇𝑓(y),x− y⟩+

𝜇

2𝑚
‖x− y‖22,

‖∇𝑓(x)‖22 =
1

𝑚2

𝑚∑︁
𝑘=1

‖∇𝑘𝑓𝑘(𝑥𝑘)‖22.

39

Therefore, one can consider the problem (4.83) as (4.21) with 𝐴 =
√
𝑊 and 𝑄 = R𝑛𝑚.

Next, if the starting point x0 is such that x0 = (𝑥0, . . . , 𝑥0)⊤ then

R2 def
= ‖x0 − x*‖22 = 𝑚‖𝑥0 − 𝑥*‖22 = 𝑚𝑅2, 𝑅2

y
def
= ‖y*‖22 ≤

‖∇𝑓(x*)‖22
𝜆+min(𝑊)

≤ 𝑀2

𝑚𝜆+min(𝑊)
.

Now it should become clear why in Section 4.4 we paid most of our attention on number

of 𝐴⊤𝐴x calculations. In this particular scenario 𝐴⊤𝐴x =
√
𝑊

⊤√
𝑊𝑥 = 𝑊𝑥 which can

be computed via one round of communications of each node with its neighbours as it was

mentioned earlier in this section. That is, for the primal approach we can simply use the

results discussed in Section 4.4. For convenience, we summarize them in Tables 4.3 and 4.4

which are obtained via plugging the parameters that we obtained above in the bounds from

Section 4.4. Note that the results presented in this match the lower bounds obtained in [69]

in terms of the number of communication rounds up to logarithmic factors and and there

is a conjecture [45] that these bounds are also optimal in terms of number of oracle calls

per node for the class of methods that require optimal number of communication rounds.

Recently, the very similar result about the optimal balance between number of oracle calls

per node and number of communication round was proved for the case when the primal

functional is convex and 𝐿-smooth and deterministic first-order oracle is available [70].

Finally, consider the situation when 𝑄 = R𝑛 and each 𝑓𝑘 from (4.83) is dual-friendly,

i.e. one can construct dual problem for (4.83)

min
y∈R𝑛𝑚

Ψ(y), where y = (𝑦⊤1 , . . . , 𝑦
⊤
𝑚)⊤ ∈ R𝑛𝑚, 𝑦1, . . . , 𝑦𝑚 ∈ R𝑛, (4.86)

𝜙𝑘(𝑦𝑘) = max
𝑥𝑘∈R𝑛

{⟨𝑦𝑘, 𝑥𝑘⟩ − 𝑓𝑘(𝑥𝑘)} , (4.87)

Φ(y) =
1

𝑚

𝑚∑︁
𝑘=1

𝜙𝑘(𝑚𝑦𝑘), Ψ(y) = Φ(
√
𝑊y) =

1

𝑚

𝑚∑︁
𝑘=1

𝜙𝑘(𝑚[
√
𝑊x]𝑘), (4.88)

where [
√
𝑊x]𝑘 is the 𝑘-th 𝑛-dimensional block of

√
𝑊𝑥. Note that

max
x∈R𝑛𝑚

{⟨y,x⟩ − 𝑓(x)} = max
x∈R𝑛𝑚

{︃
𝑚∑︁
𝑘=1

⟨𝑦𝑘, 𝑥𝑘⟩ −
1

𝑚

𝑚∑︁
𝑘=1

𝑓𝑘(𝑥𝑘)

}︃

=
1

𝑚

𝑚∑︁
𝑘=1

max
𝑥𝑘∈R𝑛

{⟨𝑚𝑦𝑘, 𝑥𝑘⟩ − 𝑓𝑘(𝑥𝑘)} =
1

𝑚

𝑚∑︁
𝑘=1

𝜙𝑘(𝑚𝑦𝑘) = Φ(y),

so, Φ(y) is a dual function for 𝑓(x). As for the primal approach, we are interested in the

general case when 𝜙𝑘(𝑦𝑘) = E𝜉𝑘 [𝜙𝑘(𝑦𝑘, 𝜉𝑘)] where {𝜉𝑘}𝑚𝑘=1 are independent and stochastic

40

Assumptions on 𝑓𝑘 Method
of communication

rounds

of ∇𝑓𝑘(𝑥) oracle

calls per node

𝜇-strongly convex,

𝐿-smooth

D-MASG,

𝑄 = R𝑛,

[58]

̃︀𝑂 (︁√︁𝐿
𝜇
𝜒
)︁ ̃︀𝑂 (︁√︁𝐿

𝜇

)︁

𝐿-smooth

STP_IPS with

STP as a subroutine,

𝑄 = R𝑛,

[This paper]

̃︀𝑂(︂√︁𝐿𝑅2

𝜀
𝜒

)︂ ̃︀𝑂(︂√︁𝐿𝑅2

𝜀

)︂

𝜇-strongly convex,

‖∇𝑓𝑘(𝑥)‖2 ≤𝑀

R-Sliding,
[45]

[53]

[60, 71]

̃︀𝑂 (︁√︁𝑀2

𝜇𝜀
𝜒
)︁ ̃︀𝑂 (︁𝑀2

𝜇𝜀

)︁

‖∇𝑓𝑘(𝑥)‖2 ≤𝑀

Sliding,

[53, 60]

[71]

𝑂

(︂√︁
𝑀2𝑅2

𝜀2
𝜒

)︂
𝑂
(︁
𝑀2𝑅2

𝜀2

)︁

Table 4.3: Summary of the covered results in this paper for solving (4.83) using primal

deterministic approach from Section 4.4. First column contains assumptions on 𝑓𝑘, 𝑘 = 1, . . . ,𝑚

in addition to the convexity, 𝜒 = 𝜒(𝑊). All methods except D-MASG should be applied to solve

(4.25).

gradients ∇𝜙𝑘(𝑥𝑘, 𝜉𝑘) satisfy

‖E𝜉𝑘 [∇𝜙𝑘(𝑦𝑘, 𝜉𝑘)]−∇𝜙𝑘(𝑦𝑘)‖2 ≤ 𝛿𝜙, (4.89)

E𝜉𝑘

[︃
exp

(︃
‖∇𝜙𝑘(𝑦𝑘, 𝜉𝑘)− E𝜉𝑘 [∇𝜙𝑘(𝑦𝑘, 𝜉𝑘)]‖22

𝜎2

)︃]︃
≤ exp(1). (4.90)

Consider the stochastic function 𝑓𝑘(𝑥𝑘, 𝜉𝑘) which is defined implicitly as follows:

𝜙𝑘(𝑦𝑘, 𝜉𝑘) = max
𝑥𝑘∈R𝑛

{⟨𝑦𝑘, 𝑥𝑘⟩ − 𝑓(𝑥𝑘, 𝜉𝑘)} . (4.91)

Since

∇Φ(y) =
𝑚∑︁
𝑘=1

∇𝜙𝑘(𝑚𝑦𝑘)
(4.35)
=

𝑚∑︁
𝑘=1

𝑥𝑘(𝑚𝑦𝑘)
def
= x(y), 𝑥𝑘(𝑦𝑘)

def
= argmax

𝑥𝑘∈R𝑛
{⟨𝑦𝑘, 𝑥𝑘⟩ − 𝑓𝑘(𝑥𝑘)}

41

Assumptions on 𝑓𝑘 Method
of communication

rounds

of ∇𝑓𝑘(𝑥, 𝜉) oracle

calls per node

𝜇-strongly convex,

𝐿-smooth

D-MASG,

in expectation,

𝑄 = R𝑛,

[58]

̃︀𝑂 (︁√︁𝐿
𝜇𝜒
)︁ ̃︀𝑂 (︁max

{︁√︁
𝐿
𝜇 ,

𝜎2

𝜇𝜀

}︁)︁

𝐿-smooth

SSTP_IPS with

STP as a subroutine,

𝑄 = R𝑛,
conjecture,

[This paper]

[45]

̃︀𝑂(︂√︁𝐿𝑅2

𝜀 𝜒

)︂ ̃︀𝑂(︂max

{︂√︁
𝐿𝑅2

𝜀 , 𝜎
2𝑅2

𝜀2

}︂)︂

𝜇-strongly convex,

‖∇𝑓𝑘(𝑥)‖2 ≤𝑀

RS-Sliding

𝑄 is bounded,
[45]

[53]

[60, 71]

̃︀𝑂 (︁√︁𝑀2

𝜇𝜀 𝜒
)︁ ̃︀𝑂 (︁𝑀2+𝜎2

𝜇𝜀

)︁

‖∇𝑓𝑘(𝑥)‖2 ≤𝑀

S-Sliding

𝑄 is bounded,

[53, 60]

[71]

̃︀𝑂(︂√︁𝑀2𝑅2

𝜀2
𝜒

)︂ ̃︀𝑂 (︁ (𝑀2+𝜎2)𝑅2

𝜀2

)︁

Table 4.4: Summary of the covered results in this paper for solving (4.83) using primal stochastic

approach from Section 4.4 with the stochastic oracle satisfying (4.84)-(4.85) with 𝛿 = 0. First

column contains assumptions on 𝑓𝑘, 𝑘 = 1, . . . ,𝑚 in addition to the convexity, 𝜒 = 𝜒(𝑊). All

methods except D-MASG should be applied to solve (4.25). The bounds from the last two rows

hold even in the case when 𝑄 is unbounded, but in the expectation (see [72]).

it is natural to define the stochastic gradient ∇Φ(y, 𝜉) as follows:

∇Φ(y, 𝜉)
def
= ∇Φ(y, {𝜉𝑘}𝑚𝑘=1)

def
=

𝑚∑︁
𝑘=1

∇𝜙𝑘(𝑚𝑦𝑘, 𝜉𝑘)
(4.35)
=

𝑚∑︁
𝑘=1

𝑥𝑘(𝑚𝑦𝑘, 𝜉𝑘)
def
= x(y, 𝜉),

𝑥𝑘(𝑦𝑘, 𝜉𝑘)
def
= argmax

𝑥𝑘∈R𝑛
{⟨𝑦𝑘, 𝑥𝑘⟩ − 𝑓𝑘(𝑥𝑘, 𝜉𝑘)} .

It satisfies (see also (4.43))

‖E𝜉 [∇Φ(y, 𝜉)]−∇Φ(y)‖2 ≤ 𝛿Φ,

E𝜉

[︃
exp

(︃
‖∇Φ(y, 𝜉)− E𝜉 [∇Φ(y, 𝜉)]‖22

𝜎2
Φ

)︃]︃
≤ exp(1)

with 𝛿Φ = 𝑚𝛿𝜙 and 𝜎2
Φ = 𝑂 (𝑚𝜎2). Using this, we define the stochastic gradient of Ψ(y)

42

as ∇Ψ(y, 𝜉)
def
=
√
𝑊∇Φ(

√
𝑊y, 𝜉) =

√
𝑊x(

√
𝑊y, 𝜉) and, as a consequence, we get

‖E𝜉 [∇Ψ(y, 𝜉)]−∇Ψ(y)‖2 ≤ 𝛿Ψ,

E𝜉

[︃
exp

(︃
‖∇Ψ(y, 𝜉)− E𝜉 [∇Ψ(y, 𝜉)]‖22

𝜎2
Ψ

)︃]︃
≤ exp(1)

with 𝛿Ψ =
√︀
𝜆max(𝑊)𝛿Φ and 𝜎Ψ =

√︀
𝜆max(𝑊)𝜎Φ.

Taking all of this into account we conclude that problem (4.86) is a special case of

(4.22) with 𝐴 =
√
𝑊 . To make the algorithms from Section 4.5 distributed we should

change the variables in those methods via multiplying them by
√
𝑊 from the left [45, 46, 61],

e.g. for the iterates of SPDSTM we will get

𝑦𝑘+1 :=
√
𝑊𝑦𝑘+1, 𝑧𝑘+1 :=

√
𝑊𝑧𝑘+1, 𝑦𝑘+1 :=

√
𝑊𝑦𝑘+1,

which means that it is needed to multiply lines 4-6 of Algorithm 3 by
√
𝑊 from the left.

After such a change of variables all methods from Section 4.5 become suitable to run

them in the distributed fashion. Besides that, it does not spoil the ability of recovering

the primal variables since before the change of variables all of the methods mentioned

in Section 4.5 used x(
√
𝑊y) or x(

√
𝑊y, 𝜉) where points 𝑦 were some dual iterates of

those methods, so, after the change of variables we should use x(y) or x(y, 𝜉) respectively.

Moreover, it is also possible to compute ‖
√
𝑊𝑥‖22 = ⟨x,𝑊x⟩ in the distributed fashion

using consensus type algorithms: one communication step is needed to compute 𝑊x, then

each worker computes ⟨𝑥𝑘, [𝑊x]𝑘⟩ locally and after that it is needed to run consensus

algorithm. We summarize the results for this case in Tables 4.5 and 4.6. Note that the

proposed bounds are optimal in terms of the number of communication rounds up to

polylogarithmic factors [29, 69, 73, 74]. Note that the lower bounds from [29, 73, 74]

are presented for the convolution of two criteria: number of oracle calls per node and

communication rounds. One can obtain lower bounds for the number of communication

rounds itself using additional assumption that time needed for one communication is big

enough and the term which corresponds to the number of oracle calls can be neglected.

Regarding the number of oracle calls there is a conjecture [45] that the bounds that we

present in this paper are also optimal up to polylogarithmic factors for the class of methods

that require optimal number of communication rounds.
We would like to thank F. Bach, P. Dvurechensky, M. Gürbüzbalaban, D. Kovalev,

A. Nemirovski, A. Olshevsky, N. Srebro, A. Taylor and C. Uribe for useful discussions.

43

Assumptions on 𝑓𝑘 Method
of communication

rounds

of ∇𝜙𝑘(𝑦, 𝜉) oracle

calls per node

𝜇-strongly convex,

𝐿-smooth,

‖∇𝑓𝑘(𝑥)‖2 ≤𝑀

R-RRMA-AC-SA2

(Algorithm 7),

Corollary 4.5.3,

SSTM_sc

(Algorithm 8),

Corollary 4.5.5

̃︀𝑂 (︁√︁𝐿
𝜇𝜒
)︁ ̃︀𝑂 (︁max

{︁√︁
𝐿
𝜇𝜒,

𝜎2
Φ𝑀

2

𝜀2
𝜒
}︁)︁

𝜇-strongly convex,

‖∇𝑓𝑘(𝑥)‖2 ≤𝑀

SPDSTM

(Algorithm 3),

Theorem 4.5.1

̃︀𝑂 (︁√︁𝑀2

𝜇𝜀 𝜒
)︁ ̃︀𝑂 (︁max

{︁√︁
𝑀2

𝜇𝜀 𝜒,
𝜎2
Φ𝑀

2

𝜀2
𝜒
}︁)︁

Table 4.5: Summary of the covered results in this paper for solving (4.86) using dual stochastic

approach from Section 4.5 with the stochastic oracle satisfying (4.84)-(4.85) with 𝛿 = 0. First

column contains assumptions on 𝑓𝑘, 𝑘 = 1, . . . ,𝑚 in addition to the convexity, 𝜒 = 𝜒(𝑊).

Assumptions on 𝑓𝑘 Method
of communication

rounds

of ∇𝜙𝑘(𝑦, 𝜉) oracle

calls per node

𝜇-strongly convex,

𝐿-smooth,

‖∇𝑓𝑘(𝑥)‖2 ≤𝑀

SSTM_sc

(Algorithm 8),

Corollary 4.5.5

̃︀𝑂 (︁√︁𝐿
𝜇𝜒
)︁ ̃︀𝑂 (︁max

{︁√︁
𝐿
𝜇𝜒,

𝜎2
Φ𝑀

2

𝜀2
𝜒
}︁)︁

𝜇-strongly convex,

‖∇𝑓𝑘(𝑥)‖2 ≤𝑀

SPDSTM

(Algorithm 3),

Theorem 4.5.1

̃︀𝑂 (︁√︁𝑀2

𝜇𝜀 𝜒
)︁ ̃︀𝑂 (︁max

{︁√︁
𝑀2

𝜇𝜀 𝜒,
𝜎2
Φ𝑀

2

𝜀2
𝜒
}︁)︁

Table 4.6: Summary of the covered results in this paper for solving (4.86) using biased dual

stochastic approach from Section 4.5 with the stochastic oracle satisfying (4.84)-(4.85) with

𝛿𝜙 > 0. First column contains assumptions on 𝑓𝑘, 𝑘 = 1, . . . ,𝑚 in addition to the convexity,

𝜒 = 𝜒(𝑊). For both cases the noise level should satisfy 𝛿𝜙 = ̃︀𝑂 (𝜀/𝑀√
𝑚𝜒).

The work of E. Gorbunov was supported by RFBR, project number 19-31-51001. The

work of D. Dvinskikh was supported by Russian Science Foundation (project 18-71-10108).

The work of A. Gasnikov was supported by RFBR, project number 19-31-51001 and by

Yahoo! Research Faculty Engagement Program.

44

4.7. Discussion

In this section we want to discuss some aspects of the proposed results that were not

covered in the main part of this paper. First of all, we should say that in the smooth case

for the primal approach our bounds for the number of communication steps coincides with

the optimal bounds for the number of communication steps for parallel optimization if we

substitute the diameter 𝑑 of the spanning tree in the bounds for parallel optimization bỹ︀𝑂(
√︀
𝜒(𝑊)).

However, we want to discuss another interesting difference between parallel and

decentralized optimization in terms of the complexity results which was noticed in [45].

From the line of works [75–78] it is known that for the problem (4.1)+(4.6) (here we use

𝑚 instead of 𝑞 and iterator 𝑘 instead of 𝑖 for consistency) with 𝐿-smooth and 𝜇-strongly

convex 𝑓𝑘 for all 𝑘 = 1, . . . ,𝑚 the optimal number of oracle calls, i.e. calculations of of the

stochastic gradients of 𝑓𝑘 with 𝜎2-subgaussian variance is

̃︀𝑂(︃𝑚+

√︃
𝑚
𝐿

𝜇
+
𝜎2

𝜇𝜀

)︃
. (4.92)

The bad news is that (4.92) does not work with full parallelization trick and the best

possible way to parallelize it is described in [78]. However, standard accelerated scheme using

mini-batched versions of the stochastic gradients without variance-reduction technique

and incremental oracles which gives the bound

̃︀𝑂(︃𝑚√︃𝐿

𝜇
+
𝜎2

𝜇𝜀

)︃
(4.93)

for the number of oracle calls and it admits full parallelization. It means that in the parallel

optimization setup when we have computational network with 𝑚 nodes and the spanning

tree for it with diameter 𝑑 the number of oracle calls per node is

̃︀𝑂(︃√︃𝐿

𝜇
+

𝜎2

𝑚𝜇𝜀

)︃
= ̃︀𝑂(︃max

{︃√︃
𝐿

𝜇
,
𝜎2

𝑚𝜇𝜀

}︃)︃
(4.94)

and the number of communication steps is

̃︀𝑂(︃𝑑√︃𝐿

𝜇

)︃
. (4.95)

However, for the decentralized setup the second row of Table 4.4 states that the number

of communication rounds is the same as in (4.95) up to substitution of 𝑑 by
√︀
𝜒(𝑊) and

45

the number of oracle calls per node is

̃︀𝑂(︃max

{︃√︃
𝐿

𝜇
,
𝜎2

𝜇𝜀

}︃)︃
(4.96)

which has 𝑚 times bigger statistical term under the maximum than in (4.94). What is

more, recently it was shown that there exists such a decentralized distributed method that

requires ̃︀𝑂(︂ 𝜎2

𝑚𝜇𝜀

)︂
stochastic gradient oracle calls per node [79, 80], but it is not optimal in terms of the

number of communications. Moreover, there is a hypothesis [45] that in the smooth case

the bounds from Tables 4.3 and 4.4 (rows 2 and 3) are optimal in terms of the number of

oracle calls per node for the class of methods that require optimal number of communication

rounds up to polylogarithmic factors.

The same claim but for Table 4.5 was also presented in [45] as a hypothesis and in this

paper we propose the same hypothesis for the result stated Table 4.6 up to polylogarithmic

and additionally we hypothesise that the noise level that we obtained is also unimprovable

up to polylogarithmic factors.

4.7.1. Possible Extensions

∙ As it was mentioned in Section 4.4, the recurrence technique that we use in Sections 4.3

and 4.5 can be very useful in the generalization of the results for STM from Section 4.4

for the case when instead of ∇𝑓(𝑥) only stochastic gradient ∇𝑓(𝑥, 𝜉) (see inequalities

(4.7)-(4.8)) is available, 𝑓 is 𝐿-smooth and proximal step is computed in an inexact

manner. It would be nice also to compare proposed methods for the case when 𝛿

with the results from [58]. For the convex but non-strongly convex case one can also

try to combine Nesterov’s smoothing technique [61, 81, 82] with D-MASG from [58].

∙ We believe that the technique presented in the proofs of Lemmas 4.9.8 and 4.5.2

can also be extended or modified in order to be applied for different optimization

methods to obtain high probability bounds in the case when 𝑄 = R𝑛.

∙ We emphasize that in our results we assume that each 𝑓𝑖 from (4.83) is 𝐿-smooth

and 𝜇-strongly convex. When each 𝑓𝑖 is 𝐿𝑖-smooth and 𝜇𝑖-strongly convex, it means

that in order to satisfy the assumption we use in our paper we need to choose

46

𝐿 = max1≤𝑖≤𝑚 𝐿𝑖 and 𝜇 = min1≤𝑖≤𝑚 𝜇𝑖. This choice can lead to a very slow rate in

some situations, e.g. the worst-case 𝐿 can be 𝑚 times larger than 𝐿 for 𝑓 as for the

case when 𝑚 = 𝑑 and 𝑓(𝑥) = ‖𝑥‖22/2𝑚 = 1/𝑚
∑︀𝑚

𝑖=1 𝑓𝑖(𝑥), 𝑓𝑖(𝑥) = 𝑥2𝑖/2 where 𝐿𝑖 = 1 for

all 𝑖 but 𝑓 is 1/𝑑-smooth [83]. It was shown [29, 61] that instead of worst-case 𝜇 and

𝐿 one can use 𝜇̄ = 1/𝑚
∑︀𝑚

𝑖=1 𝜇𝑖 and 𝐿̂ to be some weighted average of 𝐿𝑖, but such

techniques can spoil number of communication rounds needed to achieve desired

accuracy.

∙ It would be also interesting to generalize the proposed results for the case of more

general stochastic gradients [9, 11, 13, 59].

4.8. Application for Population Wasserstein Barycenter

Calculation

In this section we consider the problem of calculation of population Wasserstein

barycenter since this example hides different interesting details connected with the theory

discussed in this paper. In our presentation of this example we rely mostly on the recent

work [84].

4.8.1. Definitions and Properties

We define the probability simplex in R𝑛 as 𝑆𝑛(1) =
{︀
𝑥 ∈ R𝑛

+ |
∑︀𝑛

𝑖=1 𝑥𝑖 = 1
}︀
. One

can interpret the elements of 𝑆𝑛(1) as discrete probability measures with 𝑛 shared

atoms. For an arbitrary pair of measures 𝑝, 𝑞 ∈ 𝑆𝑛(1) we introduce the set Π(𝑝, 𝑞) ={︀
𝜋 ∈ R𝑛×𝑛

+ | 𝜋1 = 𝑝, 𝜋⊤1 = 𝑞
}︀

called transportation polytope. Optimal transportation

(OT) problem between measures 𝑝, 𝑞 ∈ 𝑆𝑛(1) is defined as follows

𝒲(𝑝, 𝑞) = min
𝜋∈Π(𝑝,𝑞)

⟨𝐶, 𝜋⟩ = min
𝜋∈Π(𝑝,𝑞)

𝑛∑︁
𝑖,𝑗=1

𝐶𝑖𝑗𝜋𝑖𝑗 (4.97)

where 𝐶 is a transportation cost matrix. That is, (𝑖, 𝑗)-th component 𝐶𝑖𝑗 of 𝐶 is a cost of

transportation of the unit mass from point 𝑥𝑖 to the point 𝑥𝑗 where points 𝑥1, . . . , 𝑥𝑛 ∈ R

are atoms of measures from 𝑆𝑛(1).

Next, we consider the entropic OT problem (see [85, 86])

𝒲𝜇(𝑝, 𝑞) = min
𝜋∈Π(𝑝,𝑞)

𝑛∑︁
𝑖,𝑗=1

(𝐶𝑖𝑗𝜋𝑖𝑗 + 𝜇𝜋𝑖𝑗 ln𝜋𝑖𝑗) . (4.98)

47

Consider some probability measure P on 𝑆𝑛(1). Then one can define population barycenter

of measures from 𝑆𝑛(1) as

𝑝*𝜇 = argmin
𝑝∈𝑆𝑛(1)

∫
𝑞∈𝑆𝑛(1)

𝒲𝜇(𝑝, 𝑞)𝑑P(𝑞) = argmin
𝑝∈𝑆𝑛(1)

E𝑞 [𝒲𝜇(𝑝, 𝑞)]⏟ ⏞
𝒲𝜇(𝑝)

. (4.99)

For a given set of samples 𝑞1, . . . , 𝑞𝑚 we introduce empirical barycenter as

𝑝*𝜇 = argmin
𝑝∈𝑆𝑛(1)

1

𝑚

𝑚∑︁
𝑖=1

𝒲𝜇(𝑝, 𝑞𝑖)⏟ ⏞
𝒲̂(𝑝)

. (4.100)

We consider the problem (4.99) of finding population barycenter with some accuracy and

discuss possible approaches to solve this problem in the following subsections.

However, before that, we need to mention some useful properties of 𝒲𝜇(𝑝, 𝑞). First

of all, one can write explicitly the dual function of 𝑊𝜇(𝑝, 𝑞) for a fixed 𝑞 ∈ 𝑆𝑛(1) (see

[84, 87]):

𝒲𝜇(𝑝, 𝑞) = max
𝜆∈R𝑛

{︀
⟨𝜆, 𝑝⟩ −𝒲*

𝑞,𝜇(𝜆)
}︀

(4.101)

𝒲*
𝑞,𝜇(𝜆) = 𝜇

𝑛∑︁
𝑗=1

𝑞𝑗 ln

(︃
1

𝑞𝑗

𝑛∑︁
𝑖=1

exp

(︂
−𝐶𝑖𝑗 + 𝜆𝑖

𝜇

)︂)︃
. (4.102)

Using this representation one can deduce the following theorem.

Theorem 4.8.1 ([84]). For an arbitrary 𝑞 ∈ 𝑆𝑛(1) the entropic Wasserstein distance

𝒲𝜇(·, 𝑞) : 𝑆𝑛(1) → R is 𝜇-strongly convex w.r.t. ℓ2-norm and 𝑀-Lipschitz continuous

w.r.t. ℓ2-norm. Moreover, 𝑀 ≤
√
𝑛𝑀∞ where 𝑀∞ is Lipschitz constant of 𝒲𝜇(·, 𝑞) w.r.t.

ℓ∞-norm and 𝑀∞ = ̃︀𝑂(‖𝐶‖∞).

We also want to notice that function 𝒲*
𝑞,𝜇(𝜆) is only strictly convex and the

minimal eigenvalue of its hessian 𝛾
def
= 𝜆min(∇2𝒲𝑞,𝜇(𝜆*)) evaluated in the solution 𝜆*

def
=

argmax𝜆∈R𝑛
{︀
⟨𝜆, 𝑝⟩ −𝒲*

𝑞,𝜇(𝜆)
}︀

is very small and there exist only such bounds that are

exponentially small in 𝑛.

We will also use another useful relation (see [84]):

∇𝒲𝜇(𝑝, 𝑞) = 𝜆*, ⟨𝜆*,1⟩ = 0 (4.103)

where the gradient ∇𝒲𝜇(𝑝, 𝑞) is taken w.r.t. the first argument.

48

4.8.2. SA Approach

Assume that one can obtain and use fresh samples 𝑞1, 𝑞2, . . . in online regime. This

approach is called Stochastic Approximation (SA). It implies that at each iteration one can

draw a fresh sample 𝑞𝑘 and compute the gradient w.r.t. 𝑝 of function 𝒲𝜇(𝑝, 𝑞𝑘) which is

𝜇-strongly convex and 𝑀 -Lipschitz continuous with 𝑀 = ̃︀𝑂(
√
𝑛‖𝐶‖∞). Optimal methods

for this case are based on iterations of the following form

𝑝𝑘+1 = proj𝑆𝑛(1)
(︀
𝑝𝑘 − 𝜂𝑘∇𝒲𝜇(𝑝𝑘, 𝑞𝑘)

)︀
where proj𝑆𝑛(1)(𝑥) is a projection of 𝑥 ∈ R𝑛 on 𝑆𝑛(1) and the gradient ∇𝒲𝜇(𝑝𝑘, 𝑞𝑘) is

taken w.r.t. the first argument. One can show that restarted-SGD (R-SGD) from [88] that

using biased stochastic gradients (see also [52, 84, 89]) ∇̃𝒲𝜇(𝑝, 𝑞) such that

‖∇̃𝒲𝜇(𝑝, 𝑞)−∇𝒲𝜇(𝑝, 𝑞)‖2 ≤ 𝛿 (4.104)

for some 𝛿 ≥ 0 and for all 𝑝, 𝑞 ∈ 𝑆𝑛(1) after 𝑁 calls of this oracle produces such a point

𝑝𝑁 that with probability at least 1− 𝛽 the following inequalities hold:

𝒲𝜇(𝑝𝑁)−𝒲𝜇(𝑝*𝜇) = 𝑂

(︂
𝑛‖𝐶‖2∞ ln(𝑁/𝛼)

𝜇𝑁
+ 𝛿

)︂
(4.105)

and, as a consequence of 𝜇-strong convexity of 𝒲𝜇(𝑝, 𝑞) for all 𝑞,

‖𝑝𝑁 − 𝑝*𝜇‖2 = 𝑂

(︃√︃
𝑛‖𝐶‖2∞ ln(𝑁/𝛼)

𝜇2𝑁
+
𝛿

𝜇

)︃
. (4.106)

That is, to guarantee

‖𝑝𝑁 − 𝑝*𝜇‖2 ≤ 𝜀 (4.107)

with probability at least 1− 𝛽, R-SGD requires

̃︀𝑂(︂𝑛‖𝐶‖2∞
𝜇2𝜀2

)︂
∇̃𝒲𝜇(𝑝, 𝑞) oracle calls (4.108)

under additional assumption that 𝛿 = 𝑂(𝜇𝜀2).

However, it is computationally hard problem to find ∇𝒲𝜇(𝑝, 𝑞) with high-accuracy,

i.e. find ∇̃𝒲𝜇(𝑝, 𝑞) satisfying (4.104) with 𝛿 = 𝑂(𝜇𝜀2). Taking into account the relation

(4.103) we get that it is needed to solve the problem (4.101) with accuracy 𝛿 = 𝑂(𝜇𝜀2) in

terms of the distance to the optimum. i.e. it is needed to find such 𝜆̃ that ‖𝜆̃− 𝜆*‖2 ≤ 𝛿

and set ∇̃𝒲𝜇(𝑝, 𝑞) = 𝜆̃. Using variants of Sinkhorn algorithm [48, 90, 91] one can show

49

[84] that R-SGD finds point 𝑝𝑁 such that (4.107) holds with probability at least 1− 𝛽 and

it requires

̃︀𝑂(︂𝑛3‖𝐶‖2∞
𝜇2𝜀2

min

{︂
exp

(︂
‖𝐶‖∞
𝜇

)︂(︂
‖𝐶‖∞
𝜇

+ ln

(︂
‖𝐶‖∞
𝛾𝜇2𝜀4

)︂)︂
,

√︂
𝑛

𝛾𝜇3𝜀4

}︂)︂
(4.109)

arithmetical operations.

4.8.3. SAA Approach

Now let us assume that large enough collection of samples 𝑞1, . . . , 𝑞𝑚 is available. Our

goal is to find such 𝑝 ∈ 𝑆𝑛(1) that ‖𝑝−𝑝*𝜇‖2 ≤ 𝜀 with high probability, i.e. 𝜀-approximation

of the population barycenter, via solving empirical barycenter problem (4.100). This

approach is called Stochastic Average Approximation (SAA). Since 𝒲𝜇(𝑝, 𝑞𝑖) is 𝜇-strongly

convex and 𝑀 -Lipschitz in 𝑝 with 𝑀 = ̃︀𝑂(
√
𝑛‖𝐶‖∞) for all 𝑖 = 1, . . . ,𝑚 we can conclude

that with probability ≥ 1− 𝛽

𝒲𝜇(𝑝*𝜇)−𝒲𝜇(𝑝*𝜇)
(4.5)
= 𝑂

(︃
𝑛‖𝐶‖2∞ ln(𝑚) ln (𝑚/𝛽)

𝜇𝑚
+

√︂
𝑛‖𝐶‖2∞ ln (1/𝛽)

𝑚

)︃
(4.110)

where we use that the diameter of 𝑆𝑛(1) is 𝑂(1). Moreover, in [7] it was shown that one

can guarantee that with probability ≥ 1− 𝛽

𝒲𝜇(𝑝*𝜇)−𝒲𝜇(𝑝*𝜇)
(4.5)
= 𝑂

(︂
𝑛‖𝐶‖2∞
𝛽𝜇𝑚

)︂
. (4.111)

Taking advantages of both inequalities we get that if

𝑚 = ̃︀Ω(︂min

{︂
max

{︂
𝑛‖𝐶‖2∞
𝜇2𝜀2

,
𝑛‖𝐶‖2∞
𝜇2𝜀4

}︂
,
𝑛‖𝐶‖2∞
𝛽𝜇2𝜀2

}︂)︂
= ̃︀Ω(︂𝑛min

{︂
‖𝐶‖2∞
𝜇2𝜀4

,
‖𝐶‖2∞
𝛽𝜇2𝜀2

}︂)︂
(4.112)

then with probability at least 1− 𝛽
2

‖𝑝*𝜇 − 𝑝*𝜇‖2 ≤
√︂

2

𝜇

(︀
𝒲𝜇(𝑝*𝜇)−𝒲𝜇(𝑝*𝜇)

)︀ (4.110),(4.111),(4.112)
≤ 𝜀

2
. (4.113)

Assuming that we have such 𝑝 ∈ 𝑆𝑛(1) that with probability at least 1− 𝛽
2

the inequality

‖𝑝− 𝑝*𝜇‖2 ≤
𝜀

2
(4.114)

holds, we apply the union bound and get that with probability ≥ 1− 𝛽

‖𝑝− 𝑝*𝜇‖2 ≤ ‖𝑝− 𝑝*𝜇‖2 + ‖𝑝*𝜇 − 𝑝*𝜇‖2 ≤ 𝜀. (4.115)

50

It remains to describe the approach that finds such 𝑝 ∈ 𝑆𝑛(1) that satisfies (4.115)

with probability at least 1− 𝛽. Recall that in this subsection we consider the following

problem

𝒲̂𝜇(𝑝) =
1

𝑚

𝑚∑︁
𝑖=1

𝒲𝜇(𝑝, 𝑞𝑖)→ min
𝑝∈𝑆𝑛(1)

. (4.116)

For each summand 𝒲𝜇(𝑝, 𝑞𝑖) in the sum above we have the explicit formula (4.102) for

the dual function 𝒲*
𝑞𝑖,𝜇(𝜆). Note that one can compute the gradient of 𝒲*

𝑞𝑖,𝜇(𝜆) via 𝑂(𝑛2)

arithmetical operations. What is more, 𝒲*
𝑞𝑖,𝜇(𝜆) has a finite-sum structure, so, one can

sample 𝑗-th component of 𝑞𝑖 with probability 𝑞𝑖𝑗 and get stochastic gradient

∇𝒲*
𝑞𝑖,𝜇(𝜆, 𝑗) = 𝜇∇

(︃
ln

(︃
1

𝑞𝑖𝑗

𝑛∑︁
𝑖=1

exp

(︂
−𝐶𝑖𝑗 + 𝜆𝑖

𝜇

)︂)︃)︃
(4.117)

which requires 𝑂(𝑛) arithmetical operations to be computed.

We start with the simple situation. Assume that each measures 𝑞𝑖 are stored on 𝑚

separate machines that form some network with Laplacian matrix 𝑊 ∈ R𝑚×𝑚. For this

scenario we can apply the dual approach described in Section 4.6 and apply bounds from

Tables 4.5 and 4.6. If for all 𝑖 = 1, . . . ,𝑚 the 𝑖-th node computes the full gradient of dual

functions 𝒲𝑞𝑖,𝜇 at each iteration then in order to find such a point 𝑝 that with probability

at least 1− 𝛽
2

𝒲̂𝜇(𝑝)− 𝒲̂𝜇(𝑝*𝜇) ≤ 𝜀, (4.118)

where 𝑊 = 𝑊 ⊗ 𝐼𝑛, this approach requires ̃︀𝑂 (︁√︁𝑛‖𝐶‖2∞
𝜇𝜀

𝜒(𝑊)
)︁

communication rounds

and ̃︀𝑂 (︁𝑛2.5
√︁

‖𝐶‖2∞
𝜇𝜀

𝜒(𝑊)
)︁

arithmetical operations per node to find gradients ∇𝒲*
𝑞𝑖,𝜇(𝜆).

If instead of full gradients workers use stochastic gradients ∇𝒲*
𝑞𝑖,𝜇(𝜆, 𝑗) defined in (4.117)

and these stochastic gradients have light-tailed distribution, i.e. satisfy the condition

(4.90) with parameter 𝜎 > 0, then to guarantee (4.118) with probability ≥ 1 − 𝛽
2

the aforementioned approach needs the same number of communications rounds and̃︀𝑂 (︁𝑛max
{︁√︁

𝑛‖𝐶‖2∞
𝜇𝜀

𝜒(𝑊), 𝑚𝜎
2𝑛‖𝐶‖2∞
𝜀2

𝜒(𝑊)
}︁)︁

arithmetical operations per node to find

gradients ∇𝒲*
𝑞𝑖,𝜇(𝜆, 𝑗). Using 𝜇-strong convexity of 𝒲𝜇(𝑝, 𝑞𝑖) for all 𝑖 = 1, . . . ,𝑚 and

taking 𝜀 = 𝜇𝜀2

8
we get that our approach finds such a point 𝑝 that satisfies (4.114) with

probability at least 1− 𝛽
2

using

̃︀𝑂(︂√𝑛‖𝐶‖∞
𝜇𝜀

√︀
𝜒(𝑊)

)︂
communication rounds (4.119)

and ̃︀𝑂(︂𝑛2.5‖𝐶‖∞
𝜇𝜀

√︀
𝜒(𝑊)

)︂
(4.120)

51

arithmetical operations per node to find gradients in the deterministic case and

̃︀𝑂(︂𝑛max

{︂√
𝑛‖𝐶‖∞
𝜇𝜀

√︀
𝜒(𝑊),

𝑚𝜎2𝑛‖𝐶‖2∞
𝜇2𝜀4

𝜒(𝑊)

}︂)︂
arithmetical operations per node to find stochastic gradients in the stochastic case. However,

the state-of-the-art theory of learning states (see (4.112)) that 𝑚 should so large that in

the stochastic case the second term in the bound for arithmetical operations typically

dominates the first term and the dimensional dependence reduction from 𝑛2.5 in the

deterministic case to 𝑛1.5 in the stochastic case is typically negligible in comparison with

how much 𝑚𝜎2√𝑛‖𝐶‖2∞
𝜇2𝜀4

𝜒(𝑊) is larger than ‖𝐶‖∞
𝜇𝜀

√︀
𝜒(𝑊). That is, our theory says that it is

better to use full gradients in the particular example considered in this section (see also

Section 4.7). Therefore, further in the section we will assume that 𝜎2 = 0, i.e. workers use

full gradients of dual functions 𝒲*
𝑞𝑖,𝜇(𝜆).

However, bounds (4.119)-(4.120) were obtained under very restrictive at the first

sight assumption that we have 𝑚 workers and each worker stores only one measure which

is unrealistic. One can relax this assumption in the following way. Assume that we have

𝑙̂ < 𝑚 machines connected in a network with Laplacian matrix 𝑊̂ and 𝑗-th machine stores

𝑚̂𝑗 ≥ 1 measures for 𝑗 = 1, . . . , 𝑙̂ and
∑︀𝑙̂

𝑗=1 𝑚̂𝑗 = 𝑚. Next, for 𝑗-th machine we introduce

𝑚̂𝑗 virtual workers also connected in some network that 𝑗-th machine can emulate along

with communication between virtual workers and for every virtual worker we arrange one

measure, e.g. it can be implemented as an array-like data structure with some formal rules

for exchanging the data between cells that emulates communications. We also assume

that inside the machine we can set the preferable network for the virtual nodes in such a

way that each machine emulates communication between virtual nodes and computations

inside them fast enough. Let us denote the Laplacian matrix of the obtained network of 𝑚

virtual nodes as 𝑊 . Then, our approach finds such a point 𝑝 that satisfies (4.114) with

probability at least 1− 𝛽
2

using

̃︀𝑂
⎛⎜⎜⎜⎝
(︂

max
𝑗=1,...,𝑙̂

𝑇cm,𝑗

)︂
⏟ ⏞

𝑇cm,max

√
𝑛‖𝐶‖∞
𝜇𝜀

√︀
𝜒(𝑊)

⎞⎟⎟⎟⎠ (4.121)

52

time to perform communications and

̃︀𝑂
⎛⎜⎜⎜⎝
(︂

max
𝑗=1,...,𝑙̂

𝑇cp,𝑗

)︂
⏟ ⏞

𝑇cp,max

𝑛2.5‖𝐶‖∞
𝜇𝜀

√︀
𝜒(𝑊)

⎞⎟⎟⎟⎠ (4.122)

time for arithmetical operations per machine to find gradients where 𝑇cm,𝑗 is time needed

for 𝑗-th machine to emulate communication between corresponding virtual nodes at each

iteration and 𝑇cp,𝑗 is time required by 𝑗-th machine to perform 1 arithmetical operation

for all corresponding virtual nodes in the gradients computation process at each iteration.

For example, if we have only one machine and network of virtual nodes forms a complete

graph than 𝜒(𝑊) = 1, but 𝑇cm,max and 𝑇cp,max can be large and to reduce the running

time one should use more powerful machine. In contrast, if we have 𝑚 machines connected

in a star-graph than 𝑇cm,max and 𝑇cp,max will be much smaller, but 𝜒(𝑊) will be of order

𝑚 which is large. Therefore, it is very important to choose balanced architecture of the

network at least for virtual nodes per machine if it is possible. This question requires a

separate thorough study and lies out of scope of this paper.

4.8.4. SA vs SAA comparison

Recall that in SA approach we assume that it is possible to sample new measures in

online regime which means that the computational process is performed on one machine,

whereas in SAA approach we assume that large enough collection of measures is distributed

among the network of machines that form some computational network. In practice

measures from 𝑆𝑛(1) correspond to some images. As one can see from the complexity

bounds, both SA and SAA approaches require large number of samples to learn the

population barycenter defined in (4.99). If these samples are images, then they typically

cannot be stored in RAM of one computer. Therefore, it is natural to use distributed

systems to store the data.

Now let us compare complexity bounds for SA and SAA. We summarize them in

Table 4.7. When the communication is fast enough and 𝜇 is small we typically have that

SAA approach significantly outperforms SA approach in terms of the complexity as well

even for communication architectures with big 𝜒(𝑊). Therefore, for balanced architecture

one can expect that SAA approach will outperform SA even more.

To conclude, we state that population barycenter computation is a natural example

53

Approach Complexity

SA
̃︀𝑂(︂𝑛3‖𝐶‖2∞

𝜇2𝜀2
min

{︂
exp

(︁
‖𝐶‖∞
𝜇

)︁(︁
‖𝐶‖∞
𝜇

+ ln
(︁

‖𝐶‖∞
𝛾𝜇2𝜀4

)︁)︁
,
√︁

𝑛
𝛾𝜇3𝜀4

}︂)︂
arithmetical operations

SA,

the 2-d term

is smaller

̃︀𝑂 (︁𝑛3.5‖𝐶‖2∞√
𝛾𝜇3.5𝜀4

)︁
arithmetical operations

SAA

̃︀𝑂 (︁𝑇cm,max

√
𝑛‖𝐶‖∞
𝜇𝜀

√︀
𝜒(𝑊)

)︁
time to perform communications,̃︀𝑂 (︁𝑇cp,max𝑛

2.5 ‖𝐶‖∞
𝜇𝜀

√︀
𝜒(𝑊)

)︁
time for arithmetical operations per machine,

where 𝑚 = ̃︀Ω(︁𝑛min
{︁

‖𝐶‖2∞
𝜇2𝜀4

, ‖𝐶‖2∞
𝛽𝜇2𝜀2

}︁)︁
SAA,

𝜒(𝑊) = Ω(𝑚),

𝑇cm,max = 𝑂(1),

𝑇cp,max = 𝑂(1),
√
𝛽 ≥ 𝜀

̃︀𝑂 (︁ 𝑛‖𝐶‖2∞√
𝛽𝜇2𝜀2

)︁
communication rounds,̃︀𝑂 (︁𝑛3‖𝐶‖2∞√

𝛽𝜇2𝜀2

)︁
arithmetical operations per machine

Table 4.7: Complexity bounds for SA and SAA approaches for computation of population

barycenter defined in (4.99) with accuracy 𝜀. The third row states the complexity bound

for SA approach when the second term under the minimum in (4.109) is dominated by

the first one, e.g. when 𝜇 is small enough. The last row corresponds to the case when

𝑇cm,max = 𝑂(1), 𝑇cp,max = 𝑂(1),
√
𝛽 ≥ 𝜀, e.g. 𝛽 = 0.01 and 𝜀 ≤ 0.1, and the communication

network is star-like, which implies 𝜒(𝑊) = Ω(𝑚)

when it is typically much more preferable to use distributed algorithms with dual oracle

instead of SA approach in terms of memory and complexity bounds.

4.9. Missing Proofs, Technical Lemmas and Auxiliary Results

4.9.1. Basic Facts

In this section we enumerate for convenience basic facts that we use many times in

our proofs.

54

Fenchel-Young inequality. For all 𝑎, 𝑏 ∈ R𝑛 and 𝜆 > 0

|⟨𝑎, 𝑏⟩| ≤ ‖𝑎‖
2
2

2𝜆
+
𝜆‖𝑏‖22

2
. (4.123)

Squared norm of the sum. For all 𝑎, 𝑏 ∈ R𝑛

‖𝑎+ 𝑏‖22 ≤ 2‖𝑎‖22 + 2‖𝑏‖22. (4.124)

4.9.2. Useful Facts about Duality

This section contains several useful results that we apply in our analysis.

Lemma 4.9.1 ([71]). Let 𝑦* be the solution of (4.22) with the smallest ℓ2-norm 𝑅𝑦
def
=

‖𝑦*‖2. Then

𝑅2
𝑦 ≤
‖∇𝑓(𝑥*)‖22
𝜆+min(𝐴⊤𝐴)

. (4.125)

Lemma 4.9.2. Consider the function 𝑓(𝑥) defined on a closed convex set 𝑄 ⊆ 𝑅𝑛

and linear operator 𝐴 such that Ker𝐴 ̸= {0} and its dual function 𝜓(𝑦) defined as

𝜓(𝑦) = max𝑥∈𝑄 {⟨𝑦, 𝐴𝑥⟩ − 𝑓(𝑥)}. Then

𝜓(𝑦*) = −𝑓(𝑥*) ≥ ⟨𝑦*, 𝐴𝑥̂⟩ − 𝑓(𝑥̂) ∀𝑥̂ ∈ 𝑄. (4.126)

Proof. We have

𝜓(𝑦*) =
⟨︀
𝑦*, 𝐴𝑥(𝐴⊤𝑦*)

⟩︀
− 𝑓

(︀
𝑥(𝐴⊤𝑦*)

)︀
.

From Demyanov–Danskin theorem [63] we have that ∇𝜓(𝑦) = 𝐴𝑥(𝐴⊤𝑦) which implies

0 = ∇𝜓(𝑦*) = 𝐴𝑥(𝐴⊤𝑦*).

Using this we get

−𝑓
(︀
𝑥(𝐴⊤𝑦*)

)︀
= 𝜓(𝑦*) = max

𝐴𝑥=0,𝑥∈𝑄

{︁
⟨𝑦*, 𝐴𝑥⟩⏟ ⏞

=0

−𝑓(𝑥)
}︁

= −𝑓(𝑥*).

Finally,

𝜓(𝑦*) = −𝑓(𝑥*) = max
𝐴𝑥=0,𝑥∈𝑄

{⟨𝑦*, 𝐴𝑥⟩ − 𝑓(𝑥)} ≥ ⟨𝑦*, 𝐴𝑥̂⟩ − 𝑓(𝑥̂).

55

4.9.3. Auxiliary Results

In this section, we present the results from other papers that we rely on in our proofs.

Lemma 4.9.3 (Lemma 2 from [92]). For random vector 𝜉 ∈ R𝑛 following statements are

equivalent up to absolute constant difference in 𝜎.

1. Tails: P {‖𝜉‖2 ≥ 𝛾} ≤ 2 exp
(︁
− 𝛾2

2𝜎2

)︁
∀𝛾 ≥ 0.

2. Moments: (E [𝜉𝑝])
1
𝑝 ≤ 𝜎

√
𝑝 for any positive integer 𝑝.

3. Super-exponential moment: E
[︁
exp

(︁
‖𝜉‖22
𝜎2

)︁]︁
≤ exp(1).

Lemma 4.9.4 (Corollary 8 from [92]). Let {𝜉𝑘}𝑁𝑘=1 be a sequence of random vectors with

values in R𝑛 such that for 𝑘 = 1, . . . , 𝑁 and for all 𝛾 ≥ 0

E [𝜉𝑘 | 𝜉1, . . . , 𝜉𝑘−1] = 0, E [‖𝜉𝑘‖2 ≥ 𝛾 | 𝜉1, . . . , 𝜉𝑘−1] ≤ exp

(︂
− 𝛾2

2𝜎2
𝑘

)︂
almost surely,

where 𝜎2
𝑘 belongs to the filtration 𝜎(𝜉1, . . . , 𝜉𝑘−1) for all 𝑘 = 1, . . . , 𝑁 . Let 𝑆𝑁 =

𝑁∑︀
𝑘=1

𝜉𝑘.

Then there exists an absolute constant 𝐶1 such that for any fixed 𝛽 > 0 and 𝐵 > 𝑏 > 0

with probability at least 1− 𝛽:

either
𝑁∑︁
𝑘=1

𝜎2
𝑘 ≥ 𝐵 or ‖𝑆𝑁‖2 ≤ 𝐶1

⎯⎸⎸⎷max

{︃
𝑁∑︁
𝑘=1

𝜎2
𝑘, 𝑏

}︃(︂
ln

2𝑛

𝛽
+ ln ln

𝐵

𝑏

)︂
.

Lemma 4.9.5 (corollary of Theorem 2.1, item (ii) from [93]). Let {𝜉𝑘}𝑁𝑘=1 be a sequence

of random vectors with values in R𝑛 such that

E [𝜉𝑘 | 𝜉1, . . . , 𝜉𝑘−1] = 0 almost surely, 𝑘 = 1, . . . , 𝑁

and let 𝑆𝑁 =
𝑁∑︀
𝑘=1

𝜉𝑘. Assume that the sequence {𝜉𝑘}𝑁𝑘=1 satisfy “light-tail” assumption:

E

[︂
exp

(︂
‖𝜉𝑘‖22
𝜎2
𝑘

)︂
| 𝜉1, . . . , 𝜉𝑘−1

]︂
≤ exp(1) almost surely, 𝑘 = 1, . . . , 𝑁,

where 𝜎1, . . . , 𝜎𝑁 are some positive numbers. Then for all 𝛾 ≥ 0

P

⎧⎨⎩‖𝑆𝑁‖2 ≥ (︁√2 +
√

2𝛾
)︁⎯⎸⎸⎷ 𝑁∑︁

𝑘=1

𝜎2
𝑘

⎫⎬⎭ ≤ exp

(︂
−𝛾

2

3

)︂
. (4.127)

56

4.9.4. Missing Proofs from Section 4.3

Proof of Lemma 4.3.1

Since 𝑥* is a minimizer of 𝑔(𝑥) on R𝑛, we have ∇𝑔(𝑥*) = 0 and [1]

‖∇𝑔(𝑥̂)‖2 ≤ 2𝐿(𝑔(𝑥̂)− 𝑔(𝑥*)).

Next, using this, Cauchy-Schwarz inequality and definition of 𝑥̂ we get

⟨∇𝑔(𝑥̂), 𝑥̂− 𝑥⟩ ≤ ‖∇𝑔(𝑥̂)‖2 · ‖𝑥̂− 𝑥‖2 ≤
√︀

2𝐿(𝑔(𝑥̂)− 𝑔(𝑥*))‖𝑥̂− 𝑥‖2 ≤
√

2𝐿𝛿‖𝑥̂− 𝑥‖2,

that concludes the proof.

Proof of Lemma 4.3.2

First of all, we prove by induction that 𝑥̃𝑘+1, 𝑥𝑘, 𝑧𝑘 ∈ 𝐵 ̃︀𝑅𝑘(𝑥*) for 𝑘 = 0, 1, For

𝑘 = 0 this is true since 𝑥0 = 𝑧0, ̃︀𝑅0 = 𝑅0 = ‖𝑧0 − 𝑥*‖ and 𝑥̃1 = (𝐴0𝑥0+𝛼𝑘+1𝑧
0)/𝐴1 = 𝑧0,

since 𝐴0 = 𝛼0 = 0 and 𝐴1 = 𝛼1. Next, assume that 𝑥̃𝑘+1, 𝑥𝑘, 𝑧𝑘 ∈ 𝐵 ̃︀𝑅𝑘(𝑥*) for some

𝑘 ≥ 0. By definition of 𝑅𝑘+1 and ̃︀𝑅𝑘+1 we have 𝑧𝑘+1 ∈ 𝐵𝑅𝑘+1
(𝑥*) ⊆ 𝐵 ̃︀𝑅𝑘+1

(𝑥*). Due

to the assumption that 𝑥𝑘 ∈ 𝐵𝑅𝑘(𝑥
*) ⊆ 𝐵𝑅𝑘+1

(𝑥*) ⊆ 𝐵 ̃︀𝑅𝑘+1
(𝑥*) and convexity of the

𝐵 ̃︀𝑅𝑘+1
(𝑥*) we get that 𝑥𝑘+1 ∈ 𝐵 ̃︀𝑅𝑘+1

(𝑥*) since it is a convex combination of 𝑥𝑘 and 𝑧𝑘+1,

i.e. 𝑥𝑘+1 = (𝐴𝑘𝑥
𝑘+𝛼𝑘+1𝑧

𝑘+1)/𝐴𝑘+1. Similarly, 𝑥̃𝑘+2 lies in the ball 𝐵 ̃︀𝑅𝑘+1
(𝑥*) since it is a convex

combination of 𝑥𝑘+1 and 𝑧𝑘+1, i.e. 𝑥𝑘+1 = (𝐴𝑘𝑥
𝑘+1+𝛼𝑘+1𝑧

𝑘+1)/𝐴𝑘+1. That is, we proved that

𝑥̃𝑘+1, 𝑥𝑘, 𝑧𝑘 ∈ 𝐵 ̃︀𝑅𝑘(𝑥*) for all non-negative integers 𝑘.

Since 𝑧𝑘+1 = argmin
𝛿𝑘+1

𝑧∈R𝑛 𝑔𝑘+1(𝑧) and 𝑔𝑘+1(𝑧) is 1-strongly convex and (𝛼𝑘+1𝐿ℎ +

1)-smooth we can apply Lemma 4.3.1 and get

⟨∇𝑔𝑘+1(𝑧
𝑘+1), 𝑧𝑘+1 − 𝑥*⟩ ≤

√︁
2(𝛼𝑘+1𝐿ℎ + 1)𝛿‖𝑧𝑘 − 𝑧𝑘+1‖22 · ‖𝑧𝑘+1 − 𝑥*‖2. (4.128)

From 1-strong convexity of 𝑔𝑘+1(𝑧) we have

‖𝑧𝑘+1 − 𝑧𝑘+1‖22 ≤ 2(𝑔𝑘+1(𝑧
𝑘+1)− 𝑔𝑘+1(𝑧

𝑘+1)) ≤ 2𝛿‖𝑧𝑘 − 𝑧𝑘+1‖22.

Together with triangle inequality it implies that

‖𝑧𝑘 − 𝑧𝑘+1‖2 ≤ ‖𝑧𝑘 − 𝑥*‖2 + ‖𝑥* − 𝑧𝑘+1‖2 + ‖𝑧𝑘+1 − 𝑧𝑘+1‖2 ≤ 2 ̃︀𝑅𝑘+1 +
√

2𝛿‖𝑧𝑘 − 𝑧𝑘+1‖2,

and, after rearranging the terms,

‖𝑧𝑘 − 𝑧𝑘+1‖2 ≤
2

1−
√

2𝛿
̃︀𝑅𝑘+1. (4.129)

57

Applying inequality above and (4.225) for the r.h.s. of (4.128) we obtain

⟨𝑧𝑘+1 − 𝑧𝑘 + 𝛼𝑘+1∇𝑓(𝑥̃𝑘+1) + 𝛼𝑘+1∇ℎ(𝑧𝑘+1), 𝑧𝑘+1 − 𝑥*⟩ ≤ 𝛿
√
𝑘 + 2 ̃︀𝑅2

𝑘+1, (4.130)

where we used

2

√︃
2(𝛼𝑘+1𝐿ℎ + 1)𝛿

(1−
√

2𝛿)2

(4.225)
≤ 2

√︃
2 ((𝑘 + 2)𝐿ℎ + 2(𝑘 + 2)𝐿) 𝛿

2(1−
√

2𝛿)2𝐿
≤ 2

√︃
(𝐿ℎ + 2𝐿) 𝛿

(1−
√

2𝛿)2𝐿

√
𝑘 + 2

and 𝛿 def
= 2

√︁
(𝐿ℎ+2𝐿)𝛿

(1−
√
2𝛿)2𝐿

. Using this we get

𝛼𝑘+1⟨∇𝑓(𝑥̃𝑘+1), 𝑧𝑘 − 𝑥*⟩ = 𝛼𝑘+1⟨∇𝑓(𝑥̃𝑘+1), 𝑧𝑘 − 𝑧𝑘+1⟩+ 𝛼𝑘+1⟨∇𝑓(𝑥̃𝑘+1), 𝑧𝑘+1 − 𝑥*⟩
(4.130)
≤ 𝛼𝑘+1⟨∇𝑓(𝑥̃𝑘+1), 𝑧𝑘 − 𝑧𝑘+1⟩+ ⟨𝑧𝑘+1 − 𝑧𝑘, 𝑥* − 𝑧𝑘+1⟩

+𝛼𝑘+1⟨∇ℎ(𝑧𝑘+1), 𝑥* − 𝑧𝑘+1⟩+ 𝛿
√
𝑘 + 2 ̃︀𝑅2

𝑘+1.

One can check via direct calculations that

⟨𝑎, 𝑏⟩ =
1

2
‖𝑎+ 𝑏‖22 −

1

2
‖𝑎‖22 −

1

2
‖𝑏‖22, ∀ 𝑎, 𝑏 ∈ R𝑛.

From the convexity of ℎ

⟨∇ℎ(𝑧𝑘+1), 𝑥* − 𝑧𝑘+1⟩ ≤ ℎ(𝑥*)− ℎ(𝑧𝑘+1).

Combining previous three inequalities we obtain

𝛼𝑘+1⟨∇𝑓(𝑥̃𝑘+1), 𝑧𝑘 − 𝑥*⟩ ≤ 𝛼𝑘+1⟨∇𝑓(𝑥̃𝑘+1), 𝑧𝑘 − 𝑧𝑘+1⟩ − 1

2
‖𝑧𝑘 − 𝑧𝑘+1‖22 +

1

2
‖𝑧𝑘 − 𝑥*‖22

−1

2
‖𝑧𝑘+1 − 𝑥*‖22 + 𝛼𝑘+1

(︀
ℎ(𝑥*)− ℎ(𝑧𝑘+1)

)︀
+ 𝛿
√
𝑘 + 2 ̃︀𝑅2

𝑘+1.

By definition of 𝑥𝑘+1 and 𝑥̃𝑘+1

𝑥𝑘+1 =
𝐴𝑘𝑥

𝑘 + 𝛼𝑘+1𝑧
𝑘+1

𝐴𝑘+1

=
𝐴𝑘𝑥

𝑘 + 𝛼𝑘+1𝑧
𝑘

𝐴𝑘+1

+
𝛼𝑘+1

𝐴𝑘+1

(︀
𝑧𝑘+1 − 𝑧𝑘

)︀
= 𝑥̃𝑘+1 +

𝛼𝑘+1

𝐴𝑘+1

(︀
𝑧𝑘+1 − 𝑧𝑘

)︀
.

58

Together with the previous inequality and 𝐴𝑘+1 = 2𝐿𝛼2
𝑘+1, it implies

𝛼𝑘+1⟨∇𝑓(𝑥̃𝑘+1), 𝑧𝑘 − 𝑥*⟩ ≤ 𝐴𝑘+1⟨∇𝑓(𝑥̃𝑘+1), 𝑥̃𝑘+1 − 𝑥𝑘+1⟩

−
𝐴2
𝑘+1

2𝛼2
𝑘+1

‖𝑥̃𝑘+1 − 𝑥𝑘+1‖22 +
1

2
‖𝑧𝑘 − 𝑥*‖22 −

1

2
‖𝑧𝑘+1 − 𝑥*‖22

+𝛼𝑘+1

(︀
ℎ(𝑥*)− ℎ(𝑧𝑘+1)

)︀
+ 𝛿
√
𝑘 + 2 ̃︀𝑅2

𝑘+1

≤ 𝐴𝑘+1

(︂
⟨∇𝑓(𝑥̃𝑘+1), 𝑥̃𝑘+1 − 𝑥𝑘+1⟩ − 2𝐿

2
‖𝑥̃𝑘+1 − 𝑥𝑘+1‖22

)︂
+

1

2
‖𝑧𝑘 − 𝑥*‖22 −

1

2
‖𝑧𝑘+1 − 𝑥*‖22

+𝛼𝑘+1

(︀
ℎ(𝑥*)− ℎ(𝑧𝑘+1)

)︀
+ 𝛿
√
𝑘 + 2 ̃︀𝑅2

𝑘+1

≤ 𝐴𝑘+1(𝑓(𝑥̃𝑘+1)− 𝑓(𝑥𝑘+1)) +
1

2
‖𝑧𝑘 − 𝑥*‖22 −

1

2
‖𝑧𝑘+1 − 𝑥*‖22

+𝛼𝑘+1

(︀
ℎ(𝑥*)− ℎ(𝑧𝑘+1)

)︀
+ 𝛿
√
𝑘 + 2 ̃︀𝑅2

𝑘+1 (4.131)

From the convexity of 𝑓 we get

⟨∇𝑓(𝑥̃𝑘+1), 𝑥𝑘 − 𝑥̃𝑘+1⟩ ≤ 𝑓(𝑥𝑘)− 𝑓(𝑥̃𝑘+1). (4.132)

By definition of 𝑥̃𝑘+1 we have

𝛼𝑘+1

(︀
𝑥̃𝑘+1 − 𝑧𝑘

)︀
= 𝐴𝑘

(︀
𝑥𝑘 − 𝑥̃𝑘+1

)︀
. (4.133)

Putting all together, we get

𝛼𝑘+1⟨∇𝑓(𝑥̃𝑘+1), 𝑥̃𝑘+1 − 𝑥*⟩ = 𝛼𝑘+1⟨∇𝑓(𝑥̃𝑘+1), 𝑥̃𝑘+1 − 𝑧𝑘⟩

+𝛼𝑘+1⟨∇𝑓(𝑥̃𝑘+1), 𝑧𝑘 − 𝑥*⟩
(4.133)

= 𝐴𝑘⟨∇𝑓(𝑥̃𝑘+1), 𝑥𝑘 − 𝑥̃𝑘+1⟩

+𝛼𝑘+1⟨∇𝑓(𝑥̃𝑘+1), 𝑧𝑘 − 𝑥*⟩
(4.131),(4.132)
≤ 𝐴𝑘

(︀
𝑓(𝑥𝑘)− 𝑓(𝑥̃𝑘+1)

)︀
+𝐴𝑘+1

(︀
𝑓(𝑥̃𝑘+1)− 𝑓(𝑥𝑘+1)

)︀
+

1

2
‖𝑧𝑘 − 𝑥*‖22 −

1

2
‖𝑧𝑘+1 − 𝑥*‖22

+𝛼𝑘+1

(︀
ℎ(𝑥*)− ℎ(𝑧𝑘+1)

)︀
+ 𝛿
√
𝑘 + 2 ̃︀𝑅2

𝑘+1.

Rearranging the terms and using 𝐴𝑘+1 = 𝐴𝑘 + 𝛼𝑘+1, we obtain

𝐴𝑘+1𝑓(𝑥𝑘+1)− 𝐴𝑘𝑓(𝑥𝑘) ≤ 𝛼𝑘+1

(︀
𝑓(𝑥̃𝑘+1) + ⟨∇𝑓(𝑥̃𝑘+1), 𝑥* − 𝑥̃𝑘+1⟩

)︀
+

1

2
‖𝑧𝑘 − 𝑥*‖22

−1

2
‖𝑧𝑘+1 − 𝑥*‖22 + 𝛼𝑘+1

(︀
ℎ(𝑥*)− ℎ(𝑧𝑘+1)

)︀
+ 𝛿
√
𝑘 + 2 ̃︀𝑅2

𝑘+1,

59

and after summing these inequalities for 𝑘 = 0, . . . , 𝑁 − 1 and applying convexity of 𝑓 , i.e.

inequality ⟨∇𝑓(𝑥̃𝑘+1), 𝑥* − 𝑥̃𝑘+1⟩ ≤ 𝑓(𝑥*)− 𝑓(𝑥̃𝑘+1), we get

𝐴𝑁𝑓(𝑥𝑁) ≤ 1

2
𝑅2

0 −
1

2
𝑅2
𝑁 + 𝐴𝑁𝑓(𝑥*) + 𝐴𝑁ℎ(𝑥*)−

𝑁−1∑︁
𝑘=0

𝛼𝑘+1ℎ(𝑧𝑘+1) + 𝛿
𝑁−1∑︁
𝑘=0

√
𝑘 + 2 ̃︀𝑅2

𝑘+1,

where we used that 𝐴0 = 0. Finally, convexity of ℎ and definition of 𝑥𝑘+1, i.e. 𝑥𝑘+1 =

(𝐴𝑘𝑥
𝑘+𝛼𝑘+1𝑧

𝑘+1)/𝐴𝑘+1, implies

𝐴𝑁ℎ(𝑥𝑁) ≤ 𝐴𝑁−1ℎ(𝑥𝑁−1) + 𝛼𝑁ℎ(𝑧𝑁).

Applying this inequality for 𝐴𝑁−1ℎ(𝑥𝑁−1), 𝐴𝑁−2ℎ(𝑥𝑁−2), . . . , 𝐴1ℎ(𝑥1) in a sequence we

get

𝐴𝑁ℎ(𝑥𝑁) ≤ 𝐴0ℎ(𝑥0) +
𝑁−1∑︁
𝑘=0

𝛼𝑘+1ℎ(𝑧𝑘+1) =
𝑁−1∑︁
𝑘=0

𝛼𝑘+1ℎ(𝑧𝑘+1),

which implies

𝐴𝑁
(︀
𝐹 (𝑥𝑁)− 𝐹 (𝑥*)

)︀
≤ 1

2
𝑅2

0 −
1

2
𝑅2
𝑁 + 𝛿

𝑁−1∑︁
𝑘=0

√
𝑘 + 2 ̃︀𝑅2

𝑘+1,

that finishes the proof.

Proof of Theorem 4.3.1

Lemma 4.3.2 implies that

𝐴𝑙
(︀
𝐹 (𝑥𝑙)− 𝐹 (𝑥*)

)︀
≤ 1

2
𝑅2

0 −
1

2
𝑅2
𝑙 + 𝛿

𝑙−1∑︁
𝑘=0

√
𝑘 + 2 ̃︀𝑅2

𝑘+1 (4.134)

for 𝑙 = 1, 2, . . . , 𝑁 . Since 𝐹 (𝑥𝑙) ≥ 𝐹 (𝑥*) for each 𝑙 and 𝛿 ≤ 𝐶

(𝑁+1)3/2
we get the recurrence

𝑅2
𝑙 ≤ 𝑅2

0 +
2𝐶

(𝑁 + 1)3/2

𝑙−1∑︁
𝑘=0

(𝑘 + 2)
1/2 ̃︀𝑅2

𝑘+1, ∀𝑙 = 1, . . . , 𝑁.

Note that the r.h.s. of the previous inequality is non-decreasing function of 𝑙. Let us define

𝑙̂ as the largest integer such that 𝑙̂ ≤ 𝑙 and ̃︀𝑅𝑙̂ = 𝑅𝑙̂. Then 𝑅𝑙̂ = ̃︀𝑅𝑙̂ = ̃︀𝑅𝑙̂+1 = . . . = ̃︀𝑅𝑙 and,

as a consequence,

̃︀𝑅2
𝑙 ≤ ̃︀𝑅2

0 +
2𝐶

(𝑁 + 1)3/2

𝑙−1∑︁
𝑘=0

(𝑘 + 2)
1/2 ̃︀𝑅2

𝑘+1, ∀𝑙 = 1, . . . , 𝑁. (4.135)

60

Using Lemma 4.9.12 we get that ̃︀𝑅𝑙 ≤ 2𝑅2
0 for all 𝑙 = 1, . . . , 𝑁 . We plug this inequality

together with 𝛿 ≤ 𝐶

(𝑁+1)3/2
≤ 1

4(𝑁+1)3/2
and 𝑅2

𝑁 ≥ 0 in (4.134) and get

𝐴𝑁(𝐹 (𝑥𝑁)− 𝐹 (𝑥*)) ≤ 1

2
𝑅2

0 +
4𝑅2

0

4(𝑁 + 1)3/2

𝑁−1∑︁
𝑘=0

(𝑘 + 2)
1/2

≤ 3

2
𝑅2

0,

which concludes the proof.

Proof of Corollary 4.3.1

The first part of the corollary follows from (4.18) and Lemma 4.9.9. Relation (4.20)

follows from the definition of 𝛿 and 𝛿 ≤ 𝐶

(𝑁+1)3/2
. Indeed, since 𝛿 def

= 2
√︁

(𝐿ℎ+2𝐿)𝛿

(1−
√
2𝛿)2𝐿

and 𝐶 ≤ 1
4

we get that

𝛿 ≤ 𝐶2(1−
√

2𝛿)2𝐿

4(𝐿ℎ + 2𝐿)(𝑁 + 1)3
≤ 𝐿

64(𝐿ℎ + 2𝐿)𝑁3
≤ 1

64

𝐿

(𝐿ℎ + 𝐿)𝑁3
.

4.9.5. Missing Proofs from Section 4.4

Proof of Theorem 4.4.1

By definition of 𝐹

𝐹 (𝑥𝑁)−min
𝑥∈𝑄

𝐹 (𝑥) = 𝑓(𝑥𝑁) +
𝑅2
𝑦

𝜀
‖𝐴𝑥𝑁‖22 −min

𝑥∈𝑄

{︂
𝑓(𝑥) +

𝑅2
𝑦

𝜀
‖𝐴𝑥‖22

}︂
≥ 𝑓(𝑥𝑁) +

𝑅2
𝑦

𝜀
‖𝐴𝑥𝑁‖22 − min

𝐴𝑥=0,𝑥∈𝑄

{︂
𝑓(𝑥) +

𝑅2
𝑦

𝜀
‖𝐴𝑥‖22

}︂
= 𝑓(𝑥𝑁)− min

𝐴𝑥=0,𝑥∈𝑄
𝑓(𝑥) +

𝑅2
𝑦

𝜀
‖𝐴𝑥𝑁‖22,

which implies

𝑓(𝑥𝑁)− 𝑓(𝑥*) +
𝑅2
𝑦

𝜀
‖𝐴𝑥𝑁‖22

(4.26)
≤ 𝜀, (4.136)

where 𝑥* is an arbitrary solution of (4.21). Taking inequality ‖𝐴𝑥𝑁‖22 ≥ 0 into account we

get the first part of (4.27). From Cauchy-Schwarz inequality we obtain

−𝑅𝑦‖𝐴𝑥𝑁‖2 ≤ −‖𝑦*‖2 · ‖𝐴𝑥𝑁‖2 ≤ ⟨𝑦*, 𝐴𝑥𝑁⟩
(4.126)
≤ 𝑓(𝑥𝑁)− 𝑓(𝑥*).

Together with (4.136) it gives us quadratic inequality on 𝑅𝑦‖𝐴𝑥𝑁‖2:

−𝑅𝑦‖𝐴𝑥𝑁‖2 +
𝑅2
𝑦

𝜀
‖𝐴𝑥𝑁‖22 ≤ 𝜀.

Therefore, 𝑅𝑦‖𝐴𝑥𝑁‖2 should be less then the greatest root of the corresponding quadratic

equation, i.e. 𝑅𝑦‖𝐴𝑥𝑁‖2 ≤ 1+
√
5

2
𝜀 < 2𝜀.

61

Proof of Theorem 4.4.2

Note that ℎ(𝑥) is convex and 𝐿ℎ-smooth in R𝑛 with 𝐿ℎ = 2𝑅2
𝑦𝜆max(𝐴⊤𝐴)/𝜀 since∇ℎ(𝑥) =

2𝑅2
𝑦𝐴

⊤𝐴𝑥/𝜀 and

‖∇ℎ(𝑥)−∇ℎ(𝑦)‖2 =
2𝑅2

𝑦

𝜀
‖𝐴⊤𝐴(𝑥− 𝑦)‖2 ≤

2𝑅2
𝑦

𝜀
‖𝐴⊤𝐴‖2 · ‖𝑥− 𝑦‖2

≤
2𝑅2

𝑦𝜆max(𝐴
⊤𝐴)

𝜀
‖𝑥− 𝑦‖2

for all 𝑥, 𝑦 ∈ R𝑛. We can apply STM with inexact proximal step (STP_IPS) which is

presented in Section 4.3 as Algorithm 2 to solve problem (4.25). Corollary 4.3.1 (see

Section 4.3 in the Appendix; see also the text after the corollary) states that in order to

get such 𝑥𝑁 that satisfy (4.26) we should run STP_IPS for 𝑁 = 𝑂
(︁√︀

𝐿𝑅2/𝜀
)︁

iterations

with 𝛿 = 𝑂
(︀
𝜀
3/2/((𝐿ℎ+𝐿)

√
𝐿𝑅3)

)︀
, where 𝑅 = ‖𝑥0 − 𝑥*‖2, 𝑥* is the closest to 𝑥0 minimizer of

𝐹 and 𝛿 is such that for all 𝑘 = 0, . . . , 𝑁 − 1 the auxiliary problem 𝑔𝑘+1(𝑧) → min𝑧∈R𝑛

for finding 𝑧𝑘+1 is solved with accuracy 𝑔𝑘+1(𝑧
𝑘+1) − 𝑔𝑘+1(𝑧

𝑘+1) ≤ 𝛿‖𝑧𝑘 − 𝑧𝑘+1‖22 where

𝑔𝑘+1(𝑧) is defined as (see also (4.16))

𝑔𝑘+1(𝑧) =
1

2
‖𝑧𝑘 − 𝑧‖22 + 𝛼𝑘+1

(︀
𝑓(𝑥̃𝑘+1) + ⟨∇𝑓(𝑥̃𝑘+1), 𝑧 − 𝑥̃𝑘+1⟩+ ℎ(𝑧)

)︀
for 𝑘 = 0, 1, . . . and 𝑧𝑘+1 = argmin𝑧∈R𝑛 𝑔𝑘+1(𝑧). That is, if the auxiliary problem is solved

accurate enough at each iteration, then number of iterations, i.e. number of calculations

∇𝑓(𝑥), corresponds to the optimal bound presented in Table 4.1.

However, in order to solve the auxiliary problem min𝑧∈R𝑛 𝑔𝑘+1(𝑧) one should run

another optimization method as a subroutine, e.g. STM. Note that Im𝐴 = Im𝐴⊤ = (Ker𝐴)⊥

and if the starting point for this problem is chosen as 𝑧𝑘 −𝛼𝑘+1∇𝑓(𝑥̃𝑘+1) then the iterates

of STM applied to solve problem min𝑧∈R𝑛 𝑔𝑘+1(𝑧) lie in 𝑧𝑘 −𝛼𝑘+1∇𝑓(𝑥̃𝑘+1) + (Ker𝐴)⊥ since

∇𝑔𝑘+1(𝑧) ∈ Im(𝐴) for all 𝑧 ∈ 𝑧𝑘−𝛼𝑘+1∇𝑓(𝑥̃𝑘+1) + (Ker𝐴)⊥ (one can prove it using simple

induction, see Theorem 4.5.7 for the details of the proof of the similar result). Therefore, the

auxiliary problem can be considered as a minimization of (1 + 2𝛼𝑘+1𝑅
2
𝑦𝜆

+
min(𝐴

⊤𝐴)/𝜀)-strongly

convex on 𝑧𝑘−𝛼𝑘+1∇𝑓(𝑥̃𝑘+1)+(Ker𝐴)⊥ and (1+2𝛼𝑘+1𝑅
2
𝑦𝜆max(𝐴⊤𝐴)/𝜀)-smooth on R𝑛 function.

Then, one can estimate the overall complexity of the auxiliary problem using the condition

number of 𝑔𝑘+1(𝑧) on 𝑧𝑘 − 𝛼𝑘+1∇𝑓(𝑥̃𝑘+1) + (Ker𝐴)⊥:

1 + 2𝛼𝑘+1𝑅
2
𝑦𝜆max(𝐴⊤𝐴)/𝜀

1 + 2𝛼𝑘+1𝑅
2
𝑦𝜆

+
min(𝐴

⊤𝐴)/𝜀
≤ 𝜆max(𝐴

⊤𝐴)

𝜆+min(𝐴⊤𝐴)

def
= 𝜒(𝐴⊤𝐴). (4.137)

62

Assume that 𝑧𝑘+1 is such that 𝑔𝑘+1(𝑧
𝑘+1)− 𝑔𝑘+1(𝑧

𝑘+1) ≤ 𝛿‖𝑧𝑘 − 𝛼𝑘+1∇𝑓(𝑥̃𝑘+1)− 𝑧𝑘+1‖2.

Then

‖𝑧𝑘 − 𝛼𝑘+1∇𝑓(𝑥̃𝑘+1)− 𝑧𝑘+1‖2 ≤ ‖𝑧𝑘 − 𝑧𝑘+1‖2 + 𝛼𝑘+1‖∇𝑓(𝑥̃𝑘+1)‖2

≤ ‖𝑧𝑘 − 𝑧𝑘+1‖2 + 𝛼𝑘+1‖∇𝑓(𝑥̃𝑘+1)−∇𝑓(𝑥*)‖2 + 𝛼𝑘+1‖∇𝑓(𝑥*)‖2

≤ ‖𝑧𝑘 − 𝑧𝑘+1‖2 + 𝛼𝑘+1𝐿‖𝑥̃𝑘+1 − 𝑥*‖2 + 𝛼𝑘+1‖∇𝑓(𝑥*)‖2
(4.225)
≤ ‖𝑧𝑘 − 𝑧𝑘+1‖2 +

𝑘 + 2

2
̃︀𝑅𝑘+1 +

𝑘 + 2

2𝐿
‖∇𝑓(𝑥*)‖2

and using the similar steps as in the proof of inequality (4.129) we get

‖𝑧𝑘 − 𝑧𝑘+1‖2 ≤

(︂
2 + (𝑘+2)

√
2𝛿

2

)︂ ̃︀𝑅𝑘+1

1−
√︀

2𝛿
+

(𝑘 + 2)‖∇𝑓(𝑥*)‖2
2𝐿
(︁

1−
√︀

2𝛿
)︁ .

Combining previous two inequalities we conclude that

‖𝑧𝑘 − 𝛼𝑘+1∇𝑓(𝑥̃𝑘+1)− 𝑧𝑘+1‖2 ≤

⎛⎝2 + (𝑘+2)
√

2𝛿
2

1−
√︀

2𝛿
+
𝑘 + 2

2

⎞⎠ ̃︀𝑅𝑘+1

+
𝑘 + 2

2𝐿

(︃
1 +

1

1−
√︀

2𝛿

)︃
‖∇𝑓(𝑥*)‖2.

It means that to achieve 𝑔𝑘+1(𝑧
𝑘+1) − 𝑔𝑘+1(𝑧

𝑘+1) ≤ 𝛿 ̃︀𝑅2
𝑘+1 with 𝛿 = 𝑂

(︀
𝜀
3/2/((𝐿ℎ+𝐿)

√
𝐿𝑅3)

)︀
one can run STM to solve the auxiliary problem 𝑔𝑘+1(𝑧)→ min𝑧∈R𝑛 for 𝑇 iterations with

the starting point 𝑧𝑘 − 𝛼𝑘+1∇𝑓(𝑥̃𝑘+1) where

𝑇 = 𝑂

(︂√︀
𝜒(𝐴⊤𝐴) ln

(︂
𝐿𝑔𝑁𝐿

3/2(𝑅2
𝑦𝜆max(𝐴⊤𝐴)/𝜀 + 𝐿)𝑅3 (𝑅2 + ‖∇𝑓(𝑥*)‖22/𝐿2)

𝜀5/2

)︂)︂
,

𝐿𝑔𝑁 = 1 +
2𝛼𝑘+1𝑅

2
𝑦𝜆max(𝐴

⊤𝐴)

𝜀

(4.19)+(4.225)
= 𝑂

(︃
𝑅2
𝑦𝑅𝜆max(𝐴

⊤𝐴)
√
𝐿𝜀3/2

)︃

or, equivalently,

𝑇 = 𝑂

(︃√︀
𝜒(𝐴⊤𝐴) ln

(︃
𝜆max(𝐴

⊤𝐴)𝐿(𝑅2
𝑦𝜆max(𝐴⊤𝐴)/𝜀 + 𝐿)𝑅2

𝑦𝑅
4 (𝑅2 + ‖∇𝑓(𝑥*)‖22/𝐿2)

𝜀4

)︃)︃
.

4.9.6. Missing Lemmas and Proofs from Section 4.5.1

Lemmas

The following lemma is rather technical and provides useful inequalities that show

how biasedness of ∇̃Ψ(𝑦, 𝜉𝑘) interacts with convexity and 𝐿𝜓-smoothness of 𝜓.

63

Lemma 4.9.6. Assume that function 𝜓(𝑦) is convex and 𝐿𝜓-smooth on R𝑛. Then for all

𝑥, 𝑦 ∈ R𝑛

𝜓(𝑦) ≥ 𝜓(𝑥) +
⟨
E
[︁
∇̃Ψ(𝑥, 𝜉𝑘)

]︁
, 𝑦 − 𝑥

⟩
− 𝛿‖𝑦 − 𝑥‖2, (4.138)

𝜓(𝑦) ≤ 𝜓(𝑥) +
⟨
E
[︁
∇̃Ψ(𝑥, 𝜉𝑘)

]︁
, 𝑦 − 𝑥

⟩
+ 𝐿𝜓‖𝑦 − 𝑥‖22 +

𝛿2

2𝐿𝜓
. (4.139)

Proof. From the convexity of 𝜓 we have

𝜓(𝑥)− 𝜓(𝑦) ≤ ⟨∇𝜓(𝑥), 𝑥− 𝑦⟩ =
⟨
E
[︁
∇̃Ψ(𝑥, 𝜉𝑘)

]︁
, 𝑥− 𝑦

⟩
+
⟨
∇𝜓(𝑥)− E

[︁
∇̃Ψ(𝑥, 𝜉𝑘)

]︁
, 𝑥− 𝑦

⟩
≤

⟨
E
[︁
∇̃Ψ(𝑥, 𝜉𝑘)

]︁
, 𝑥− 𝑦

⟩
+
⃦⃦⃦
∇𝜓(𝑥)− E

[︁
∇̃Ψ(𝑥, 𝜉𝑘)

]︁⃦⃦⃦
2
· ‖𝑥− 𝑦‖2

(4.42)
≤

⟨
E
[︁
∇̃Ψ(𝑥, 𝜉𝑘)

]︁
, 𝑥− 𝑦

⟩
+ 𝛿‖𝑥− 𝑦‖2,

which proves the inequality (4.138). Applying 𝐿-smoothness of 𝜓(𝑥) we get

𝜓(𝑦) ≤ 𝜓(𝑥) + ⟨∇𝜓(𝑥), 𝑦 − 𝑥⟩+
𝐿

2
‖𝑦 − 𝑥‖22

= 𝜓(𝑥) +
⟨
E
[︁
∇̃Ψ(𝑥, 𝜉𝑘)

]︁
, 𝑦 − 𝑥

⟩
+
⟨
∇𝜓(𝑥)− E

[︁
∇̃Ψ(𝑥, 𝜉𝑘)

]︁
, 𝑦 − 𝑥

⟩
+
𝐿

2
‖𝑦 − 𝑥‖22.

Due to Fenchel-Young inequality ⟨𝑎, 𝑏⟩ ≤ 1
2𝜆
‖𝑎‖22 + 𝜆

2
‖𝑏‖22, 𝑎, 𝑏 ∈ R𝑛, 𝜆 > 0,⟨

∇𝜓(𝑥)− E
[︁
∇̃Ψ(𝑥, 𝜉𝑘)

]︁
, 𝑦 − 𝑥

⟩
≤ 1

2𝐿

⃦⃦⃦
∇𝜓(𝑥)− E

[︁
∇̃Ψ(𝑥, 𝜉𝑘)

]︁⃦⃦⃦2
2

+
𝐿

2
‖𝑦 − 𝑥‖22

(4.42)
≤ 𝛿2

2𝐿
+
𝐿

2
‖𝑦 − 𝑥‖22.

Combining these two inequalities we get (4.139).

Next, we will use the following notation: E𝑘[·] = E𝜉𝑘+1 [·] which denotes conditional

mathematical expectation with respect to all randomness that comes from 𝜉𝑘+1.

Lemma 4.9.7 (see also Theorem 1 from [54]). For each iteration of Algorithm 3 we have

𝐴𝑁𝜓(𝑦𝑁) ≤ 1

2
‖𝑧 − 𝑧0‖22 −

1

2
‖𝑧 − 𝑧𝑁‖22

+
𝑁−1∑︁
𝑘=0

𝛼𝑘+1

(︁
𝜓(𝑦𝑘+1) + ⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑧 − 𝑦𝑘+1⟩

)︁
+

𝑁−1∑︁
𝑘=0

𝐴𝑘

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦𝑘 − 𝑦𝑘+1

⟩
+

𝑁−1∑︁
𝑘=0

𝐴𝑘+1

2𝐿̃

⃦⃦⃦
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
− ∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

⃦⃦⃦2
2

+𝛿
𝑁−1∑︁
𝑘=0

𝐴𝑘‖𝑦𝑘 − 𝑦𝑘+1‖2 + 𝛿2
𝑁−1∑︁
𝑘=0

𝐴𝑘+1

𝐿̃
, (4.140)

for arbitrary 𝑧 ∈ R𝑛.

64

Proof. The proof of this lemma follows a similar way as in the proof of Theorem 1 from

[54]. We can rewrite the update rule for 𝑧𝑘 in the equivalent way:

𝑧𝑘+1 = argmin
𝑧∈R𝑛

{︂
𝛼𝑘+1⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑧 − 𝑦𝑘+1⟩+

1

2
‖𝑧 − 𝑧𝑘‖22

}︂
.

From the optimality condition we have that for all 𝑧 ∈ R𝑛

⟨𝑧𝑘+1 − 𝑧𝑘 + 𝛼𝑘+1∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑧 − 𝑧𝑘+1⟩ ≥ 0. (4.141)

Using this we get

𝛼𝑘+1⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑧𝑘 − 𝑧⟩

= 𝛼𝑘+1⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑧𝑘 − 𝑧𝑘+1⟩+ 𝛼𝑘+1⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑧𝑘+1 − 𝑧⟩
(4.141)
≤ 𝛼𝑘+1⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑧𝑘 − 𝑧𝑘+1⟩+ ⟨𝑧𝑘+1 − 𝑧𝑘, 𝑧 − 𝑧𝑘+1⟩.

One can check via direct calculations that

⟨𝑎, 𝑏⟩ ≤ 1

2
‖𝑎+ 𝑏‖22 −

1

2
‖𝑎‖22 −

1

2
‖𝑏‖22, ∀ 𝑎, 𝑏 ∈ R𝑛.

Combining previous two inequalities we obtain

𝛼𝑘+1⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑧𝑘 − 𝑧⟩ ≤ 𝛼𝑘+1⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑧𝑘 − 𝑧𝑘+1⟩ − 1

2
‖𝑧𝑘 − 𝑧𝑘+1‖22

+
1

2
‖𝑧𝑘 − 𝑧‖22 −

1

2
‖𝑧𝑘+1 − 𝑧‖22.

By definition of 𝑦𝑘+1 and 𝑦𝑘+1

𝑦𝑘+1 =
𝐴𝑘𝑦

𝑘 + 𝛼𝑘+1𝑧
𝑘+1

𝐴𝑘+1

=
𝐴𝑘𝑦

𝑘 + 𝛼𝑘+1𝑧
𝑘

𝐴𝑘+1

+
𝛼𝑘+1

𝐴𝑘+1

(︀
𝑧𝑘+1 − 𝑧𝑘

)︀
= 𝑦𝑘+1 +

𝛼𝑘+1

𝐴𝑘+1

(︀
𝑧𝑘+1 − 𝑧𝑘

)︀
.

65

Together with previous inequality, it implies

𝛼𝑘+1⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑧𝑘 − 𝑧⟩ ≤ 𝐴𝑘+1⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑦𝑘+1 − 𝑦𝑘+1⟩

−
𝐴2
𝑘+1

2𝛼2
𝑘+1

‖𝑦𝑘+1 − 𝑦𝑘+1‖22 +
1

2
‖𝑧𝑘 − 𝑧‖22 −

1

2
‖𝑧𝑘+1 − 𝑧‖22

≤ 𝐴𝑘+1

(︃
⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑦𝑘+1 − 𝑦𝑘+1⟩

−2𝐿̃

2
‖𝑦𝑘+1 − 𝑦𝑘+1‖22

)︃
+

1

2
‖𝑧𝑘 − 𝑧‖22 −

1

2
‖𝑧𝑘+1 − 𝑧‖22

= 𝐴𝑘+1

(︃⟨
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦𝑘+1 − 𝑦𝑘+1

⟩
−2𝐿̃

2
‖𝑦𝑘+1 − 𝑦𝑘+1‖22

)︃
+𝐴𝑘+1

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦𝑘+1 − 𝑦𝑘+1

⟩
+

1

2
‖𝑧𝑘 − 𝑧‖22 −

1

2
‖𝑧𝑘+1 − 𝑧‖22.

From Fenchel-Young inequality ⟨𝑎, 𝑏⟩ ≤ 1
2𝜆
‖𝑎‖22 + 𝜆

2
‖𝑏‖22, 𝑎, 𝑏 ∈ R𝑛, 𝜆 > 0, we have⟨

∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦𝑘+1 − 𝑦𝑘+1

⟩
≤ 1

2𝐿̃

⃦⃦⃦
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁⃦⃦⃦2
2

+ 𝐿̃
2
‖𝑦𝑘+1 − 𝑦𝑘+1‖22.

Using this, we get

𝛼𝑘+1⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑧𝑘 − 𝑧⟩ ≤ 𝐴𝑘+1

(︃⟨
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦𝑘+1 − 𝑦𝑘+1

⟩
− 𝐿̃

2
‖𝑦𝑘+1 − 𝑦𝑘+1‖22

)︃
+
𝐴𝑘+1

2𝐿̃

⃦⃦⃦
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁⃦⃦⃦2
2

+
1

2
‖𝑧𝑘 − 𝑧‖22 −

1

2
‖𝑧𝑘+1 − 𝑧‖22

(4.139)
≤ 𝐴𝑘+1

(︂
𝜓(𝑦𝑘+1)− 𝜓(𝑦𝑘+1) +

𝛿2

𝐿̃

)︂
+

1

2
‖𝑧𝑘 − 𝑧‖22 −

1

2
‖𝑧𝑘+1 − 𝑧‖22 (4.142)

+
𝐴𝑘+1

2𝐿̃

⃦⃦⃦
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁⃦⃦⃦2
2
.

66

With Lemma 4.9.6 in hand, we have

⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑦𝑘 − 𝑦𝑘+1⟩ =
⟨
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦𝑘 − 𝑦𝑘+1

⟩
+
⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦𝑘 − 𝑦𝑘+1

⟩
(4.138)
≤ 𝜓(𝑦𝑘)− 𝜓(𝑦𝑘+1) + 𝛿‖𝑦𝑘 − 𝑦𝑘+1‖2 (4.143)

+
⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦𝑘 − 𝑦𝑘+1

⟩
.

By definition of 𝑦𝑘+1 we have

𝛼𝑘+1

(︀
𝑦𝑘+1 − 𝑧𝑘

)︀
= 𝐴𝑘

(︀
𝑦𝑘 − 𝑦𝑘+1

)︀
. (4.144)

Putting all together, we get

𝛼𝑘+1⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑦𝑘+1 − 𝑧⟩

= 𝛼𝑘+1⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑦𝑘+1 − 𝑧𝑘⟩+ 𝛼𝑘+1⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑧𝑘 − 𝑧⟩
(4.144)

= 𝐴𝑘⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑦𝑘 − 𝑦𝑘+1⟩+ 𝛼𝑘+1⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑧𝑘 − 𝑧⟩
(4.142),(4.143)
≤ 𝐴𝑘

(︀
𝜓(𝑦𝑘)− 𝜓(𝑦𝑘+1) + 𝛿‖𝑦𝑘 − 𝑦𝑘+1‖2

)︀
+𝐴𝑘

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦𝑘 − 𝑦𝑘+1

⟩
+𝐴𝑘+1

(︁
𝜓(𝑦𝑘+1)− 𝜓(𝑦𝑘+1) + 𝛿2

𝐿̃

)︁
+ 1

2
‖𝑧𝑘 − 𝑧‖22 − 1

2
‖𝑧𝑘+1 − 𝑧‖22

+𝐴𝑘+1

2𝐿̃

⃦⃦⃦
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁⃦⃦⃦2
2
.

Rearranging the terms and using 𝐴𝑘+1 = 𝐴𝑘 + 𝛼𝑘+1, we obtain

𝐴𝑘+1𝜓(𝑦𝑘+1)− 𝐴𝑘𝜓(𝑦𝑘) ≤ 𝛼𝑘+1

(︁
𝜓(𝑦𝑘+1) + ⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑧 − 𝑦𝑘+1⟩

)︁
+

1

2
‖𝑧𝑘 − 𝑧‖22

−1

2
‖𝑧𝑘+1 − 𝑧‖22 + 𝐴𝑘𝛿‖𝑦𝑘 − 𝑦𝑘+1‖2 +

𝐴𝑘+1𝛿
2

𝐿̃

+
𝐴𝑘+1

2𝐿̃

⃦⃦⃦
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁⃦⃦⃦2
2

+𝐴𝑘

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦𝑘 − 𝑦𝑘+1

⟩
,

67

and after summing these inequalities for 𝑘 = 0, . . . , 𝑁 − 1 we get

𝐴𝑁𝜓(𝑦𝑁) ≤ 1

2
‖𝑧 − 𝑧0‖22 −

1

2
‖𝑧 − 𝑧𝑁‖22 +

𝑁−1∑︁
𝑘=0

𝛼𝑘+1

(︁
𝜓(𝑦𝑘+1) + ⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑧 − 𝑦𝑘+1⟩

)︁
+

𝑁−1∑︁
𝑘=0

𝐴𝑘

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦𝑘 − 𝑦𝑘+1

⟩
+

𝑁−1∑︁
𝑘=0

𝐴𝑘+1

2𝐿̃

⃦⃦⃦
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
− ∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

⃦⃦⃦2
2

+𝛿
𝑁−1∑︁
𝑘=0

𝐴𝑘‖𝑦𝑘 − 𝑦𝑘+1‖2 + 𝛿2
𝑁−1∑︁
𝑘=0

𝐴𝑘+1

𝐿̃
,

where we use that 𝐴0 = 0.

The following lemma plays the central role in our analysis and it serves as the key to

prove that the iterates of SPDSTM lie in the ball of radius 𝑅𝑦 up to some polylogarithmic

factor of 𝑁 .

Lemma 4.9.8 (see also Lemma 7 from [46]). Let the sequences of non-negative numbers

{𝛼𝑘}𝑘≥0, random non-negative variables {𝑅𝑘}𝑘≥0 and random vectors {𝜂𝑘}𝑘≥0, {𝑎𝑘}𝑘≥0

satisfy inequality

1

2
𝑅2
𝑙 ≤ 𝐴+ ℎ𝛿

𝑙−1∑︁
𝑘=0

𝛼𝑘+1
̃︀𝑅𝑘 + 𝑢

𝑙−1∑︁
𝑘=0

𝛼𝑘+1⟨𝜂𝑘, 𝑎𝑘⟩+ 𝑐
𝑙−1∑︁
𝑘=0

𝛼2
𝑘+1‖𝜂𝑘‖22, (4.145)

for all 𝑙 = 1, . . . , 𝑁 , where ℎ, 𝛿, 𝑢 and 𝑐 are some non-negative constants. Assume that

for each 𝑘 ≥ 1 vector 𝑎𝑘 is a function of 𝜂0, . . . , 𝜂𝑘−1, 𝑎0 is a deterministic vector, 𝑢 ≥ 1,

sequence of random vectors {𝜂𝑘}𝑘≥0 satisfy ∀𝑘 ≥ 0

E
[︀
𝜂𝑘 | 𝜂0, . . . , 𝜂𝑘−1

]︀
= 0, E

[︂
exp

(︂
‖𝜂𝑘‖22
𝜎2
𝑘

)︂
| 𝜂0, . . . , 𝜂𝑘−1

]︂
≤ exp(1), (4.146)

𝛼𝑘+1 ≤ ̃︀𝛼𝑘+1 = 𝐷(𝑘+2), 𝜎2
𝑘 ≤ 𝐶𝜀̃︀𝛼𝑘+1 ln(𝑁𝛽)

for some 𝐷,𝐶 > 0, 𝜀 > 0, 𝛽 ∈ (0, 1) and sequence

of random variables { ̃︀𝑅𝑘}𝑘≥0 is such that ‖𝑎𝑘‖2 ≤ 𝑑 ̃︀𝑅𝑘 with some positive deterministic

constant 𝑑 ≥ 1 and ̃︀𝑅𝑘 = max{ ̃︀𝑅𝑘−1, 𝑅𝑘} for all 𝑘 ≥ 1, ̃︀𝑅0 = 𝑅0, ̃︀𝑅𝑘 depends only on

𝜂0, . . . , 𝜂
𝑘 and also assume that ln

(︁
𝑁
𝛽

)︁
≥ 3. If additionally 𝜀 ≤ 𝐻𝑅2

0

𝑁2 and 𝛿 ≤ 𝐺𝑅0

(𝑁+1)2
, then

with probability at least 1− 2𝛽 the inequalities

̃︀𝑅𝑙 ≤ 𝐽𝑅0 (4.147)

and

𝑢
𝑙−1∑︁
𝑘=0

𝛼𝑘+1⟨𝜂𝑘, 𝑎𝑘⟩+ 𝑐
𝑙−1∑︁
𝑘=0

𝛼2
𝑘+1‖𝜂𝑘‖22 ≤

(︁
24𝑐𝐶𝐷𝐻 + ℎ𝐺𝐷𝐽

+𝑢𝑑𝐶1

√︀
𝐶𝐷𝐻𝐽𝑔(𝑁)

)︁
𝑅2

0 (4.148)

68

hold for all 𝑙 = 1, . . . , 𝑁 simultaneously, where 𝐶1 is some positive constant, 𝑔(𝑁) =
ln(𝑁𝛽)+ln ln(𝐵𝑏)

ln(𝑁𝛽)
,

𝐵 = 2𝑑2𝐶𝐷𝐻𝑅2
0

(︀
2𝐴+ (1 + 𝑢𝑑)𝑅2

0 + 48𝐶𝐷𝐻𝑅2
0 (2𝑐+ 𝑢𝑑) + ℎ2𝐺2𝑅2

0𝐷
)︀
(2(1 + 𝑢𝑑))𝑁 ,

𝑏 = 𝜎2
0̃︀𝛼2

1𝑑
2 ̃︀𝑅2

0 and

𝐽 = max

{︃
1, 𝑢𝑑𝐶1

√︀
𝐶𝐷𝐻𝑔(𝑁) + ℎ𝐺𝐷

+

√︃(︁
𝑢𝑑𝐶1

√︀
𝐶𝐷𝐻𝑔(𝑁) + ℎ𝐺𝐷

)︁2
+

2𝐴

𝑅2
0

+ 48𝑐𝐶𝐷𝐻

}︃
.

Proof. We start with applying Cauchy-Schwarz inequality to the second and the third

terms in the right-hand side of (4.145):

1

2
𝑅2
𝑙 ≤ 𝐴+ ℎ𝛿

𝑙−1∑︁
𝑘=0

𝛼𝑘+1
̃︀𝑅𝑘 + 𝑢𝑑

𝑙−1∑︁
𝑘=0

𝛼𝑘+1‖𝜂𝑘‖2 ̃︀𝑅𝑘 + 𝑐
𝑙−1∑︁
𝑘=0

𝛼2
𝑘+1‖𝜂𝑘‖22,

≤ 𝐴+
ℎ2𝛿2

2

𝑙−1∑︁
𝑘=0

𝛼2
𝑘+1 +

𝑢𝑑+ 1

2

𝑙−1∑︁
𝑘=0

̃︀𝑅2
𝑘 +

(︂
𝑐+

𝑢𝑑

2

)︂ 𝑙−1∑︁
𝑘=0

̃︀𝛼2
𝑘+1‖𝜂𝑘‖22. (4.149)

The idea of the proof is as following: estimate 𝑅2
𝑁 roughly, then apply Lemma 4.9.4

in order to estimate second term in the last row of (4.145) and after that use the obtained

recurrence to estimate right-hand side of (4.145).

Using Lemma 4.9.5 we get that with probability at least 1− 𝛽
𝑁

‖𝜂𝑘‖2 ≤
√

2

(︃
1 +

√︃
3 ln

𝑁

𝛽

)︃
𝜎𝑘 ≤

√
2

(︃
1 +

√︃
3 ln

𝑁

𝛽

)︃ √
𝐶𝜀√︂̃︀𝛼𝑘+1 ln
(︁
𝑁
𝛽

)︁

=

⎛⎜⎜⎝ 1√︂̃︀𝛼𝑘+1 ln
(︁
𝑁
𝛽

)︁ +

√︃
3̃︀𝛼𝑘+1

⎞⎟⎟⎠√2𝐶𝜀 ≤ 2

√︃
3̃︀𝛼𝑘+1

√
2𝐶𝜀, (4.150)

where in the last inequality we use ln 𝑁
𝛽
≥ 3. Using union bound and 𝛼𝑘+1 ≤ ̃︀𝛼𝑘+1 = 𝐷(𝑘+2)

we get that with probability ≥ 1− 𝛽 the inequality

1

2
𝑅2
𝑙 ≤ 𝐴+

ℎ2𝛿2𝐷2

2

𝑙−1∑︁
𝑘=0

(𝑘 + 2)2 +
𝑢𝑑+ 1

2

𝑙−1∑︁
𝑘=0

̃︀𝑅2
𝑘 + 24𝐶𝜀

(︂
𝑐+

𝑢𝑑

2

)︂ 𝑙−1∑︁
𝑘=0

̃︀𝛼𝑘+1

≤ 𝐴+
ℎ2𝛿2𝐷2

2
𝑙(𝑙 + 1)2 +

𝑢𝑑+ 1

2

𝑙−1∑︁
𝑘=0

̃︀𝑅2
𝑘 + 24𝐶𝐷𝜀

(︂
𝑐+

𝑢𝑑

2

)︂ 𝑙−1∑︁
𝑘=0

(𝑘 + 2)

≤ 𝐴+
ℎ2𝛿2𝐷2

2
𝑙(𝑙 + 1)2 +

𝑢𝑑+ 1

2

𝑙−1∑︁
𝑘=0

̃︀𝑅2
𝑘 + 12𝐶𝐷𝜀

(︂
𝑐+

𝑢𝑑

2

)︂
𝑙(𝑙 + 3)

69

holds for all 𝑙 = 1, . . . , 𝑁 simultaneously. Note that the last row in the previous inequality

is non-decreasing function of 𝑙. If we define 𝑙̂ as the largest integer such that 𝑙̂ ≤ 𝑙 and̃︀𝑅𝑙̂ = 𝑅𝑙̂, we will get that 𝑅𝑙̂ = ̃︀𝑅𝑙̂ = ̃︀𝑅𝑙̂+1 = . . . = ̃︀𝑅𝑙 and, as a consequence, with

probability ≥ 1− 𝛽

1

2
̃︀𝑅2
𝑙 ≤ 𝐴+

ℎ2𝛿2𝐷2

2
𝑙̂(𝑙̂ + 1)2 +

𝑢𝑑+ 1

2

𝑙̂−1∑︁
𝑘=0

̃︀𝑅2
𝑘 + 12𝐶𝐷𝜀

(︂
𝑐+

𝑢𝑑

2

)︂
𝑙̂(𝑙̂ + 3)

≤ 𝐴+
ℎ2𝛿2𝐷2

2
𝑙(𝑙 + 1)2 +

𝑢𝑑+ 1

2

𝑙−1∑︁
𝑘=0

̃︀𝑅2
𝑘 + 12𝐶𝐷𝜀

(︂
𝑐+

𝑢𝑑

2

)︂
𝑙(𝑙 + 3), ∀𝑙 = 1, . . . , 𝑁.

Therefore, we have that with probability ≥ 1− 𝛽

̃︀𝑅2
𝑙 ≤ 2𝐴+ (𝑢𝑑+ 1)

𝑙−1∑︁
𝑘=0

̃︀𝑅2
𝑘 + 12𝐶𝐷𝜀 (2𝑐+ 𝑢𝑑) 𝑙(𝑙 + 3) + ℎ2𝛿2𝐷2𝑙(𝑙 + 1)2

≤ 2𝐴 (2 + 𝑢𝑑)⏟ ⏞
≤2(1+𝑢𝑑)

+ (1 + 𝑢𝑑+ (1 + 𝑢𝑑)2)⏟ ⏞
≤2(1+𝑢𝑑)2

𝑙−2∑︁
𝑘=0

̃︀𝑅2
𝑘

+12𝐶𝐷𝜀(2𝑐+ 𝑢𝑑) (𝑙(𝑙 + 3) + (1 + 𝑢𝑑)(𝑙 − 1)(𝑙 + 2))⏟ ⏞
≤2(1+𝑢𝑑)𝑙(𝑙+3)

+ℎ2𝛿2𝐷2 (𝑙(𝑙 + 1)2 + (1 + 𝑢𝑑)(𝑙 − 1)𝑙2)⏟ ⏞
≤2(1+𝑢𝑑)𝑙(𝑙+1)2

≤ 2(1 + 𝑢𝑑)

(︃
2𝐴+ (1 + 𝑢𝑑)

𝑙−2∑︁
𝑘=0

̃︀𝑅2
𝑘 + 12𝐶𝐷𝜀 (2𝑐+ 𝑢𝑑) 𝑙(𝑙 + 3) + ℎ2𝛿2𝐷2𝑙(𝑙 + 1)2

)︃
,

for all 𝑙 = 1, . . . , 𝑁 . Unrolling the recurrence we get that with probability ≥ 1− 𝛽

̃︀𝑅2
𝑙 ≤

(︁
2𝐴+ (1 + 𝑢𝑑) ̃︀𝑅2

0 + 12𝐶𝐷𝜀 (2𝑐+ 𝑢𝑑) 𝑙(𝑙 + 3) + ℎ2𝛿2𝐷2𝑙(𝑙 + 1)2
)︁

(2(1 + 𝑢𝑑))𝑙,

for all 𝑙 = 1, . . . , 𝑁 . We emphasize that it is very rough estimate, but we show next that

such a bound does not spoil the final result too much. It implies that with probability

≥ 1− 𝛽
𝑙−1∑︁
𝑘=0

̃︀𝑅2
𝑘 ≤ 𝑙

(︁
2𝐴+ (1 + 𝑢𝑑) ̃︀𝑅2

0 + 12𝐶𝐷𝜀 (2𝑐+ 𝑢𝑑) 𝑙(𝑙 + 3) + ℎ2𝛿2𝐷2𝑙(𝑙 + 1)2
)︁

(2(1 + 𝑢𝑑))𝑙,

(4.151)

for all 𝑙 = 1, . . . , 𝑁 . Next we apply delicate result from [92] which is presented in

Section 4.9.3 as Lemma 4.9.4. We consider random variables 𝜉𝑘 = ̃︀𝛼𝑘+1⟨𝜂𝑘, 𝑎𝑘⟩. Note

that E
[︀
𝜉𝑘 | 𝜉0, . . . , 𝜉𝑘−1

]︀
= ̃︀𝛼𝑘+1

⟨︀
E
[︀
𝜂𝑘 | 𝜂0, . . . , 𝜂𝑘−1

]︀
, 𝑎𝑘
⟩︀

= 0 and

E

[︃
exp

(︃
(𝜉𝑘)2

𝜎2
𝑘̃︀𝛼2

𝑘+1𝑑
2 ̃︀𝑅2

𝑘

)︃
| 𝜉0, . . . , 𝜉𝑘−1

]︃
≤ E

[︃
exp

(︃̃︀𝛼2
𝑘+1‖𝜂𝑘‖22𝑑2 ̃︀𝑅2

𝑘

𝜎2
𝑘̃︀𝛼2

𝑘+1𝑑
2 ̃︀𝑅2

𝑘

)︃
| 𝜂0, . . . , 𝜂𝑘−1

]︃

= E

[︂
exp

(︂
‖𝜂𝑘‖22
𝜎2
𝑘

)︂
| 𝜂0, . . . , 𝜂𝑘−1

]︂
≤ exp(1)

70

due to Cauchy-Schwarz inequality and assumptions of the lemma. If we denote 𝜎̂2
𝑘 =

𝜎2
𝑘̃︀𝛼2

𝑘+1𝑑
2 ̃︀𝑅2

𝑘 and apply Lemma 4.9.4 with

𝐵 = 2𝑑2𝐶𝐷𝐻𝑅2
0

(︀
2𝐴+ (1 + 𝑢𝑑)𝑅2

0 + 48𝐶𝐷𝐻𝑅2
0 (2𝑐+ 𝑢𝑑) + ℎ2𝐺2𝑅2

0𝐷
2
)︀

(2(1 + 𝑢𝑑))𝑁

and 𝑏 = 𝜎̂2
0, we get that for all 𝑙 = 1, . . . , 𝑁 with probability ≥ 1− 𝛽

𝑁

either
𝑙−1∑︁
𝑘=0

𝜎̂2
𝑘 ≥ 𝐵 or

⃒⃒⃒⃒
⃒
𝑙−1∑︁
𝑘=0

𝜉𝑘

⃒⃒⃒⃒
⃒ ≤ 𝐶1

⎯⎸⎸⎷ 𝑙−1∑︁
𝑘=0

𝜎̂2
𝑘

(︂
ln

(︂
𝑁

𝛽

)︂
+ ln ln

(︂
𝐵

𝑏

)︂)︂
with some constant 𝐶1 > 0 which does not depend on 𝐵 or 𝑏. Using union bound we

obtain that with probability ≥ 1− 𝛽

either
𝑙−1∑︁
𝑘=0

𝜎̂2
𝑘 ≥ 𝐵 or

⃒⃒⃒⃒
⃒
𝑙−1∑︁
𝑘=0

𝜉𝑘

⃒⃒⃒⃒
⃒ ≤ 𝐶1

⎯⎸⎸⎷ 𝑙−1∑︁
𝑘=0

𝜎̂2
𝑘

(︂
ln

(︂
𝑁

𝛽

)︂
+ ln ln

(︂
𝐵

𝑏

)︂)︂
and it holds for all 𝑙 = 1, . . . , 𝑁 simultaneously. Note that with probability at least 1− 𝛽

𝑙−1∑︁
𝑘=0

𝜎̂2
𝑘 = 𝑑2

𝑙−1∑︁
𝑘=0

𝜎2
𝑘̃︀𝛼2

𝑘+1
̃︀𝑅2
𝑘 ≤ 𝑑2

𝑙−1∑︁
𝑘=0

𝐶𝜀

ln 𝑁
𝛽

̃︀𝛼𝑘+1
̃︀𝑅2
𝑘

≤ 𝑑2𝐶𝐷𝐻𝑅2
0

𝑁2 ln 𝑁
𝛽

𝑙−1∑︁
𝑘=0

(𝑘 + 2) ̃︀𝑅2
𝑘 ≤

𝑑2𝐶𝐷𝐻𝑅2
0

3𝑁
· 𝑁 + 1

𝑁

𝑙−1∑︁
𝑘=0

̃︀𝑅2
𝑘

(4.151)
≤ 𝑑2𝐶𝐷𝐻𝑅2

0

𝑁
𝑙(2(1 + 𝑢𝑑))𝑙

(︃
2𝐴+ (1 + 𝑢𝑑) ̃︀𝑅2

0 + 12𝐶𝐷𝜀 (2𝑐+ 𝑢𝑑) 𝑙(𝑙 + 3)

+ℎ2𝛿2𝐷2𝑙(𝑙 + 1)2

)︃
≤ 𝑑2𝐶𝐷𝐻𝑅2

0

(︀
2𝐴+ (1 + 𝑢𝑑)𝑅2

0 + 48𝐶𝐷𝐻𝑅2
0 (2𝑐+ 𝑢𝑑) + ℎ2𝐺2𝑅2

0𝐷
2
)︀

(2(1 + 𝑢𝑑))𝑁

=
𝐵

2

for all 𝑙 = 1, . . . , 𝑁 simultaneously. Using union bound again we get that with probability

≥ 1− 2𝛽 the inequality⃒⃒⃒⃒
⃒
𝑙−1∑︁
𝑘=0

𝜉𝑘

⃒⃒⃒⃒
⃒ ≤ 𝐶1

⎯⎸⎸⎷ 𝑙−1∑︁
𝑘=0

𝜎̂2
𝑘

(︂
ln

(︂
𝑁

𝛽

)︂
+ ln ln

(︂
𝐵

𝑏

)︂)︂
(4.152)

holds for all 𝑙 = 1, . . . , 𝑁 simultaneously.

Note that we also proved that (4.150) is in the same event together with (4.152)

and holds with probability ≥ 1 − 2𝛽. Putting all together in (4.145), we get that with

71

probability at least 1− 2𝛽 the inequality

1

2
̃︀𝑅2
𝑙

(4.145)
≤ 𝐴+ ℎ𝛿

𝑙−1∑︁
𝑘=0

𝛼𝑘+1
̃︀𝑅𝑘 + 𝑢

𝑙−1∑︁
𝑘=0

𝛼𝑘+1⟨𝜂𝑘, 𝑎𝑘⟩+ 𝑐

𝑙−1∑︁
𝑘=0

𝛼2
𝑘+1‖𝜂𝑘‖22

(4.152)
≤ 𝐴+ ℎ𝛿

𝑙−1∑︁
𝑘=0

𝛼𝑘+1
̃︀𝑅𝑘 + 𝑢𝐶1

⎯⎸⎸⎷ 𝑙−1∑︁
𝑘=0

𝜎̂2
𝑘

(︂
ln

(︂
𝑁

𝛽

)︂
+ ln ln

(︂
𝐵

𝑏

)︂)︂
+ 24𝑐𝐶𝜀

𝑙−1∑︁
𝑘=0

̃︀𝛼𝑘+1

holds for all 𝑙 = 1, . . . , 𝑁 simultaneously. For brevity, we introduce new notation: 𝑔(𝑁) =
ln(𝑁𝛽)+ln ln(𝐵𝑏)

ln(𝑁𝛽)
≈ 1 (neglecting constant factor). Using our assumption 𝜎2

𝑘 ≤ 𝐶𝜀̃︀𝛼𝑘+1 ln(𝑁𝛽)
and

definition 𝜎̂2
𝑘 = 𝜎2

𝑘̃︀𝛼2
𝑘+1𝑑

2 ̃︀𝑅2
𝑘 we obtain that with probability at least 1− 2𝛽 the inequality

1

2
̃︀𝑅2
𝑙 ≤ 𝐴+ ℎ𝛿

𝑙−1∑︁
𝑘=0

𝛼𝑘+1
̃︀𝑅𝑘 + 𝑢

𝑙−1∑︁
𝑘=0

𝛼𝑘+1⟨𝜂𝑘, 𝑎𝑘⟩+ 𝑐

𝑙−1∑︁
𝑘=0

𝛼2
𝑘+1‖𝜂𝑘‖22

≤ 𝐴+
ℎ𝐺𝐷𝑅0

(𝑁 + 1)2

𝑙−1∑︁
𝑘=0

(𝑘 + 2) ̃︀𝑅𝑘 + 𝑢𝑑𝐶1

√︀
𝐶𝜀𝑔(𝑁)

⎯⎸⎸⎷ 𝑙−1∑︁
𝑘=0

̃︀𝛼𝑘+1
̃︀𝑅2
𝑘 + 24𝑐𝐶𝜀

𝑙−1∑︁
𝑘=0

̃︀𝛼𝑘+1

≤ 𝐴+
ℎ𝐺𝐷𝑅0

(𝑁 + 1)2

𝑙−1∑︁
𝑘=0

(𝑘 + 2) ̃︀𝑅𝑘 + 𝑢𝑑𝐶1

√︀
𝐶𝐷𝜀𝑔(𝑁)

⎯⎸⎸⎷ 𝑙−1∑︁
𝑘=0

(𝑘 + 2) ̃︀𝑅2
𝑘

+24𝑐𝐶𝐷𝜀
𝑙−1∑︁
𝑘=0

(𝑘 + 2)

≤ 𝐴+ 24𝑐𝐶𝐷
𝐻𝑅2

0

𝑁2

𝑙(𝑙 + 1)

2
+

ℎ𝐺𝐷𝑅0

(𝑁 + 1)2

𝑙−1∑︁
𝑘=0

(𝑘 + 2) ̃︀𝑅𝑘

+𝑢𝑑𝐶1

√︂
𝐶𝐷

𝐻𝑅2
0

𝑁2
𝑔(𝑁)

⎯⎸⎸⎷ 𝑙−1∑︁
𝑘=0

(𝑘 + 2) ̃︀𝑅2
𝑘

≤
(︂
𝐴

𝑅2
0

+ 24𝑐𝐶𝐷𝐻

)︂
𝑅2

0 +
ℎ𝐺𝐷𝑅0

(𝑁 + 1)2

𝑙−1∑︁
𝑘=0

(𝑘 + 2) ̃︀𝑅𝑘

+
𝑢𝑑𝐶1𝑅0

𝑁

√︀
𝐶𝐷𝐻𝑔(𝑁)

⎯⎸⎸⎷ 𝑙−1∑︁
𝑘=0

(𝑘 + 2) ̃︀𝑅2
𝑘 (4.153)

holds for all 𝑙 = 1, . . . , 𝑁 simultaneously. Next we apply Lemma 4.9.11 with 𝐴 = 𝐴
𝑅2

0
+

24𝑐𝐶𝐷𝐻, 𝐵 = 𝑢𝑑𝐶1

√︀
𝐶𝐷𝐻𝑔(𝑁), 𝐷 = ℎ𝐺𝐷, 𝑟𝑘 = ̃︀𝑅𝑘 and get that with probability at

least 1− 2𝛽 inequality

̃︀𝑅𝑙 ≤ 𝐽𝑅0

72

holds for all 𝑙 = 1, . . . , 𝑁 simultaneously with

𝐽 = max

{︃
1, 𝑢𝑑𝐶1

√︀
𝐶𝐷𝐻𝑔(𝑁) + ℎ𝐺𝐷

+

√︃(︁
𝑢𝑑𝐶1

√︀
𝐶𝐷𝐻𝑔(𝑁) + ℎ𝐺𝐷

)︁2
+

2𝐴

𝑅2
0

+ 48𝑐𝐶𝐷𝐻

}︃
.

It implies that with probability at least 1− 2𝛽 the inequality

𝐴+ ℎ𝛿

𝑙−1∑︁
𝑘=0

𝛼𝑘+1
̃︀𝑅𝑘 + 𝑢

𝑙−1∑︁
𝑘=0

𝛼𝑘+1⟨𝜂𝑘, 𝑎𝑘⟩+ 𝑐

𝑙−1∑︁
𝑘=0

𝛼2
𝑘+1‖𝜂𝑘‖22

≤
(︁
𝐴
𝑅2

0
+ 24𝑐𝐶𝐷𝐻

)︁
𝑅2

0 +
ℎ𝐺𝐷𝐽𝑅2

0

(𝑁+1)2

𝑙−1∑︀
𝑘=0

(𝑘 + 2) +
𝑢𝑑𝐶1𝑅2

0

𝑁

√︀
𝐶𝐷𝐻𝑔(𝑁)

√︃
𝑙−1∑︀
𝑘=0

(𝑘 + 2)𝐽

≤ 𝐴+

(︂
24𝑐𝐶𝐷𝐻 + ℎ𝐺𝐷𝐽 + 𝑢𝑑𝐶1

√︀
𝐶𝐷𝐻𝐽𝑔(𝑁) 1

𝑁

√︁
𝑙(𝑙+1)

2

)︂
𝑅2

0

≤ 𝐴+
(︁

24𝑐𝐶𝐷𝐻 + ℎ𝐺𝐷𝐽 + 𝑢𝑑𝐶1

√︀
𝐶𝐷𝐻𝐽𝑔(𝑁)

)︁
𝑅2

0

holds for all 𝑙 = 1, . . . , 𝑁 simultaneously.

Proof of Theorem 4.5.1

For the convenience we put here the extended statement of the theorem.

Theorem 4.9.1. Assume that 𝑓 is 𝜇-strongly convex and ‖∇𝑓(𝑥*)‖2 = 𝑀𝑓 . Let 𝜀 > 0 be

a desired accuracy. Next, assume that 𝑓 is 𝐿𝑓 -Lipschitz continuous on the ball 𝐵𝑅𝑓 (0) with

𝑅𝑓 = Ω̃

(︃
max

{︃
𝑅𝑦

𝐴𝑁
√︀
𝜆max(𝐴⊤𝐴)

,

√︀
𝜆max(𝐴⊤𝐴)𝑅𝑦

𝜇
,𝑅𝑥

}︃)︃
,

where 𝑅𝑦 is such that ‖𝑦*‖2 ≤ 𝑅𝑦, 𝑦* is the solution of the dual problem (4.22), and

𝑅𝑥 = ‖𝑥(𝐴⊤𝑦*)‖2. Assume that at iteration k of Algorithm 3 batch size is chosen according

to the formula 𝑟𝑘 ≥ max
{︁

1,
𝜎2
𝜓̃︀𝛼𝑘 ln(𝑁/𝛽)

𝐶𝜀

}︁
, where ̃︀𝛼𝑘 = 𝑘+1

2𝐿̃
, 0 < 𝜀 ≤ 𝐻𝐿̃𝑅2

0

𝑁2 , 0 ≤ 𝛿 ≤ 𝐺𝐿̃𝑅0

(𝑁+1)2

and 𝑁 ≥ 1 for some numeric constant 𝐻 > 0, 𝐺 > 0 and 𝐶 > 0. Then with probability

≥ 1− 4𝛽

𝜓(𝑦𝑁) + 𝑓(𝑥̃𝑁) + 2𝑅𝑦‖𝐴𝑥̃𝑁‖2 ≤
𝑅2
𝑦

𝐴𝑁

(︂
8
√︀
𝐻𝐶2 + 2 + 12𝐶𝐻 +

𝐺(6𝐽 + 4)

2

+
𝐿𝑓
(︀√

96𝐶2𝐻 +𝐺
)︀

2𝑅𝑦

√︀
𝜆max(𝐴⊤𝐴)

+
𝐺2

2(𝑁 + 1)

+𝐶1

√︂
𝐶𝐻𝐽𝑔(𝑁)

2
+
√︀

96𝐶2𝐻 +𝐺

)︃
, (4.154)

73

where 𝛽 ∈ (0, 1/4) is such that
1+

√︁
ln 1
𝛽√︁

ln 𝑁
𝛽

≤ 2, 𝐶2, 𝐶, 𝐶1 are some positive numeric constants,

𝑔(𝑁) =
ln(𝑁𝛽)+ln ln(𝐵𝑏)

ln(𝑁𝛽)
,

𝐵 = 𝐶𝐻𝑅2
0

(︃
2𝐴+ 2𝑅2

0 + 72𝐶𝐻𝑅2
0 +

9𝐺2𝐿̃𝑅2
0

2

)︃
4𝑁 ,

𝑏 = 𝜎2
0̃︀𝛼2

1𝑅
2
0 and

𝐽 = max

{︃
1, 𝐶1

√︂
𝐶𝐻𝑔(𝑁)

2
+

3𝐺

2
+

⎯⎸⎸⎷(︃𝐶1

√︂
𝐶𝐻𝑔(𝑁)

2
+

3𝐺

2

)︃2

+
2𝐴

𝑅2
0

+ 24𝐶𝐻

}︃
.

This means that after 𝑁 = ̃︀𝑂 (︁√︁𝑀𝑓

𝜇𝜀
𝜒(𝐴⊤𝐴)

)︁
iterations where 𝜒(𝐴⊤𝐴) = 𝜆max(𝐴⊤𝐴)

𝜆+min(𝐴
⊤𝐴)

, the

outputs 𝑥̃𝑁 and 𝑦𝑁 of Algorithm 3 satisfy the following condition

𝑓(𝑥̃𝑁)− 𝑓(𝑥*) ≤ 𝑓(𝑥̃𝑁) + 𝜓(𝑦𝑁) ≤ 𝜀, ‖𝐴𝑥̃𝑁‖2 ≤
𝜀

𝑅𝑦

(4.155)

with probability at least 1− 4𝛽. What is more, to guarantee (4.155) with probability at least

1− 4𝛽 Algorithm 3 requires

̃︀𝑂(︃max

{︃
𝜎2
𝑥𝑀

2
𝑓

𝜀2
𝜒(𝐴⊤𝐴) ln

(︃
1

𝛽

√︃
𝑀𝑓

𝜇𝜀
𝜒(𝐴⊤𝐴)

)︃
,

√︃
𝑀𝑓

𝜇𝜀
𝜒(𝐴⊤𝐴)

}︃)︃
(4.156)

calls of the biased stochastic oracle ∇̃𝜓(𝑦, 𝜉), i.e. 𝑥̃(𝑦, 𝜉).

Proof. Lemma 4.9.7 states that

𝐴𝑁𝜓(𝑦𝑁) ≤ 1

2
‖𝑦 − 𝑧0‖22 −

1

2
‖𝑦 − 𝑧𝑁‖22

+
𝑁−1∑︁
𝑘=0

𝛼𝑘+1

(︁
𝜓(𝑦𝑘+1) + ⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑦 − 𝑦𝑘+1⟩

)︁
+

𝑁−1∑︁
𝑘=0

𝐴𝑘

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦𝑘 − 𝑦𝑘+1

⟩
+

𝑁−1∑︁
𝑘=0

𝐴𝑘+1

2𝐿̃

⃦⃦⃦
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
− ∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

⃦⃦⃦2
2

+𝛿
𝑁−1∑︁
𝑘=0

𝐴𝑘‖𝑦𝑘 − 𝑦𝑘+1‖2 + 𝛿2
𝑁−1∑︁
𝑘=0

𝐴𝑘+1

𝐿̃
, (4.157)

for arbitrary 𝑦. By definition of 𝑦𝑘+1 we have

𝛼𝑘+1

(︀
𝑦𝑘+1 − 𝑧𝑘

)︀
= 𝐴𝑘

(︀
𝑦𝑘 − 𝑦𝑘+1

)︀
. (4.158)

74

Using this, we add and subtract
∑︀𝑁−1

𝑘=0 𝛼𝑘+1

⟨
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦* − 𝑦𝑘+1

⟩
in (4.157),

and obtain the following inequality by choosing 𝑦 = 𝑦* — the minimizer of 𝜓(𝑦):

𝐴𝑁𝜓(𝑦𝑁) ≤ 1

2
‖𝑦* − 𝑧0‖22 −

1

2
‖𝑦* − 𝑧𝑁‖22

+
𝑁−1∑︁
𝑘=0

𝛼𝑘+1

(︁
𝜓(𝑦𝑘+1) +

⟨
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦* − 𝑦𝑘+1

⟩)︁
+

𝑁−1∑︁
𝑘=0

𝛼𝑘+1

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, a𝑘
⟩

+
𝑁−1∑︁
𝑘=0

𝛼2
𝑘+1

⃦⃦⃦
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁⃦⃦⃦2
2

+𝛿
𝑁−1∑︁
𝑘=0

𝛼𝑘+1‖𝑦𝑘+1 − 𝑧𝑘‖2 + 𝛿2
𝑁−1∑︁
𝑘=0

𝐴𝑘+1

𝐿̃
, (4.159)

where a𝑘 = 𝑦* − 𝑧𝑘. From (4.138) we have

𝑁−1∑︁
𝑘=0

𝛼𝑘+1

(︁
𝜓(𝑦𝑘+1) +

⟨
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦* − 𝑦𝑘+1

⟩)︁
(4.138)
≤

𝑁−1∑︀
𝑘=0

𝛼𝑘+1

(︀
𝜓(𝑦𝑘+1) + 𝜓(𝑦*)− 𝜓(𝑦𝑘+1) + 𝛿‖𝑦𝑘+1 − 𝑦*‖2

)︀
=

𝑁−1∑︀
𝑘=0

𝛼𝑘+1

(︀
𝜓(𝑦*) + 𝛿‖𝑦𝑘+1 − 𝑦*‖2

)︀
= 𝐴𝑁𝜓(𝑦*) + 𝛿

𝑁−1∑︀
𝑘=0

𝛼𝑘+1‖𝑦𝑘+1 − 𝑦*‖2

≤ 𝐴𝑁𝜓(𝑦𝑁) + 𝛿
𝑁−1∑︀
𝑘=0

𝛼𝑘+1‖𝑦𝑘+1 − 𝑦*‖2

From this and (4.159) we get

1

2
‖𝑦* − 𝑧𝑁‖22

(4.159)
≤ 1

2
‖𝑦* − 𝑧0‖22 + 𝛿2

𝑁−1∑︁
𝑘=0

𝐴𝑘+1

𝐿̃

+𝛿
𝑁−1∑︁
𝑘=0

𝛼𝑘+1

(︀
‖𝑦𝑘+1 − 𝑧𝑘‖2 + ‖𝑦𝑘+1 − 𝑦*‖2

)︀
+

𝑁−1∑︁
𝑘=0

𝛼𝑘+1

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, a𝑘
⟩

+
𝑁−1∑︁
𝑘=0

𝛼2
𝑘+1

⃦⃦⃦
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁⃦⃦⃦2
2
.(4.160)

Next, we introduce the sequences {𝑅𝑘}𝑘≥0 and { ̃︀𝑅𝑘}𝑘≥0 as

𝑅𝑘 = ‖𝑧𝑘 − 𝑦*‖2 and ̃︀𝑅𝑘 = max
{︁̃︀𝑅𝑘−1, 𝑅𝑘

}︁
, ̃︀𝑅0 = 𝑅0

75

Since in Algorithm 3 we choose 𝑧0 = 0, then 𝑅0 = 𝑅𝑦. One can obtain by induction that

∀𝑘 ≥ 0 we have 𝑦𝑘+1, 𝑦𝑘, 𝑧𝑘 ∈ 𝐵 ̃︀𝑅𝑘(𝑦*), where 𝐵 ̃︀𝑅𝑘(𝑦*) is Euclidean ball with radius ̃︀𝑅𝑘 at

centre 𝑦*. Indeed, since from lines 2 and 5 of Algorithm 3 𝑦𝑘+1 is a convex combination of

𝑧𝑘+1 ∈ 𝐵𝑅𝑘+1
(𝑦*) ⊆ 𝐵 ̃︀𝑅𝑘+1

(𝑦*) and 𝑦𝑘 ∈ 𝐵 ̃︀𝑅𝑘(𝑦*) ⊆ 𝐵 ̃︀𝑅𝑘+1
(𝑦*), where we use the fact that

a ball is a convex set, we get 𝑦𝑘+1 ∈ 𝐵 ̃︀𝑅𝑘+1
(𝑦*). Analogously, since from lines 2 and 3 of

Algorithm 3 𝑦𝑘+1 is a convex combination of 𝑦𝑘 and 𝑧𝑘 we have 𝑦𝑘+1 ∈ 𝐵 ̃︀𝑅𝑘(𝑦*). It implies

that

‖𝑦𝑘+1 − 𝑧𝑘‖2 + ‖𝑦𝑘+1 − 𝑦*‖2 ≤ 2 ̃︀𝑅𝑘 + ̃︀𝑅𝑘 = 3 ̃︀𝑅𝑘.

Using new notation we can rewrite (4.160) as

1

2
𝑅2
𝑁 ≤ 1

2
𝑅2

0 + 𝛿2
𝑁−1∑︁
𝑘=0

𝐴𝑘+1

𝐿̃
+ 3𝛿

𝑁−1∑︁
𝑘=0

𝛼𝑘+1
̃︀𝑅𝑘

+
𝑁−1∑︁
𝑘=0

𝛼𝑘+1

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, a𝑘
⟩

+
𝑁−1∑︁
𝑘=0

𝛼2
𝑘+1

⃦⃦⃦
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁⃦⃦⃦2
2
, (4.161)

where ‖a𝑘‖2 = ‖𝑦* − 𝑧𝑘‖2 ≤ ̃︀𝑅𝑘. Note that (4.161) holds for all 𝑁 ≥ 1.

Let us denote 𝜂𝑘 = ∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1) − E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
. Theorem 2.1 from [93]

(see Lemma 4.9.5 in the Section 4.9.3) says that

P

⎧⎨⎩‖𝜂𝑘‖2 ≥ (︁√2 +
√

2𝛾
)︁√︃ 𝜎2

𝜓

𝑟𝑘+1

| 𝜂0, . . . , 𝜂𝑘−1

⎫⎬⎭ ≤ exp

(︂
−𝛾

2

3

)︂
.

Using this and Lemma 2 from [92] (see Lemma 4.9.3 in the Section 4.9.3) we get that

E

[︂
exp

(︂
‖𝜂𝑘‖22
𝜎2
𝑘

)︂
| 𝜂0, . . . , 𝜂𝑘−1

]︂
≤ exp(1),

where 𝜎2
𝑘 ≤

̃︀𝐶𝜎2
𝜓

𝑟𝑘+1
≤ 𝐶𝜀̃︀𝛼𝑘+1 ln(

𝑁
𝛿
)
, ̃︀𝐶 and 𝐶 = ̃︀𝐶 · 𝐶 are some positive constants. From (4.225)

we have that 𝛼𝑘+1 ≤ ̃︀𝛼𝑘+1 = 𝑘+2
2𝐿̃

. Moreover, a𝑘 depends only on 𝜂0, . . . , 𝜂𝑘−1. Putting all

together in (4.161) and changing the indices we get that for all 𝑙 = 1, . . . , 𝑁

1

2
𝑅2
𝑙 ≤

1

2
𝑅2

0 + 𝛿2
𝑁−1∑︁
𝑘=0

𝐴𝑘+1

𝐿̃
+ 3𝛿

𝑙−1∑︁
𝑘=0

𝛼𝑘+1
̃︀𝑅𝑘 +

𝑙−1∑︁
𝑘=0

𝛼𝑘+1⟨𝜂𝑘, a𝑘⟩+
𝑙−1∑︁
𝑘=0

𝛼2
𝑘+1‖𝜂𝑘‖22.

Next we apply Lemma 4.9.8 with the constants 𝐴 = 1
2
𝑅2

0 + 𝛿2
𝑁−1∑︀
𝑘=0

𝐴𝑘+1

𝐿̃
, ℎ = 3, 𝑢 = 1, 𝑐 =

1, 𝐷 = 1
2𝐿̃
, 𝑑 = 1, 𝜀 ≤ 𝐻𝐿̃𝑅2

0

𝑁2 and 𝛿 ≤ 𝐺𝐿̃𝑅0

(𝑁+1)3
, and get that with probability at least 1− 2𝛽

the inequalities ̃︀𝑅𝑙 ≤ 𝐽𝑅0 (4.162)

76

and

𝑙−1∑︁
𝑘=0

𝛼𝑘+1⟨𝜂𝑘, a𝑘⟩+
𝑙−1∑︁
𝑘=0

𝛼2
𝑘+1‖𝜂𝑘‖22 ≤

(︃
12𝐶𝐻 +

3𝐺𝐽

2
+ 𝐶1

√︂
𝐶𝐻𝐽𝑔(𝑁)

2

)︃
𝑅2

0 (4.163)

hold for all 𝑙 = 1, . . . , 𝑁 simultaneously, where 𝐶1 is some positive constant, 𝑔(𝑁) =
ln(𝑁𝛽)+ln ln(𝐵𝑏)

ln(𝑁𝛽)
, 𝐵 = 𝐶𝐻𝑅2

0

(︁
2𝐴+ 2𝑅2

0 + 72𝐶𝐻𝑅2
0 +

9𝐺2𝐿̃𝑅2
0

2

)︁
4𝑁 , 𝑏 = 𝜎2

0̃︀𝛼2
1𝑅

2
0 and

𝐽 = max

⎧⎪⎨⎪⎩1, 𝐶1

√︂
𝐶𝐻𝑔(𝑁)

2
+

3𝐺

2
+

⎯⎸⎸⎷(︃𝐶1

√︂
𝐶𝐻𝑔(𝑁)

2
+

3𝐺

2

)︃2

+
2𝐴

𝑅2
0

+ 24𝐶𝐻

⎫⎪⎬⎪⎭ .

To estimate the duality gap we need again refer to (4.157). Since 𝑦 is chosen arbitrary

we can take the minimum in 𝑦 over the set 𝐵2𝑅𝑦(0) = {𝑦 : ‖𝑦‖2 ≤ 2𝑅𝑦}:

𝐴𝑁𝜓(𝑦𝑁) ≤ min
𝑦∈𝐵2𝑅𝑦 (0)

{︃
1

2
‖𝑦 − 𝑧0‖22

+
𝑁−1∑︁
𝑘=0

𝛼𝑘+1

(︁
𝜓(𝑦𝑘+1) +

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑦 − 𝑦𝑘+1

⟩)︁}︃

+
𝑁−1∑︁
𝑘=0

𝐴𝑘

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦𝑘 − 𝑦𝑘+1

⟩
+

𝑁−1∑︁
𝑘=0

𝐴𝑘+1

2𝐿̃

⃦⃦⃦
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
− ∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

⃦⃦⃦2
2

+𝛿
𝑁−1∑︁
𝑘=0

𝐴𝑘‖𝑦𝑘 − 𝑦𝑘+1‖2 + 𝛿2
𝑁−1∑︁
𝑘=0

𝐴𝑘+1

𝐿̃

≤ 2𝑅2
𝑦 + min

𝑦∈𝐵2𝑅𝑦 (0)

𝑁−1∑︁
𝑘=0

𝛼𝑘+1

(︁
𝜓(𝑦𝑘+1) +

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑦 − 𝑦𝑘+1

⟩)︁
+

𝑁−1∑︁
𝑘=0

𝐴𝑘

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦𝑘 − 𝑦𝑘+1

⟩
+

𝑁−1∑︁
𝑘=0

𝐴𝑘+1

2𝐿̃

⃦⃦⃦
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
− ∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

⃦⃦⃦2
2

+𝛿
𝑁−1∑︁
𝑘=0

𝐴𝑘‖𝑦𝑘 − 𝑦𝑘+1‖2 + 𝛿2
𝑁−1∑︁
𝑘=0

𝐴𝑘+1

𝐿̃
, (4.164)

where we also used 1
2
‖𝑦 − 𝑧𝑁‖22 ≥ 0 and 𝑧0 = 0. By adding and subtracting

77

∑︀𝑁−1
𝑘=0 𝛼𝑘+1

⟨
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦 − 𝑦𝑘+1

⟩
under the minimum in (4.164) we obtain

min
𝑦∈𝐵2𝑅𝑦 (0)

𝑁−1∑︁
𝑘=0

𝛼𝑘+1

(︁
𝜓(𝑦𝑘+1) +

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑦 − 𝑦𝑘+1

⟩)︁
≤ min

𝑦∈𝐵2𝑅𝑦 (0)

𝑁−1∑︀
𝑘=0

𝛼𝑘+1

(︁
𝜓(𝑦𝑘+1) +

⟨
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦 − 𝑦𝑘+1

⟩)︁
+ max

𝑦∈𝐵2𝑅𝑦 (0)

𝑁−1∑︀
𝑘=0

𝛼𝑘+1

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦
⟩

+
𝑁−1∑︀
𝑘=0

𝛼𝑘+1

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
,−𝑦𝑘+1

⟩
.

Since −𝑦* ∈ 𝐵2𝑅𝑦(0) we can bound the last term in the previous inequality as follows

𝑁−1∑︁
𝑘=0

𝛼𝑘+1

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
,−𝑦𝑘+1

⟩
=

𝑁−1∑︀
𝑘=0

𝛼𝑘+1

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦* − 𝑦𝑘+1

⟩
+

𝑁−1∑︀
𝑘=0

𝛼𝑘+1

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
,−𝑦*

⟩
≤

𝑁−1∑︀
𝑘=0

𝛼𝑘+1

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦* − 𝑦𝑘+1

⟩
+ max

𝑦∈𝐵2𝑅𝑦 (0)

𝑁−1∑︀
𝑘=0

𝛼𝑘+1

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦
⟩
.

Putting all together in (4.164) and using (4.158) and line 2 from Algorithm 3 we get

𝐴𝑁𝜓(𝑦𝑁) ≤ 2𝑅2
𝑦 + min

𝑦∈𝐵2𝑅𝑦 (0)

𝑁−1∑︁
𝑘=0

𝛼𝑘+1

(︁
𝜓(𝑦𝑘+1) +

⟨
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦 − 𝑦𝑘+1

⟩)︁
+2 max

𝑦∈𝐵2𝑅𝑦 (0)

𝑁−1∑︁
𝑘=0

𝛼𝑘+1

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦
⟩

+
𝑁−1∑︁
𝑘=0

𝛼𝑘+1

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, a𝑘
⟩

+
𝑁−1∑︁
𝑘=0

𝛼2
𝑘+1

⃦⃦⃦
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁⃦⃦⃦2
2

+𝛿
𝑁−1∑︁
𝑘=0

𝛼𝑘+1‖𝑦𝑘+1 − 𝑧𝑘‖2 + 𝛿2
𝑁−1∑︁
𝑘=0

𝐴𝑘+1

𝐿̃
, (4.165)

where a𝑘 = 𝑦*− 𝑧𝑘. From (4.162) and (4.163) we have that with probability at least 1− 2𝛽

78

the following inequality holds:

𝐴𝑁𝜓(𝑦𝑁) ≤ min
𝑦∈𝐵2𝑅𝑦 (0)

𝑁−1∑︁
𝑘=0

𝛼𝑘+1

(︁
𝜓(𝑦𝑘+1) +

⟨
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦 − 𝑦𝑘+1

⟩)︁
+2 max

𝑦∈𝐵2𝑅𝑦 (0)

𝑁−1∑︁
𝑘=0

𝛼𝑘+1

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦
⟩

+2𝑅2
𝑦 +

(︃
12𝐶𝐻 +

5𝐺𝐽

2
+

𝐺2

2(𝑁 + 1)
+ 𝐶1

√︂
𝐶𝐻𝐽𝑔(𝑁)

2

)︃
𝑅2

0, (4.166)

where we used that 𝐴𝑘+1 ≤ (𝑘+2)2

2𝐿̃
due to 𝛼𝑘+1 ≤ 𝑘+2

2𝐿̃
and

𝛿
𝑁−1∑︁
𝑘=0

𝛼𝑘+1‖𝑦𝑘+1 − 𝑧𝑘‖2 ≤ 2𝛿𝐽𝑅0

𝑁−1∑︁
𝑘=0

𝛼𝑘+1 ≤
2𝐺𝐿̃𝑅2

0𝐽

(𝑁 + 1)2
1

2𝐿̃

𝑁−1∑︁
𝑘=0

(𝑘 + 2) ≤ 𝐺𝐽𝑅2
0,

𝛿2
𝑁−1∑︁
𝑘=0

𝐴𝑘+1

𝐿̃
≤ 𝐺2𝐿̃2𝑅2

0

(𝑁 + 1)4

𝑁−1∑︁
𝑘=0

(𝑘 + 2)2

2𝐿̃2
≤ 𝐺2𝑅2

0

2(𝑁 + 1)

By the definition of the norm we get

max
𝑦∈𝐵2𝑅𝑦 (0)

𝑁−1∑︁
𝑘=0

𝛼𝑘+1

⟨
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦
⟩

≤ 2𝑅𝑦

⃦⃦⃦⃦
𝑁−1∑︀
𝑘=0

𝛼𝑘+1

(︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

)︁]︁⃦⃦⃦⃦
2

.(4.167)

Next we apply Lemma 4.9.5 to the right-hand side of the previous inequality and get

P

{︃ ⃦⃦⃦⃦
⃦
𝑁−1∑︁
𝑘=0

𝛼𝑘+1

(︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁)︁⃦⃦⃦⃦⃦
2

≥
(︀√

2 +
√

2𝛾
)︀√︃𝑁−1∑︀

𝑘=0

𝛼2
𝑘+1

𝜎2
𝜓

𝑟𝑘+1

}︃
≤ exp

(︁
−𝛾2

3

)︁
.

Since 𝑁2 ≤ 𝐻𝐿̃𝑅2
0

𝜀
and 𝑟𝑘 = Ω

(︁
max

{︁
1,

𝜎2
𝜓𝛼𝑘 ln(𝑁/𝛽)

𝜀

}︁)︁
one can choose such 𝐶2 > 0 that

𝜎2
𝜓

𝑟𝑘
≤ 𝐶2𝜀

𝛼𝑘 ln(𝑁𝛽)
≤ 𝐻𝐿̃𝐶2𝑅2

0

𝛼𝑘𝑁2 ln(𝑁𝛽)
. Moreover, let us choose 𝛾 such that exp

(︁
−𝛾2

3

)︁
= 𝛽 =⇒ 𝛾 =√︁

3 ln 1
𝛽
. From this we get that with probability at least 1− 𝛽⃦⃦⃦⃦

⃦
𝑁−1∑︁
𝑘=0

𝛼𝑘+1

(︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)− E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁)︁⃦⃦⃦⃦⃦
2

≤
√

2
(︁

1 +
√︁

ln 1
𝛽

)︁
𝑅𝑦

√︂
𝐻𝐿̃𝐶2

ln(𝑁𝛽)

√︃
𝑁−1∑︀
𝑘=0

𝛼𝑘+1

𝑁2

(4.225)
≤ 2

√
2𝑅𝑦

√︀
𝐻𝐿̃𝐶2

√︃
𝑁−1∑︀
𝑘=0

𝑘+2
2𝐿̃𝑁2 = 2𝑅𝑦

√
𝐻𝐶2

√︁
𝑁(𝑁+3)
𝑁2 ≤ 4𝑅𝑦

√
𝐻𝐶2.(4.168)

79

In the above inequality we used the fact that 𝑅𝑦 = 𝑅0. Putting all together and using

union bound we get that with probability at least 1− 3𝛽

𝐴𝑁𝜓(𝑦𝑁)
(4.166)+(4.167)+(4.168)

≤ min𝑦∈𝐵2𝑅𝑦 (0)

∑︀𝑁−1
𝑘=0 𝛼𝑘+1

(︁
𝜓(𝑦𝑘+1) +

⟨
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
, 𝑦 − 𝑦𝑘+1

⟩)︁
+
(︁

8
√
𝐻𝐶2 + 2 + 12𝐶𝐻 + 5𝐺𝐽

2
+ 𝐺2

2(𝑁+1)3

+𝐶1

√︁
𝐶𝐻𝐽𝑔(𝑁)

2

)︂
𝑅2
𝑦

≤ min𝑦∈𝐵2𝑅𝑦 (0)

∑︀𝑁−1
𝑘=0 𝛼𝑘+1

(︀
𝜓(𝑦𝑘+1) +

⟨︀
∇𝜓(𝑦𝑘+1), 𝑦 − 𝑦𝑘+1

⟩︀)︀
+ max𝑦∈𝐵2𝑅𝑦 (0)

𝑁−1∑︀
𝑘=0

𝛼𝑘+1

⟨
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
−∇𝜓(𝑦𝑘+1), 𝑦 − 𝑦𝑘+1

⟩
+

(︂
8
√
𝐻𝐶2 + 2 + 12𝐶𝐻 + 5𝐺𝐽

2
+ 𝐺2

2(𝑁+1)
+ 𝐶1

√︁
𝐶𝐻𝐽𝑔(𝑁)

2

)︂
𝑅2
𝑦 (4.169)

First of all, we notice that in the same probabilistic event we have ‖𝑦𝑘+1 − 𝑦*‖2 ≤̃︀𝑅𝑘

(4.162)
≤ 𝐽𝑅0. Therefore, in the same probabilistic event we get that ‖𝑦𝑘+1 − 𝑦‖2 ≤

‖𝑦𝑘+1 − 𝑦*‖2 + ‖𝑦* − 𝑦‖2 ≤ (𝐽 + 4)𝑅𝑦 for all 𝑦 ∈ 𝐵2𝑅𝑦(0), where we used 𝑅0 = 𝑅𝑦. It

implies that in the same probabilistic event we have

max
𝑦∈𝐵2𝑅𝑦 (0)

𝑁−1∑︁
𝑘=0

𝛼𝑘+1

⟨
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
−∇𝜓(𝑦𝑘+1), 𝑦 − 𝑦𝑘+1

⟩
≤ max

𝑦∈𝐵2𝑅𝑦 (0)

𝑁−1∑︀
𝑘=0

𝛼𝑘+1

⃦⃦⃦
E𝑘

[︁
∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1)

]︁
−∇𝜓(𝑦𝑘+1)

⃦⃦⃦
2
·
⃦⃦
𝑦 − 𝑦𝑘+1

⃦⃦
2

(4.39)
≤

𝑁−1∑︀
𝑘=0

𝛼𝑘+1𝛿(𝐽 + 4)𝑅𝑦 ≤
𝑁−1∑︀
𝑘=0

𝑘+2
2𝐿̃

𝐺𝐿̃𝑅0

(𝑁+1)2
(𝐽 + 4)𝑅𝑦 ≤

𝐺(𝐽+4)𝑅2
𝑦

2
.

Secondly, using the same trick as in the proof of Theorem 1 from [94] we get that for

arbitrary point 𝑦

𝜓(𝑦)− ⟨∇𝜓(𝑦), 𝑦⟩ (4.24)+(4.35)
= ⟨𝑦, 𝐴𝑥(𝐴⊤𝑦)⟩ − 𝑓

(︀
𝑥(𝐴⊤𝑦)

)︀
− ⟨𝐴𝑥(𝐴⊤𝑦), 𝑦⟩ = −𝑓(𝑥(𝐴⊤𝑦)).

Using these relations in (4.169) we obtain that with probability at least 1− 3𝛽

𝐴𝑁𝜓(𝑦𝑁) ≤ −
𝑁−1∑︁
𝑘=0

𝛼𝑘+1𝑓(𝑥(𝐴⊤𝑦𝑘+1)) + min
𝑦∈𝐵2𝑅𝑦 (0)

𝑁−1∑︁
𝑘=0

𝛼𝑘+1⟨∇𝜓(𝑦𝑘+1), 𝑦⟩

+

(︂
8
√︀
𝐻𝐶2 + 2 + 12𝐶𝐻 +

𝐺(6𝐽 + 4)

2
+

𝐺2

2(𝑁 + 1)
+

+𝐶1

√︂
𝐶𝐻𝐽𝑔(𝑁)

2

)︃
𝑅2
𝑦.(4.170)

80

To bound the first term in (4.170) we apply convexity of 𝑓 and introduce the virtual primal

iterate 𝑥̂𝑁 = 1
𝐴𝑁

𝑁−1∑︀
𝑘=0

𝛼𝑘+1𝑥(𝐴⊤𝑦𝑘+1):

−
𝑁−1∑︁
𝑘=0

𝛼𝑘+1𝑓(𝑥(𝐴⊤𝑦𝑘+1)) = −𝐴𝑁
𝑁−1∑︁
𝑘=0

𝛼𝑘+1

𝐴𝑁
𝑓(𝑥(𝐴⊤𝑦𝑘+1)) ≤ −𝐴𝑁𝑓(𝑥̂𝑁).

In order to bound the second term in the right-hand side of the previous inequality we use

the definition of the norm we have

min
𝑦∈𝐵2𝑅𝑦 (0)

𝑁−1∑︁
𝑘=0

𝛼𝑘+1⟨∇𝜓(𝑦𝑘+1), 𝑦⟩ = min
𝑦∈𝐵2𝑅𝑦 (0)

⟨
𝑁−1∑︁
𝑘=0

𝛼𝑘+1∇𝜓(𝑦𝑘+1), 𝑦

⟩

= −2𝑅𝑦

⃦⃦⃦⃦
⃦
𝑁−1∑︁
𝑘=0

𝛼𝑘+1∇𝜓(𝑦𝑘+1)

⃦⃦⃦⃦
⃦
2

= −2𝑅𝑦𝐴𝑁‖𝐴𝑥̂𝑁‖2,

where we used equality (4.35). Putting all together we obtain that with probability at

least 1− 3𝛽

𝜓(𝑦𝑁) + 𝑓(𝑥̂𝑁) + 2𝑅𝑦‖𝐴𝑥̂𝑁‖2 ≤
𝑅2
𝑦

𝐴𝑁

(︂
8
√︀
𝐻𝐶2 + 2 + 12𝐶𝐻 +

𝐺(6𝐽 + 4)

2

+
𝐺2

2(𝑁 + 1)
+ 𝐶1

√︂
𝐶𝐻𝐽𝑔(𝑁)

2

)︃
.(4.171)

Lemma 4.9.5 implies that for all 𝛾 > 0

P

{︃ ⃦⃦⃦⃦
⃦
𝑁−1∑︁
𝑘=0

𝛼𝑘+1

(︀
𝑥̃(𝐴⊤𝑦𝑘+1, 𝜉𝑘+1)− E

[︀
𝑥̃(𝐴⊤𝑦𝑘+1, 𝜉𝑘+1) | 𝑦𝑘+1

]︀)︀⃦⃦⃦⃦⃦
2

≥ (
√

2 +
√

2𝛾)

√︃
𝑁−1∑︀
𝑘=0

𝛼2
𝑘+1𝜎

2
𝑥

𝑟𝑘+1

}︃
≤ exp

(︁
−𝛾2

3

)︁
.

Using this inequality with 𝛾 =
√︁

3 ln 1
𝛽

and 𝑟𝑘 ≥
𝜎2
𝜓𝛼𝑘 ln

𝑁
𝛽

𝐶2𝜀
we get that with probability at

81

least 1− 𝛽

‖𝑥̃𝑁 − 𝑥̂𝑁‖2 =
1

𝐴𝑁

⃦⃦⃦⃦
⃦
𝑁−1∑︁
𝑘=0

𝛼𝑘+1

(︀
𝑥̃(𝐴⊤𝑦𝑘+1, 𝜉𝑘+1)− 𝑥(𝐴⊤𝑦𝑘+1)

)︀⃦⃦⃦⃦⃦
2

≤ 1

𝐴𝑁

⃦⃦⃦⃦
⃦
𝑁−1∑︁
𝑘=0

𝛼𝑘+1

(︀
𝑥̃(𝐴⊤𝑦𝑘+1, 𝜉𝑘+1)− E

[︀
𝑥̃(𝐴⊤𝑦𝑘+1, 𝜉𝑘+1) | 𝑦𝑘+1

]︀)︀⃦⃦⃦⃦⃦
2

+
1

𝐴𝑁

⃦⃦⃦⃦
⃦
𝑁−1∑︁
𝑘=0

𝛼𝑘+1

(︀
E
[︀
𝑥̃(𝐴⊤𝑦𝑘+1, 𝜉𝑘+1) | 𝑦𝑘+1

]︀
− 𝑥(𝐴⊤𝑦𝑘+1)

)︀⃦⃦⃦⃦⃦
2

≤
√

2

𝐴𝑁

(︂
1 +

√︂
3 ln

1

𝛽

)︂⎯⎸⎸⎷𝑁−1∑︁
𝑘=0

𝛼2
𝑘+1𝜎

2
𝑥

𝑟2𝑘+1

+
1

𝐴𝑁

𝑁−1∑︁
𝑘=0

𝛼𝑘+1

⃦⃦
E
[︀
𝑥̃(𝐴⊤𝑦𝑘+1, 𝜉𝑘+1) | 𝑦𝑘+1

]︀
− 𝑥(𝐴⊤𝑦𝑘+1)

⃦⃦
2

(4.37)
≤ 2

𝐴𝑁

√︂
6 ln

1

𝛽

1√︁
ln 𝑁

𝛽

⎯⎸⎸⎷𝑁−1∑︁
𝑘=0

𝐶2𝛼𝑘+1𝜀

𝜆max(𝐴⊤𝐴)
+

1

𝐴𝑁

𝑁−1∑︁
𝑘=0

𝛼𝑘+1𝛿𝑦

≤ 2

𝐴𝑁

√︃
6𝐶2

𝜆max(𝐴⊤𝐴)

⎯⎸⎸⎷𝑁−1∑︁
𝑘=0

(𝑘 + 2)𝐻𝐿̃𝑅2
𝑦

2𝐿̃𝑁2

+
1

𝐴𝑁

𝑁−1∑︁
𝑘=0

𝑘 + 2

2𝐿̃
· 𝐺𝐿̃𝑅𝑦

(𝑁 + 1)2
√︀
𝜆max(𝐴⊤𝐴)

≤ 2𝑅𝑦

𝐴𝑁

(︃√︃
6𝐶2𝐻

𝜆max(𝐴⊤𝐴)
+

𝐺

4
√︀
𝜆max(𝐴⊤𝐴)

)︃
. (4.172)

It implies that with probability at least 1− 𝛽

‖𝐴𝑥̃𝑁 − 𝐴𝑥̂𝑁‖2 ≤ ‖𝐴‖2 · ‖𝑥̃𝑁 − 𝑥̂𝑁‖2
(4.172)
≤

√︀
𝜆max(𝐴⊤𝐴)

2𝑅𝑦

𝐴𝑁

(︃√︃
6𝐶2𝐻

𝜆max(𝐴⊤𝐴)
+

𝐺

4
√︀
𝜆max(𝐴⊤𝐴)

)︃
=

𝑅𝑦

2𝐴𝑁

(︁√︀
96𝐶2𝐻 +𝐺

)︁
(4.173)

and due to triangle inequality with probability ≥ 1− 𝛽

2𝑅𝑦‖𝐴𝑥̂𝑁‖2 ≥ 2𝑅𝑦‖𝐴𝑥̃𝑁‖2 − 2𝑅𝑦𝐴𝑁‖𝐴𝑥̂𝑁 − 𝐴𝑥̃𝑁‖2
(4.173)
≥ 2𝑅𝑦‖𝐴𝑥̃𝑁‖2 −

𝑅2
𝑦

(︀√
96𝐶2𝐻 +𝐺

)︀
𝐴𝑁

. (4.174)

The next step is in applying Lipschitz continuity of 𝑓 on 𝐵𝑅𝑓 (0). Recall that

𝑥(𝑦)
def
= argmax

𝑥∈R𝑛
{⟨𝑦, 𝑥⟩ − 𝑓(𝑥)}

82

and due to Demyanov-Danskin theorem 𝑥(𝑦) = ∇𝜙(𝑦). Together with 𝐿𝜙-smoothness of 𝜙

it implies that

‖𝑥(𝐴⊤𝑦𝑘+1)‖2 = ‖∇𝜙(𝐴⊤𝑦𝑘+1)‖2 ≤ ‖∇𝜙(𝐴⊤𝑦𝑘+1)−∇𝜙(𝐴⊤𝑦*)‖2 + ‖∇𝜙(𝐴⊤𝑦*)‖2

≤ 𝐿𝜙‖𝐴⊤𝑦𝑘+1 − 𝐴⊤𝑦*‖2 + ‖𝑥(𝐴⊤𝑦*)‖2

≤
√︀
𝜆max(𝐴⊤𝐴)

𝜇
‖𝑦𝑘+1 − 𝑦*‖2 +𝑅𝑥.

From this and (4.162) we get that with probability at least 1− 2𝛽 the inequality

‖𝑥(𝐴⊤𝑦𝑘+1)‖2
(4.162)
≤

(︃√︀
𝜆max(𝐴⊤𝐴)𝐽

𝜇
+
𝑅𝑥

𝑅𝑦

)︃
𝑅𝑦 (4.175)

holds for all 𝑘 = 0, 1, 2, . . . , 𝑁 − 1 simultaneously since 𝑦𝑘+1 ∈ 𝐵𝑅𝑘(𝑦
*) ⊆ 𝐵 ̃︀𝑅𝑘+1

(𝑦*). Using

the convexity of the norm we get that with probability at least 1− 2𝛽

‖𝑥̂𝑁‖2 ≤
1

𝐴𝑁

𝑁−1∑︁
𝑘=0

𝛼𝑘+1‖𝑥(𝐴⊤𝑦𝑘+1)‖2
(4.175)
≤

(︃√︀
𝜆max(𝐴⊤𝐴)𝐽

𝜇
+
𝑅𝑥

𝑅𝑦

)︃
𝑅𝑦. (4.176)

We notice that the last inequality lies in the same probability event when (4.162) holds.

Consider the probability event𝐸 = {inequalities (4.171)−(4.176) hold simultaneously}.

Using union bound we get that P{𝐸} ≥ 1 − 4𝛽. Combining (4.172) and (4.176) we get

that inequality

‖𝑥̃𝑁‖2 ≤ ‖𝑥̃𝑁 − 𝑥̂𝑁‖2 + ‖𝑥̂𝑁‖2

≤

(︃ (︀√
96𝐶2𝐻 +𝐺

)︀
2𝐴𝑁

√︀
𝜆max(𝐴⊤𝐴)

+

√︀
𝜆max(𝐴⊤𝐴)𝐽

𝜇
+
𝑅𝑥

𝑅𝑦

)︃
𝑅𝑦 (4.177)

lies in the event 𝐸. From this we can obtain a lower bound for 𝑅𝑓 :

𝑅𝑓 ≥

(︃ (︀√
96𝐶2𝐻 +𝐺

)︀
2𝐴𝑁

√︀
𝜆max(𝐴⊤𝐴)

+

√︀
𝜆max(𝐴⊤𝐴)𝐽

𝜇
+
𝑅𝑥

𝑅𝑦

)︃
𝑅𝑦.

Then we get that the fact that points 𝑥̃𝑁 and 𝑥̂𝑁 lie in 𝐵𝑅𝑓 (0) is a consequence of 𝐸.

Therefore, we can apply Lipschitz-continuity of 𝑓 for the points 𝑥̃𝑁 and 𝑥̂𝑁 and get that

inequalities

|𝑓(𝑥̂𝑁)− 𝑓(𝑥̃𝑁)| ≤ 𝐿𝑓‖𝑥̂𝑁 − 𝑥̃𝑁‖2
(4.172)
≤

𝐿𝑓𝑅𝑦

(︀√
96𝐶2𝐻 +𝐺

)︀
2𝐴𝑁

√︀
𝜆max(𝐴⊤𝐴)

(4.178)

and

𝑓(𝑥̂𝑁) = 𝑓(𝑥̃𝑁) +
(︀
𝑓(𝑥̂𝑁)− 𝑓(𝑥̃𝑁)

)︀ (4.178)
≥ 𝑓(𝑥̃𝑁)−

𝐿𝑓𝑅𝑦

(︀√
96𝐶2𝐻 +𝐺

)︀
2𝐴𝑁

√︀
𝜆max(𝐴⊤𝐴)

(4.179)

83

also lie in the event 𝐸. It remains to use inequalities (4.174) and (4.179) to bound first and

second terms in the right hand side of inequality (4.171) and obtain that with probability

at least 1− 4𝛽

𝜓(𝑦𝑁) + 𝑓(𝑥̃𝑁) + 2𝑅𝑦‖𝐴𝑥̃𝑁‖2 ≤
𝑅2
𝑦

𝐴𝑁

(︂
8
√︀
𝐻𝐶2 + 2 + 12𝐶𝐻 +

𝐺(6𝐽 + 4)

2

+
𝐿𝑓
(︀√

96𝐶2𝐻 +𝐺
)︀

2𝑅𝑦

√︀
𝜆max(𝐴⊤𝐴)

+
𝐺2

2(𝑁 + 1)

+𝐶1

√︂
𝐶𝐻𝐽𝑔(𝑁)

2
+
√︀

96𝐶2𝐻 +𝐺

)︃
.(4.180)

Using that 𝐴𝑁 grows as Ω
(︁
𝑁2

𝐿̃

)︁
[1], 𝐿̃ ≤ 2𝜆max(𝐴⊤𝐴)

𝜇
and 𝑅𝑦 ≤ ‖∇𝑓(𝑥*)‖22

𝜆+min(𝐴
⊤𝐴)

(see Section V-D

from [46] for the details), we obtain that the choice of 𝑁 in the theorem statement

guarantees that the r.h.s. of the last inequality is no greater than 𝜀. By weak duality

−𝑓(𝑥*) ≤ 𝜓(𝑦*) and we have with probability at least 1− 4𝛽

𝑓(𝑥̃𝑁)− 𝑓(𝑥*) ≤ 𝑓(𝑥̃𝑁) + 𝜓(𝑦*) ≤ 𝑓(𝑥̃𝑁) + 𝜓(𝑦𝑁) ≤ 𝜀. (4.181)

Since 𝑦* is the solution of the dual problem, we have, for any 𝑥, 𝑓(𝑥*) ≤ 𝑓(𝑥)− ⟨𝑦*, 𝐴𝑥⟩.

Then using assumption ‖𝑦*‖2 ≤ 𝑅𝑦, Cauchy-Schawrz inequality ⟨𝑦, 𝐴𝑥⟩ ≥ −‖𝑦*‖2·‖𝐴𝑥‖2 ≥

−𝑅𝑦‖𝐴𝑥‖2 and choosing 𝑥 = 𝑥̃𝑁 , we get

𝑓(𝑥̃𝑁) ≥ 𝑓(𝑥*)−𝑅𝑦‖𝐴𝑥̃𝑁‖2 (4.182)

Using this and weak duality −𝑓(𝑥*) ≤ 𝜓(𝑦*), we obtain

𝜓(𝑦𝑁) + 𝑓(𝑥̃𝑁) ≥ 𝜓(𝑦*) + 𝑓(𝑥̃𝑁) ≥ −𝑓(𝑥*) + 𝑓(𝑥̃𝑁) ≥ −𝑅𝑦‖𝐴𝑥̃𝑁‖2,

which implies that inequality

‖𝐴𝑥𝑁‖2
(4.180)+(4.181)

≤ 𝜀

𝑅𝑦

(4.183)

holds together with (4.181) with probability at least 1−4𝛽. The total number of stochastic

gradient oracle calls is
𝑁∑︀
𝑘=1

𝑟𝑘, which gives the bound in the problem statement since

𝑁∑︀
𝑘=1

𝛼𝑘+1 = 𝐴𝑁 .

84

4.9.7. Missing Proofs from Section 4.5.2

Proof of Theorem 4.5.5

For simplicity we analyse only the first restart since the analysis of the later restarts

is the same. We apply Theorem 4.5.3 with 𝑁 = 𝑁̄ such that

𝐶𝐿2
𝜓 ln4 𝑁̄

𝜇2
𝜓𝑁̄

4
≤ 1

32

and batch-size

𝑟1 = max

{︃
1,

64𝐶𝜎2
𝜓 ln6 𝑁̄

𝑁̄‖∇Ψ(𝑦0, 𝜉0, 𝑟1)‖22

}︃
together with simple inequality ‖∇𝜓(𝑦0)‖2 ≥ 𝜇𝜓‖𝑦0 − 𝑦*‖2 and get for all 𝑝 = 1, . . . , 𝑝1

E
[︀
‖∇𝜓(𝑦1,𝑝)‖22 | 𝑦0, 𝑟1, 𝑟1

]︀
≤ ‖∇𝜓(𝑦0)‖22

32
+
‖∇Ψ(𝑦0, 𝜉0, 𝑟1)‖22

64
(4.124)
≤ ‖∇𝜓(𝑦0)‖22

16
+
‖∇Ψ(𝑦0, 𝜉0, 𝑟1)−∇𝜓(𝑦0)‖22

32
.(4.184)

By Markov’s inequality we have for each 𝑝 = 1, . . . , 𝑝1 that for fixed ∇Ψ(𝑦0, 𝜉0, 𝑟1) with

probability at most 1/2

‖∇𝜓(𝑦1,𝑝)‖22 ≥
‖∇𝜓(𝑦0)‖22

8
+
‖∇Ψ(𝑦0, 𝜉0, 𝑟1)−∇𝜓(𝑦0)‖22

16
.

Then, with probability at least 1− 1/2𝑝1 ≥ 1− 𝛽/𝑙

‖∇𝜓(𝑦1,𝑝1)‖22 ≤
‖∇𝜓(𝑦0)‖22

8
+
‖∇Ψ(𝑦0, 𝜉0, 𝑟1)−∇𝜓(𝑦0)‖22

16
, (4.185)

where 𝑝1 is such that ‖∇𝜓(𝑦1,𝑝1)‖22 = min𝑝=1,...,𝑝1 ‖∇𝜓(𝑦1,𝑝)‖22. From Lemma 4.9.5 we have

for all 𝑝 = 1, . . . , 𝑝1

P

⎧⎨⎩⃦⃦∇Ψ(𝑦1,𝑝, 𝜉1,𝑝, 𝑟1)−∇𝜓(𝑦1,𝑝)
⃦⃦
2
≥
(︁√

2 +
√︀

2𝛾
)︁√︃𝜎2

𝜓

𝑟1
| 𝑦1,𝑝

⎫⎬⎭ ≤ exp

(︂
−𝛾

2

3

)︂
.

Since 𝑟1 = max

⎧⎨⎩1,
128𝜎2

𝜓

(︂
1+

√︁
3 ln

𝑙𝑝1
𝛽

)︂2

𝑅2
𝑦

𝜀2

⎫⎬⎭ we can take 𝛾 =
√︁

3 ln 𝑙𝑝1
𝛽

in the previous

inequality and get that for all 𝑝 = 1, . . . , 𝑝1 and fixed points 𝑦1,𝑝 with probability at least

1− 𝛽/(𝑙𝑝1) ⃦⃦
∇Ψ(𝑦1,𝑝, 𝜉1,𝑝, 𝑟1)−∇𝜓(𝑦1,𝑝)

⃦⃦2
2
≤ 𝜀2

64𝑅2
𝑦

.

Using union bound we get that with probability at least 1− 𝛽/𝑙 inequality⃦⃦
∇Ψ(𝑦1,𝑝, 𝜉1,𝑝, 𝑟1)−∇𝜓(𝑦1,𝑝)

⃦⃦2
2
≤ 𝜀2

64𝑅2
𝑦

. (4.186)

85

holds for all 𝑝 = 1, . . . , 𝑝1 simultaneously with fixed points 𝑦1,𝑝. Using union bound again

we get that with probability at least 1− 2𝛽/𝑙 for fixed ∇Ψ(𝑦0, 𝜉0, 𝑟1)

‖∇𝜓(𝑦1,𝑝(1))‖22
(4.124)
≤ 2

⃦⃦⃦
∇Ψ(𝑦1,𝑝(1), 𝜉1,𝑝(1), 𝑟1)

⃦⃦⃦2
2

+2
⃦⃦⃦
∇Ψ(𝑦1,𝑝(1), 𝜉1,𝑝(1), 𝑟1)−∇𝜓(𝑦1,𝑝(1))

⃦⃦⃦2
2

(4.186)
≤ 2

⃦⃦
∇Ψ(𝑦1,𝑝1 , 𝜉1,𝑝1 , 𝑟1)

⃦⃦2
2

+
𝜀2

32𝑅2
𝑦

(4.124)
≤ 4‖∇𝜓(𝑦1,𝑝1)‖22 + 4

⃦⃦
∇Ψ(𝑦1,𝑝1 , 𝜉1,𝑝1 , 𝑟1)−∇𝜓(𝑦1,𝑝1)

⃦⃦2
2

+
𝜀2

32𝑅2
𝑦

(4.185)+(4.186)
≤ ‖∇𝜓(𝑦0)‖22

2
+
‖∇Ψ(𝑦0, 𝜉0, 𝑟1)−∇𝜓(𝑦0)‖22

4
+

𝜀2

8𝑅2
𝑦

. (4.187)

Using Lemma 4.9.5 with 𝛾 =
√︁

3 ln 𝑙
𝛽

and 𝑟1 = max

{︃
1,

4𝜎2
𝜓

(︁
1+

√︁
3 ln 𝑙

𝛽

)︁2
𝑅2
𝑦

𝜀2

}︃
we get that

with probability at least 1− 𝛽/𝑙

‖∇Ψ(𝑦0, 𝜉0, 𝑟1)−∇𝜓(𝑦0)‖22 ≤
𝜀2

2𝑅2
𝑦

. (4.188)

Applying union bound again we get that with probability at least 1− 3𝛽/𝑙 the following

inequality holds:

‖∇𝜓(𝑦1,𝑝(1))‖22
(4.187)+(4.188)

≤ ‖∇𝜓(𝑦0)‖22
2

+
𝜀2

4𝑅2
𝑦

.

Similarly, for all 𝑘 = 1, . . . , 𝑙 with probability at least 1− 3𝛽/𝑙

‖∇𝜓(𝑦𝑘,𝑝(𝑘))‖22 ≤
‖∇𝜓(𝑦𝑘−1,𝑝(𝑘−1))‖22

2
+

𝜀2

4𝑅2
𝑦

.

Using union bound we get that with probability at least 1− 3𝛽 the inequality

‖∇𝜓(𝑦𝑘,𝑝(𝑘))‖22 ≤
‖∇𝜓(𝑦𝑘−1,𝑝(𝑘−1))‖22

2
+

𝜀2

4𝑅2
𝑦

(4.189)

holds for all 𝑘 = 1, . . . , 𝑙 simultaneously. Finally, unrolling the recurrence an using our

choice of 𝑙 = max {1, log2 (2𝑅2
𝑦‖∇𝜓(𝑦0)‖22/𝜀2)} we obtain that with probability at least 1− 3𝛽

‖∇𝜓(𝑦𝑙,𝑝(𝑙))‖22
(4.189)
≤ ‖∇𝜓(𝑦0)‖22

2𝑙
+

𝜀2

4𝑅2
𝑦

𝑙−1∑︁
𝑘=0

2−𝑘

≤ 𝜀2

2𝑅2
𝑦

+
𝜀2

4𝑅2
𝑦

∞∑︁
𝑘=0

2−𝑘

=
𝜀2

2𝑅2
𝑦

+
𝜀2

4𝑅2
𝑦

· 2 =
𝜀2

𝑅2
𝑦

,

which concludes the proof. To get (4.55) we need to estimate
𝑙∑︀

𝑘=1

(𝑟𝑘 + 𝑁̄𝑝𝑘𝑟𝑘 + 𝑝𝑘𝑟𝑘) using

our choice of parameters stated in (4.53).

86

Proof of Corollary 4.5.3

Theorem 4.5.5, Corollary 4.5.2 and inequality 𝜀 ≤ 𝜇𝜓𝑅
2
𝑦 imply that with probability

at least 1− 3𝛽

‖∇𝜓(𝑦𝑙,𝑝(𝑙))‖2 ≤
𝜀

𝑅𝑦

, ‖𝑦𝑙,𝑝(𝑙)‖2 ≤ ‖𝑦𝑙,𝑝(𝑙) − 𝑦*‖2 + ‖𝑦*‖2
(4.56)
≤ 2𝑅𝑦. (4.190)

Applying Theorem 4.5.2 we get that with probability 1− 3𝛽 we also have

𝑓(𝑥̂𝑙)− 𝑓(𝑥*) ≤ 2𝜀, ‖𝐴𝑥̂𝑙‖2 ≤
𝜀

𝑅𝑦

, (4.191)

where 𝑥̂𝑙 def
= 𝑥(𝐴⊤𝑦𝑙,𝑝(𝑙)). Next, we show that points 𝑥̂𝑙,𝑝 = 𝑥(𝐴⊤𝑦𝑙,𝑝) and 𝑥𝑙,𝑝 def

= 𝑥(𝐴⊤𝑦𝑙,𝑝, 𝜉𝑙,, 𝑟𝑙)

are close to each other with high probability for all 𝑝 = 1, . . . , 𝑝𝑙 and both lie in 𝐵𝑅𝑓 (0)

with high probability. Lemma 4.9.5 states that

P

{︃⃦⃦
𝑥̂𝑙,𝑝 − 𝑥𝑙,𝑝

⃦⃦
2
≥ (
√

2 +
√︀

2𝛾)

√︃
𝜎2
𝑥

𝑟𝑙
| 𝑦𝑙,𝑝(𝑙)

}︃
≤ exp

(︂
−𝛾

2

3

)︂
.

Taking 𝛾 =
√︁

3 ln 𝑝𝑙
𝛽

and using 𝑟𝑙 = max

{︃
1,

128𝜎2
𝜓

(︂
1+

√︁
3 ln

𝑙𝑝𝑙
𝛽

)︂
𝑅2
𝑦

𝜀2

}︃
we get that for all

𝑝 = 1, . . . , 𝑝𝑙 with probability at least 1− 𝛽/𝑝𝑙

‖𝑥̂𝑙,𝑝 − 𝑥𝑙,𝑝‖2 ≤
𝜀

8𝑅𝑦

·
√︃
𝜎2
𝑥

𝜎2
𝜓

=
𝜀

8𝑅𝑦

√︀
𝜆max(𝐴⊤𝐴)

,

where we use 𝜎𝜓 =
√︀
𝜆max(𝐴⊤𝐴)𝜎𝑥. Using union bound we get that with probability at

least 1− 𝛽 the inequality

‖𝑥̂𝑙,𝑝 − 𝑥𝑙,𝑝‖2 ≤
𝜀

8𝑅𝑦

√︀
𝜆max(𝐴⊤𝐴)

,

holds for all 𝑝 = 1, . . . , 𝑝(𝑙) simultaneously and, in particular, we get that with probability

at least 1− 𝛽

‖𝑥̂𝑙 − 𝑥𝑙‖2 ≤
𝜀

8𝑅𝑦

√︀
𝜆max(𝐴⊤𝐴)

. (4.192)

It implies that with probability at least 1− 𝛽

‖𝐴𝑥̂𝑙 − 𝐴𝑥𝑙‖2 ≤ ‖𝐴‖2 · ‖𝑥̂𝑙 − 𝑥𝑙‖2
(4.192)
≤

√︀
𝜆max(𝐴⊤𝐴)

𝜀

8𝑅𝑦

√︀
𝜆max(𝐴⊤𝐴)

=
𝜀

8𝑅𝑦

, (4.193)

and due to triangle inequality with probability ≥ 1− 𝛽

‖𝐴𝑥̂𝑙‖2 ≥ ‖𝐴𝑥𝑙‖2 − ‖𝐴𝑥̂𝑙 − 𝐴𝑥𝑙‖2
(4.193)
≥ ‖𝐴𝑥𝑙‖2 −

𝜀

8𝑅𝑦

. (4.194)

87

Applying Demyanov-Danskin’s theorem, 𝐿𝜙-smoothness of 𝜙 with 𝐿𝜙 = 1/𝜇 and 𝜀 ≤ 𝜇𝜓𝑅
2
𝑦

we obtain that with probability at least 1− 𝛽

‖𝑥̂𝑙‖2 = ‖∇𝜙(𝐴⊤𝑦𝑙,𝑝(𝑙))‖2 ≤ ‖∇𝜙(𝐴⊤𝑦𝑙,𝑝(𝑙))−∇𝜙(𝐴⊤𝑦*)‖2 + ‖∇𝜙(𝐴⊤𝑦*)‖2

≤ 𝐿𝜙‖𝐴⊤𝑦𝑙,𝑝(𝑙) − 𝐴⊤𝑦*‖2 + ‖𝑥(𝐴⊤𝑦*)‖2 ≤
√︀
𝜆max(𝐴⊤𝐴)

𝜇
‖𝑦𝑙,𝑝(𝑙) − 𝑦*‖2 +𝑅𝑥

(4.56)
≤

√︀
𝜆max(𝐴⊤𝐴)𝜀

𝜇𝜇𝜓𝑅𝑦

+𝑅𝑥 ≤

(︃√︀
𝜆max(𝐴⊤𝐴)

𝜇
+
𝑅𝑥

𝑅𝑦

)︃
𝑅𝑦 (4.195)

and also

‖𝑥𝑙‖2 ≤ ‖𝑥𝑙 − 𝑥̂𝑙‖2 + ‖𝑥̂𝑙‖2
(4.192)+(4.195)

≤

(︃
𝜇𝜓

8
√︀
𝜆max(𝐴⊤𝐴)

+

√︀
𝜆max(𝐴⊤𝐴)

𝜇
+
𝑅𝑥

𝑅𝑦

)︃
𝑅𝑦. (4.196)

That is, we proved that with probability at least 1 − 𝛽 points 𝑥̂𝑙 and 𝑥𝑙 lie in the ball

𝐵𝑅𝑓 (0). In this ball function 𝑓 is 𝐿𝑓 -Lipschitz continuous, therefore, with probability at

least 1− 𝛽

𝑓(𝑥̂𝑙) = 𝑓(𝑥𝑙) + 𝑓(𝑥̂𝑙)− 𝑓(𝑥𝑙) ≥ 𝑓(𝑥𝑙)− |𝑓(𝑥̂𝑙)− 𝑓(𝑥𝑙)|

≥ 𝑓(𝑥𝑙)− 𝐿𝑓‖𝑥̂𝑙 − 𝑥𝑙‖2
(4.192)
≥ 𝑓(𝑥𝑙)− 𝜀𝐿𝑓

8𝑅𝑦

√︀
𝜆max(𝐴⊤𝐴)

. (4.197)

Combining inequalities (4.191), (4.194) and (4.197) and using union bound we get that

with probability at least 1− 4𝛽

𝑓(𝑥𝑙)− 𝑓(𝑥*) ≤

(︃
2 +

𝐿𝑓

8𝑅𝑦

√︀
𝜆max(𝐴⊤𝐴)

)︃
𝜀, ‖𝐴𝑥𝑙‖ ≤ 9𝜀

8𝑅𝑦

.

Finally, in order to get the bound for the total number of oracle calls from (4.58) we use

(4.55) together with 𝜎2
𝜓 = 𝜎2

𝑥𝜆max(𝐴
⊤𝐴) and (4.125).

4.9.8. Missing Proofs from Section 4.5.3

Proof of Lemma 4.5.1

We prove (4.62) by induction. For 𝑘 = 0 this inequality is trivial since 𝐴𝑘 = 1
𝐿
,

𝑦1 = 𝑦0 and 𝑧0 = 𝑦0. Next, assume that (4.62) holds for some 𝑘 ≥ 0 and prove it for 𝑘 + 1.

By definition of 𝑔𝑘+1(𝑧) we have

𝑔𝑘+1(𝑧
𝑘+1) = 𝑔𝑘(𝑧

𝑘+1) (4.198)

+𝛼𝑘+1

(︁
𝜓(𝑦𝑘+1) + ⟨∇̃Ψ(𝑦𝑘+1, 𝜉𝑘+1), 𝑧𝑘+1 − 𝑦𝑘+1⟩+

𝜇𝜓
2
‖𝑧𝑘+1 − 𝑦𝑘+1‖22

)︁
.

88

Since 𝑔𝑘(𝑧) is (1 + 𝐴𝑘𝜇𝜓)-strongly convex we can estimate the first term in the r.h.s. of

the previous inequality as follows:

𝑔𝑘(𝑧
𝑘+1) ≥ 𝑔𝑘(𝑧) +

1 + 𝐴𝑘𝜇𝜓
2

‖𝑧𝑘+1 − 𝑧𝑘‖22
(4.62)
≥ 𝐴𝑘𝜓(𝑦𝑘) +

1 + 𝐴𝑘𝜇𝜓
2

‖𝑧𝑘+1 − 𝑧𝑘‖22

+
𝑘−1∑︁
𝑙=0

𝐴𝑙𝜇𝜓
2
‖𝑦𝑙 − 𝑦𝑙+1‖22 −

𝑘∑︁
𝑙=0

𝛼𝑙
2𝜇𝜓

⃦⃦⃦
∇̃Ψ(𝑦𝑙, 𝜉𝑙)−∇𝜓(𝑦𝑙)

⃦⃦⃦2
2

Applying 𝜇𝜓-strong convexity of 𝜓 and the relation

𝑦𝑘+1 =
𝐴𝑘𝑦

𝑘 + 𝛼𝑘+1𝑧
𝑘+1

𝐴𝑘+1

=
𝐴𝑘𝑦

𝑘 + 𝛼𝑘+1𝑧
𝑘

𝐴𝑘+1

+
𝛼𝑘+1

𝐴𝑘+1

(︀
𝑧𝑘+1 − 𝑧𝑘

)︀
= 𝑦𝑘+1 +

𝛼𝑘+1

𝐴𝑘+1

(︀
𝑧𝑘+1 − 𝑧𝑘

)︀
to the previous inequality we get

𝑔𝑘(𝑧
𝑘+1) ≥ 𝐴𝑘𝜓(𝑦𝑘+1) + ⟨∇𝜓(𝑦𝑘+1), 𝐴𝑘(𝑦

𝑘 − 𝑦𝑘+1)⟩+
𝐴𝑘𝜇𝜓

2
‖𝑦𝑘 − 𝑦𝑘+1‖22

+
𝐴2
𝑘+1(1 + 𝐴𝑘𝜇𝜓)

2𝛼2
𝑘+1

‖𝑦𝑘+1 − 𝑦𝑘+1‖22 +
𝑘−1∑︁
𝑙=0

𝐴𝑙𝜇𝜓
2
‖𝑦𝑙 − 𝑦𝑙+1‖22

−
𝑘∑︁
𝑙=0

𝛼𝑙
2𝜇𝜓

⃦⃦⃦
∇̃Ψ(𝑦𝑙, 𝜉𝑙)−∇𝜓(𝑦𝑙)

⃦⃦⃦2
2
. (4.199)

Next, we use (4.199) in (4.198) together with relations 𝐴𝑘+1 = 𝐴𝑘+𝛼𝑘+1, 𝐴𝑘+1(1+𝐴𝑘𝜇𝜓) =

𝛼2
𝑘+1𝐿𝜓 and 𝐴𝑘(𝑦𝑘 − 𝑦𝑘+1) + 𝛼𝑘+1(𝑧

𝑘+1 − 𝑦𝑘+1) = 𝐴𝑘+1(𝑦
𝑘+1 − 𝑦𝑘+1):

𝑔𝑘+1(𝑧
𝑘+1) ≥ 𝐴𝑘+1𝜓(𝑦𝑘+1) + ⟨∇𝜓(𝑦𝑘+1), 𝐴𝑘(𝑦

𝑘 − 𝑦𝑘+1) + 𝛼𝑘+1(𝑧
𝑘+1 − 𝑦𝑘+1)⟩

+
𝐴2
𝑘+1(1 + 𝐴𝑘𝜇𝜓)

2𝛼2
𝑘+1

‖𝑦𝑘+1 − 𝑦𝑘+1‖22 +
𝑘∑︁
𝑙=0

𝐴𝑙𝜇𝜓
2
‖𝑦𝑙 − 𝑦𝑙+1‖22

−
𝑘∑︁
𝑙=0

𝛼𝑙
2𝜇𝜓

⃦⃦⃦
∇̃Ψ(𝑦𝑙, 𝜉𝑙)−∇𝜓(𝑦𝑙)

⃦⃦⃦2
2

+𝛼𝑘+1

⟨
∇̃Ψ(𝑦𝑙+1, 𝜉𝑙+1)−∇𝜓(𝑦𝑙+1), 𝑧𝑘+1 − 𝑦𝑘+1

⟩
+
𝛼𝑘+1𝜇𝜓

2
‖𝑧𝑘+1 − 𝑦𝑘+1‖22

= 𝐴𝑘+1

(︂
𝜓(𝑦𝑘+1) + ⟨∇𝜓(𝑦𝑘+1), 𝑦𝑘+1 − 𝑦𝑘+1⟩+

𝐿𝜓
2
‖𝑦𝑘+1 − 𝑦𝑘+1‖22

)︂
+

𝑘∑︁
𝑙=0

𝐴𝑙𝜇𝜓
2
‖𝑦𝑙 − 𝑦𝑙+1‖22 −

𝑘∑︁
𝑙=0

𝛼𝑙
2𝜇𝜓

⃦⃦⃦
∇̃Ψ(𝑦𝑙, 𝜉𝑙)−∇𝜓(𝑦𝑙)

⃦⃦⃦2
2

+𝛼𝑘+1

⟨
∇̃Ψ(𝑦𝑙+1, 𝜉𝑙+1)−∇𝜓(𝑦𝑙+1), 𝑧𝑘+1 − 𝑦𝑘+1

⟩
+
𝛼𝑘+1𝜇𝜓

2
‖𝑧𝑘+1 − 𝑦𝑘+1‖22.

89

From 𝐿𝜓-smoothness of 𝜓 we have

𝜓(𝑦𝑘+1) + ⟨∇𝜓(𝑦𝑘+1), 𝑦𝑘+1 − 𝑦𝑘+1⟩+
𝐿𝜓
2
‖𝑦𝑘+1 − 𝑦𝑘+1‖22 ≥ 𝜓(𝑦𝑘+1).

Next, Fenchel-Young inequality (see inequality (4.123)) implies that⟨
∇̃Ψ(𝑦𝑙+1, 𝜉𝑙+1)−∇𝜓(𝑦𝑙+1), 𝑧𝑘+1 − 𝑦𝑘+1

⟩
≥ − 1

2𝜇𝜓

⃦⃦⃦
∇̃Ψ(𝑦𝑙+1, 𝜉𝑙+1)−∇𝜓(𝑦𝑙+1)

⃦⃦⃦2
2
− 𝜇𝜓

2
‖𝑧𝑘+1 − 𝑦𝑘+1‖22.

Putting all together and rearranging the terms we get

𝑔𝑘+1(𝑧
𝑘+1) ≥ 𝐴𝑘+1𝜓(𝑦𝑘+1) +

𝑘∑︁
𝑙=0

𝐴𝑙𝜇𝜓
2
‖𝑦𝑙 − 𝑦𝑙+1‖22 −

𝑘+1∑︁
𝑙=0

𝛼𝑙
2𝜇𝜓

⃦⃦⃦
∇̃Ψ(𝑦𝑙, 𝜉𝑙)−∇𝜓(𝑦𝑙)

⃦⃦⃦2
2
.

Proof of Lemma 4.5.2

The idea behind the proof of this lemma is exactly the same as for Lemma 4.9.8. We

start with applying Cauchy-Schwarz inequality to the second and the third terms, i.e.

ℎ𝛿(𝑅𝑘 + ̃︀𝑅𝑘) ≤ 𝐷ℎ2𝛿2 +
𝑅2
𝑘

4𝐷
+𝐷ℎ2𝛿2 +

̃︀𝑅2
𝑘

4𝐷
= 2𝐷ℎ2𝛿2 +

𝑅2
𝑘 + ̃︀𝑅2

𝑘

4𝐷
,

𝑢⟨𝜂𝑘, 𝑎𝑘 + 𝑎̃𝑘⟩ ≤ 𝑢‖𝜂𝑘‖2 · ‖𝑎𝑘‖2 + 𝑢‖𝜂𝑘‖2 · ‖𝑎̃𝑘‖2 ≤ 𝑢‖𝜂𝑘‖2𝑅𝑘 + 𝑢‖𝜂𝑘‖2 ̃︀𝑅𝑘

≤ 𝑢2𝐷‖𝜂𝑘‖22 +
𝑅2
𝑘

4𝐷
+ 𝑢2𝐷‖𝜂𝑘‖22 +

̃︀𝑅2
𝑘

4𝐷
≤ 2𝑢2𝐷‖𝜂𝑘‖22 +

𝑅2
𝑘 + ̃︀𝑅2

𝑘

4𝐷
,

in the right-hand side of (4.63):

𝐴𝑙𝑅
2
𝑙 +

𝑙−1∑︁
𝑘=0

𝐴𝑘 ̃︀𝑅2
𝑘 ≤ 𝐴+ 2𝐷ℎ2𝛿2

𝑙−1∑︁
𝑘=0

𝛼𝑘+1⏟ ⏞
𝐴𝑙

+
1

2𝐷

𝑙−1∑︁
𝑘=0

𝛼𝑘+1(𝑅
2
𝑘 + ̃︀𝑅2

𝑘)

+
(︀
𝑐+ 2𝐷𝑢2

)︀ 𝑙−1∑︁
𝑘=0

𝛼𝑘+1‖𝜂𝑘‖22. (4.200)

Using Lemma 4.9.5 we get that with probability at least 1− 𝛽
𝑁

‖𝜂𝑘‖2 ≤
√

2

(︃
1 +

√︃
3 ln

𝑁

𝛽

)︃
𝜎𝑘 ≤

√
2

(︃
1 +

√︃
3 ln

𝑁

𝛽

)︃ √
𝐶𝜀

𝑁
(︁

1 +
√︁

3 ln 𝑁
𝛽

)︁
=
√

2𝐶𝜀. (4.201)

Using union bound and 𝛼𝑘+1 ≤ 𝐷𝐴𝑘 we get that with probability ≥ 1− 𝛽 inequalities

𝐴𝑙𝑅
2
𝑙 +

𝑙−1∑︁
𝑘=0

𝐴𝑘 ̃︀𝑅2
𝑘 ≤ 𝐴+ 2𝐷ℎ2𝛿2𝐴𝑙 +

1

2

𝑙−1∑︁
𝑘=0

𝐴𝑘(𝑅
2
𝑘 + ̃︀𝑅2

𝑘) + 2𝐶
(︀
𝑐+ 2𝐷𝑢2

)︀
𝐴𝑙𝜀,

𝐴𝑙𝑅
2
𝑙 +

1

2

𝑙−1∑︁
𝑘=0

𝐴𝑘 ̃︀𝑅2
𝑘 ≤ 𝐴+ 2𝐷ℎ2𝛿2𝐴𝑙 +

1

2

𝑙−1∑︁
𝑘=0

𝐴𝑘𝑅
2
𝑘 + 2𝐶

(︀
𝑐+ 2𝐷𝑢2

)︀
𝐴𝑙𝜀 (4.202)

90

hold for all 𝑙 = 1, . . . , 𝑁 simultaneously. Therefore, with probability ≥ 1− 𝛽 the inequality

𝐴𝑙𝑅
2
𝑙 ≤ 𝐴+ 2𝐷ℎ2𝛿2𝐴𝑙 + 2𝐶

(︀
𝑐+ 2𝐷𝑢2

)︀
𝐴𝑙𝜀+

1

2

𝑙−1∑︁
𝑘=0

𝐴𝑘𝑅
2
𝑘

≤ 3

2
𝐴+ 2𝐷ℎ2𝛿2

(︂
𝐴𝑙 +

1

2
𝐴𝑙−1

)︂
⏟ ⏞

≤ 3
2
𝐴𝑙

+2𝐶
(︀
𝑐+ 2𝐷𝑢2

)︀
𝜀

(︂
𝐴𝑙 +

1

2
𝐴𝑙−1

)︂
⏟ ⏞

≤ 3
2
𝐴𝑙

+
3

2
· 1

2

𝑙−2∑︁
𝑘=0

𝐴𝑘𝑅
2
𝑘

≤ 3

2

(︃
𝐴+ 2𝐷ℎ2𝛿2𝐴𝑙 + 2𝐶

(︀
𝑐+ 2𝐷𝑢2

)︀
𝐴𝑙𝜀+

1

2

𝑙−2∑︁
𝑘=0

𝐴𝑘𝑅
2
𝑘

)︃
,

holds for all 𝑙 = 1, . . . , 𝑁 simultaneously. Unrolling the recurrence we get that with

probability ≥ 1− 𝛽

𝐴𝑙𝑅
2
𝑙 ≤

(︂
3

2

)︂𝑙 (︀
𝐴+ 2𝐷ℎ2𝛿2𝐴𝑙 + 2𝐶

(︀
𝑐+ 2𝐷𝑢2

)︀
𝐴𝑙𝜀
)︀
,

for all 𝑙 = 1, . . . , 𝑁 . We emphasize that it is very rough estimate, but as for the convex

case we show next that such a bound does not spoil the final result too much. It implies

that with probability ≥ 1− 𝛽
𝑙−1∑︁
𝑘=0

𝐴𝑘𝑅
2
𝑘 ≤ 𝑙

(︂
3

2

)︂𝑙 (︀
𝐴+ 2𝐷ℎ2𝛿2𝐴𝑙 + 2𝐶

(︀
𝑐+ 2𝐷𝑢2

)︀
𝐴𝑙𝜀
)︀
, (4.203)

for all 𝑙 = 1, . . . , 𝑁 simultaneously. Moreover, since (4.202) holds we have in the same

probability event that inequalities

𝑙−1∑︁
𝑘=0

𝐴𝑘 ̃︀𝑅2
𝑘 ≤

(︃
𝑙

(︂
3

2

)︂𝑙
+ 2

)︃(︀
𝐴+ 2𝐷ℎ2𝛿2𝐴𝑙 + 2𝐶

(︀
𝑐+ 2𝐷𝑢2

)︀
𝐴𝑙𝜀
)︀

(4.204)

hold with probability ≥ 1 − 𝛽 for all 𝑙 = 1, . . . , 𝑁 simultaneously with (4.203). Next

we apply delicate result from [92] which is presented in Section 4.9.3 as Lemma 4.9.4.

We consider random variables 𝜉𝑘 = 𝛼𝑘+1⟨𝜂𝑘, 𝑎𝑘 + 𝑎̃𝑘⟩. Note that E
[︀
𝜉𝑘 | 𝜉0, . . . , 𝜉𝑘−1

]︀
=

𝛼𝑘+1

⟨︀
E
[︀
𝜂𝑘 | 𝜂0, . . . , 𝜂𝑘−1

]︀
, 𝑎𝑘
⟩︀

= 0 and

E

[︃
exp

(︃
(𝜉𝑘)2

2𝜎2
𝑘𝛼

2
𝑘+1(𝑅

2
𝑘 + ̃︀𝑅2

𝑘)

)︃
| 𝜉0, . . . , 𝜉𝑘−1

]︃
≤ E

[︃
exp

(︃
𝛼2
𝑘+1‖𝜂𝑘‖22‖𝑎𝑘 + 𝑎̃𝑘‖22
2𝜎2

𝑘𝛼
2
𝑘+1(𝑅

2
𝑘 + ̃︀𝑅2

𝑘)

)︃
| 𝜂0, . . . , 𝜂𝑘−1

]︃

= E

[︂
exp

(︂
‖𝜂𝑘‖22
𝜎2
𝑘

)︂
| 𝜂0, . . . , 𝜂𝑘−1

]︂
≤ exp(1)

due to Cauchy-Schwarz inequality and assumptions of the lemma. If we denote 𝜎̂2
𝑘 =

2𝜎2
𝑘𝛼

2
𝑘+1(𝑅

2
𝑘 + ̃︀𝑅2

𝑘) and apply Lemma 4.9.4 with

𝐵 = 8𝐻𝐶𝐷𝑅2
0

(︃
𝑁

(︂
3

2

)︂𝑁
+ 1

)︃(︀
𝐴+ 2𝐷ℎ2𝐺2𝑅2

0 + 2𝐶
(︀
𝑐+ 2𝐷𝑢2

)︀
𝐻𝑅2

0

)︀

91

and 𝑏 = 𝜎̂2
0, we get that for all 𝑙 = 1, . . . , 𝑁 with probability ≥ 1− 𝛽

𝑁

either
𝑙−1∑︁
𝑘=0

𝜎̂2
𝑘 ≥ 𝐵 or

⃒⃒⃒⃒
⃒
𝑙−1∑︁
𝑘=0

𝜉𝑘

⃒⃒⃒⃒
⃒ ≤ 𝐶1

⎯⎸⎸⎷ 𝑙−1∑︁
𝑘=0

𝜎̂2
𝑘

(︂
ln

(︂
𝑁

𝛽

)︂
+ ln ln

(︂
𝐵

𝑏

)︂)︂
with some constant 𝐶1 > 0 which does not depend on 𝐵 or 𝑏. Using union bound we

obtain that with probability ≥ 1− 𝛽

either
𝑙−1∑︁
𝑘=0

𝜎̂2
𝑘 ≥ 𝐵 or

⃒⃒⃒⃒
⃒
𝑙−1∑︁
𝑘=0

𝜉𝑘

⃒⃒⃒⃒
⃒ ≤ 𝐶1

⎯⎸⎸⎷ 𝑙−1∑︁
𝑘=0

𝜎̂2
𝑘

(︂
ln

(︂
𝑁

𝛽

)︂
+ ln ln

(︂
𝐵

𝑏

)︂)︂

and it holds for all 𝑙 = 1, . . . , 𝑁 simultaneously. Note that 𝛼𝑘+1 ≤ 𝐴𝑘+1, 𝜀 ≤ 𝐻𝑅2
0

𝐴𝑁
,

𝛿 ≤ 𝐺𝑅0

𝑁
√
𝐴𝑁

and with probability at least 1− 𝛽

𝑙−1∑︁
𝑘=0

𝜎̂2
𝑘 = 2

𝑙−1∑︁
𝑘=0

𝜎2
𝑘𝛼

2
𝑘+1(𝑅

2
𝑘 + ̃︀𝑅2

𝑘) ≤
2𝐶𝜀

𝑁2
(︁

1 +
√︁

3 ln 𝑁
𝛽

)︁2 𝑙−1∑︁
𝑘=0

𝐴𝑘+1 ·𝐷𝐴𝑘(𝑅2
𝑘 + ̃︀𝑅2

𝑘)

≤ 2𝜀𝐶𝐷𝐴𝑁

𝑙−1∑︁
𝑘=0

𝐴𝑘(𝑅
2
𝑘 + ̃︀𝑅2

𝑘)

(4.203)+(4.204)
≤ 4𝜀𝐶𝐷𝐴𝑁

(︃
𝑙

(︂
3

2

)︂𝑙
+ 1

)︃(︀
𝐴+ 2𝐷ℎ2𝛿2𝐴𝑙 + 2𝐶

(︀
𝑐+ 2𝐷𝑢2

)︀
𝐴𝑙𝜀
)︀

≤ 4𝐻𝐶𝐷𝑅2
0

(︃
𝑁

(︂
3

2

)︂𝑁
+ 1

)︃(︀
𝐴+ 2𝐷ℎ2𝐺2𝑅2

0 + 2𝐶
(︀
𝑐+ 2𝐷𝑢2

)︀
𝐻𝑅2

0

)︀
=

𝐵

2

for all 𝑙 = 1, . . . , 𝑁 simultaneously. Using union bound again we get that with probability

≥ 1− 2𝛽 the inequality⃒⃒⃒⃒
⃒
𝑙−1∑︁
𝑘=0

𝜉𝑘

⃒⃒⃒⃒
⃒ ≤ 𝐶1

⎯⎸⎸⎷ 𝑙−1∑︁
𝑘=0

𝜎̂2
𝑘

(︂
ln

(︂
𝑁

𝛽

)︂
+ ln ln

(︂
𝐵

𝑏

)︂)︂
(4.205)

holds for all 𝑙 = 1, . . . , 𝑁 simultaneously.

Note that we also proved that (4.201) is in the same event together with (4.205) and

holds with probability ≥ 1−2𝛽. Putting all together in (4.63), we get that with probability

92

at least 1− 2𝛽 the inequality

𝐴𝑙𝑅
2
𝑙 +

𝑙−1∑︁
𝑘=0

𝐴𝑘 ̃︀𝑅2
𝑘

(4.63)
≤ 𝐴+ ℎ𝛿

𝑙−1∑︁
𝑘=0

𝛼𝑘+1(𝑅𝑘 + ̃︀𝑅𝑘) + 𝑢
𝑙−1∑︁
𝑘=0

𝛼𝑘+1⟨𝜂𝑘, 𝑎𝑘 + 𝑎̃𝑘⟩

+𝑐
𝑙−1∑︁
𝑘=0

𝛼𝑘+1‖𝜂𝑘‖22

(4.201)+(4.205)
≤ 𝐴+ ℎ𝛿

𝑙−1∑︁
𝑘=0

𝛼𝑘+1(𝑅𝑘 + ̃︀𝑅𝑘)

+𝑢𝐶1

⎯⎸⎸⎷ 𝑙−1∑︁
𝑘=0

𝜎̂2
𝑘

(︂
ln

(︂
𝑁

𝛽

)︂
+ ln ln

(︂
𝐵

𝑏

)︂)︂
+ 2𝑐𝐶𝜀𝐴𝑙

holds for all 𝑙 = 1, . . . , 𝑁 simultaneously. For brevity, we introduce new notation: 𝑔(𝑁) =
ln(𝑁𝛽)+ln ln(𝐵𝑏)(︁
1+

√︁
3 ln(𝑁𝛽)

)︁2 ≈ 1 (neglecting constant factor). Using our assumptions 𝜎2
𝑘 ≤ 𝐶𝜀

𝑁2
(︁
1+

√︁
3 ln(𝑁𝛽)

)︁2 ,

𝜀 ≤ 𝐻𝑅2
0

𝐴𝑁
, 𝛿 ≤ 𝐺𝑅0

𝑁
√
𝐴𝑁

and definition 𝜎̂2
𝑘 = 2𝜎2

𝑘𝛼
2
𝑘+1(𝑅

2
𝑘 + ̃︀𝑅2

𝑘) we obtain that with probability

at least 1− 2𝛽 the inequality

𝐴𝑙𝑅
2
𝑙 +

𝑙−1∑︁
𝑘=0

𝐴𝑘 ̃︀𝑅2
𝑘 ≤ 𝐴+ ℎ𝛿

𝑙−1∑︁
𝑘=0

𝛼𝑘+1(𝑅𝑘 + ̃︀𝑅𝑘) + 𝑢
𝑙−1∑︁
𝑘=0

𝛼𝑘+1⟨𝜂𝑘, 𝑎𝑘 + 𝑎̃𝑘⟩

+𝑐
𝑙−1∑︁
𝑘=0

𝛼𝑘+1‖𝜂𝑘‖22

≤ 𝐴+
ℎ𝐺𝑅0

𝑁
√
𝐴𝑁

𝑙−1∑︁
𝑘=0

𝛼𝑘+1(𝑅𝑘 + ̃︀𝑅𝑘)

+
𝑢𝐶1𝑅0

√︀
2𝐻𝐶𝑔(𝑁)

𝑁
√
𝐴𝑁

⎯⎸⎸⎷ 𝑙−1∑︁
𝑘=0

𝛼2
𝑘+1(𝑅

2
𝑘 + ̃︀𝑅2

𝑘) + 2𝑐𝐻𝐶𝑅2
0

≤
(︂
𝐴

𝑅2
0

+ 2𝑐𝐻𝐶

)︂
𝑅2

0

+

(︁
ℎ𝐺+ 𝑢𝐶1

√︀
2𝐻𝐶𝑔(𝑁)

)︁
𝑅0

𝑁
√
𝐴𝑁

𝑙−1∑︁
𝑘=0

𝛼𝑘+1(𝑅𝑘 + ̃︀𝑅𝑘) (4.206)

holds for all 𝑙 = 1, . . . , 𝑁 simultaneously, where in the last row we applied well-known

inequality:
√︀∑︀𝑚

𝑖=1 𝑎
2
𝑖 ≤

∑︀𝑚
𝑖=1 𝑎𝑖 for 𝑎𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚. Next we use Lemma 4.9.13

with 𝐴 = 𝐴
𝑅2

0
+ 2𝑐𝐻𝐶, 𝐵 = ℎ𝐺 + 𝑢𝐶1

√︀
2𝐻𝐶𝑔(𝑁), 𝑟𝑘 = 𝑅𝑘, 𝑟𝑘 = ̃︀𝑅𝑘 and get that with

probability at least 1− 2𝛽 inequalities

𝑅𝑙 ≤
𝐽𝑅0√
𝐴𝑙
, ̃︀𝑅𝑙−1 ≤

𝐽𝑅0√
𝐴𝑙−1

93

hold for all 𝑙 = 1, . . . , 𝑁 simultaneously with

𝐽 = max

⎧⎨⎩√︀𝐴0,
3𝐵1𝐷 +

√︁
9𝐵2

1𝐷
2 + 4𝐴

𝑅2
0

+ 8𝑐𝐻𝐶

2

⎫⎬⎭ , 𝐵1 = ℎ𝐺+ 𝑢𝐶1

√︀
2𝐻𝐶𝑔(𝑁).

It implies that with probability at least 1− 2𝛽 the inequality

𝐴+ ℎ𝛿

𝑙−1∑︁
𝑘=0

𝛼𝑘+1(𝑅𝑘 + ̃︀𝑅𝑘) + 𝑢

𝑙−1∑︁
𝑘=0

𝛼𝑘+1⟨𝜂𝑘, 𝑎𝑘 + 𝑎̃𝑘⟩+ 𝑐
𝑙−1∑︁
𝑘=0

𝛼𝑘+1‖𝜂𝑘‖22

≤
(︁
𝐴
𝑅2

0
+ 2𝑐𝐻𝐶

)︁
𝑅2

0 +
2𝐽

(︁
ℎ𝐺+𝑢𝐶1

√
2𝐻𝐶𝑔(𝑁)

)︁
𝑅2

0

𝑁
√
𝐴𝑁

𝑙−1∑︀
𝑘=0

𝛼𝑘+1√
𝐴𝑘

≤ 𝐴+

(︂
2𝑐𝐻𝐶 +

2𝐽𝐷
(︁
ℎ𝐺+𝑢𝐶1

√
2𝐻𝐶𝑔(𝑁)

)︁
𝑁
√
𝐴𝑁

𝑙−1∑︀
𝑘=0

√
𝐴𝑘

)︂
𝑅2

0

≤ 𝐴+

(︂
2𝑐𝐻𝐶 +

2𝐽𝐷
(︁
ℎ𝐺+𝑢𝐶1

√
2𝐻𝐶𝑔(𝑁)

)︁
𝑁
√
𝐴𝑁

𝑙
√
𝐴𝑙−1

)︂
𝑅2

0

≤ 𝐴+
(︁

2𝑐𝐻𝐶 + 2𝐽𝐷
(︁
ℎ𝐺+ 𝑢𝐶1

√︀
2𝐻𝐶𝑔(𝑁)

)︁)︁
𝑅2

0

holds for all 𝑙 = 1, . . . , 𝑁 simultaneously.

Proof of Theorem 4.5.6

From Lemma 4.5.1 we have

𝐴𝑘𝜓(𝑦𝑘) ≤ 𝑔𝑘(𝑧
𝑘)−

𝑘−1∑︁
𝑙=0

𝐴𝑙𝜇𝜓
2
‖𝑦𝑙 − 𝑦𝑙+1‖22 +

𝑘∑︁
𝑙=0

𝛼𝑙
2𝜇𝜓

⃦⃦⃦
∇̃Ψ(𝑦𝑙, 𝜉𝑙)−∇𝜓(𝑦𝑙)

⃦⃦⃦2
2

(4.207)

for all 𝑘 ≥ 0. By definition of 𝑧𝑘 we get that

𝑔𝑘(𝑧
𝑘) = min

𝑧∈R𝑛

{︃
1

2
‖𝑧 − 𝑧0‖22 +

𝑘∑︁
𝑙=0

𝛼𝑙

(︁
𝜓(𝑦𝑙) + ⟨∇̃Ψ(𝑦𝑙, 𝜉𝑙), 𝑧 − 𝑦𝑙⟩+

𝜇𝜓
2
‖𝑧 − 𝑦𝑙‖22

)︁}︃

≤ 1

2
‖𝑦* − 𝑧0‖22 +

𝑘∑︁
𝑙=0

𝛼𝑙

(︁
𝜓(𝑦𝑙) + ⟨∇̃Ψ(𝑦𝑙, 𝜉𝑙), 𝑦* − 𝑦𝑙⟩+

𝜇𝜓
2
‖𝑦* − 𝑦𝑙‖22

)︁
=

1

2
‖𝑦* − 𝑧0‖22 +

𝑘∑︁
𝑙=0

𝛼𝑙

(︁
𝜓(𝑦𝑙) + ⟨∇𝜓(𝑦𝑙), 𝑦* − 𝑦𝑙⟩+

𝜇𝜓
2
‖𝑦* − 𝑦𝑙‖22

)︁
+

𝑘∑︁
𝑙=0

𝛼𝑙⟨∇̃Ψ(𝑦𝑙, 𝜉𝑙)−∇𝜓(𝑦𝑙), 𝑦* − 𝑦𝑙⟩

≤ 1

2
‖𝑦* − 𝑦0‖22 + 𝐴𝑘𝜓(𝑦*) +

𝑘∑︁
𝑙=0

𝛼𝑙⟨∇̃Ψ(𝑦𝑙, 𝜉𝑙)−∇𝜓(𝑦𝑙), 𝑦* − 𝑦𝑙⟩, (4.208)

where the last inequality follows from 𝜇𝜓-strong convexity of 𝜓 and 𝐴𝑘 =
∑︀𝑘

𝑙=0 𝛼𝑙. For

brevity, we introduce new notation: 𝑅𝑘
def
= ‖𝑦𝑘 − 𝑦*‖2 and ̃︀𝑅𝑘

def
= ‖𝑦𝑘 − 𝑦𝑘+1‖2 for all 𝑘 ≥ 0.

94

Using this and another consequence of strong convexity, i.e. 𝜓(𝑦)− 𝜓(𝑦*) ≥ 𝜇𝜓
2
‖𝑦 − 𝑦*‖22,

we obtain

𝐴𝑘𝜇𝜓
2

𝑅2
𝑘 +

𝑘−1∑︁
𝑙=0

𝐴𝑙𝜇𝜓
2
̃︀𝑅2
𝑙 ≤ 𝐴𝑘

(︀
𝜓(𝑦𝑘)− 𝜓(𝑦*)

)︀
+

𝑘−1∑︁
𝑙=0

𝐴𝑙𝜇𝜓
2
̃︀𝑅2
𝑙

(4.207)+(4.208)
≤ 1

2
𝑅2

0 +
𝑘∑︁
𝑙=0

𝛼𝑙⟨∇̃Ψ(𝑦𝑙, 𝜉𝑙)−∇𝜓(𝑦𝑙), 𝑦* − 𝑦𝑙⟩

+
𝑘∑︁
𝑙=0

𝛼𝑙
2𝜇𝜓

⃦⃦⃦
∇̃Ψ(𝑦𝑙, 𝜉𝑙)−∇𝜓(𝑦𝑙)

⃦⃦⃦2
2
. (4.209)

From Cauchy-Schwarz inequality and the well-known fact that ‖𝑎+ 𝑏‖22 ≤ 2𝑎2 + 2𝑏2 for all

𝑎, 𝑏 ∈ R𝑛 we have

⟨∇̃Ψ(𝑦𝑙, 𝜉𝑙)−∇𝜓(𝑦𝑙), 𝑦* − 𝑦𝑙⟩ =
⟨
E
[︁
∇̃Ψ(𝑦𝑙, 𝜉𝑙)

]︁
−∇𝜓(𝑦𝑙), 𝑦* − 𝑦𝑙

⟩
+
⟨
∇̃Ψ(𝑦𝑙, 𝜉𝑙)− E

[︁
∇̃Ψ(𝑦𝑙, 𝜉𝑙)

]︁
, 𝑦* − 𝑦𝑙

⟩
(4.42)
≤ 𝛿‖𝑦* − 𝑦𝑙‖2 +

⟨
∇̃Ψ(𝑦𝑙, 𝜉𝑙)− E

[︁
∇̃Ψ(𝑦𝑙, 𝜉𝑙)

]︁
, 𝑦* − 𝑦𝑙

⟩
,⃦⃦⃦

∇̃Ψ(𝑦𝑙, 𝜉𝑙)−∇𝜓(𝑦𝑙)
⃦⃦⃦2
2
≤ 2

⃦⃦⃦
E
[︁
∇̃Ψ(𝑦𝑙, 𝜉𝑙)

]︁
−∇𝜓(𝑦𝑙)

⃦⃦⃦2
2

+2
⃦⃦⃦
∇̃Ψ(𝑦𝑙, 𝜉𝑙)− E

[︁
∇̃Ψ(𝑦𝑙, 𝜉𝑙)

]︁⃦⃦⃦2
2

(4.42)
≤ 2𝛿2 + 2

⃦⃦⃦
∇̃Ψ(𝑦𝑙, 𝜉𝑙)− E

[︁
∇̃Ψ(𝑦𝑙, 𝜉𝑙)

]︁⃦⃦⃦2
2

for all 𝑙 ≥ 0. Next, we introduce new notation

𝐴
def
=

1

2
𝑅2

0 + 𝛿𝛼0𝑅0 +
𝐴𝑁𝛿

2

𝜇𝜓
+ 𝛼0

⟨
∇̃Ψ(𝑦0, 𝜉0)− E

[︁
∇̃Ψ(𝑦0, 𝜉0)

]︁
, 𝑦* − 𝑦0

⟩
+
𝛼0

𝜇𝜓

⃦⃦⃦
∇̃Ψ(𝑦0, 𝜉0)− E

[︁
∇̃Ψ(𝑦0, 𝜉0)

]︁⃦⃦⃦2
2
. (4.210)

95

Putting all together in (4.209) we get

𝐴𝑘𝜇𝜓
2

𝑅2
𝑘 +

𝑘−1∑︁
𝑙=0

𝐴𝑙𝜇𝜓
2
̃︀𝑅2
𝑙 ≤

1

2
𝑅2

0 + 𝛿

𝑘∑︁
𝑙=0

𝛼𝑙‖𝑦* − 𝑦𝑙‖2

+
𝑘∑︁
𝑙=0

𝛼𝑙

⟨
∇̃Ψ(𝑦𝑙, 𝜉𝑙)− E

[︁
∇̃Ψ(𝑦𝑙, 𝜉𝑙)

]︁
, 𝑦* − 𝑦𝑙

⟩
+
𝛿2

𝜇𝜓

𝑘∑︁
𝑙=0

𝛼𝑙 +
1

𝜇𝜓

𝑘∑︁
𝑙=0

𝛼𝑙

⃦⃦⃦
∇̃Ψ(𝑦𝑙, 𝜉𝑙)− E

[︁
∇̃Ψ(𝑦𝑙, 𝜉𝑙)

]︁⃦⃦⃦2
2

≤ 𝐴+ 𝛿
𝑘−1∑︁
𝑙=0

𝛼𝑙+1‖𝑦* − 𝑦𝑙+1‖2

+
𝑘−1∑︁
𝑙=0

𝛼𝑙+1

⟨
∇̃Ψ(𝑦𝑙+1, 𝜉𝑙+1)− E

[︁
∇̃Ψ(𝑦𝑙+1, 𝜉𝑙+1)

]︁
, 𝑦* − 𝑦𝑙+1

⟩
+

1

𝜇𝜓

𝑘−1∑︁
𝑙=0

𝛼𝑙+1

⃦⃦⃦
∇̃Ψ(𝑦𝑙+1, 𝜉𝑙+1)− E

[︁
∇̃Ψ(𝑦𝑙+1, 𝜉𝑙+1)

]︁⃦⃦⃦2
2
.(4.211)

To simplify previous inequality we define new vectors 𝑎𝑙 def
= 𝑦* − 𝑦𝑙, 𝑎̃𝑙 def

= 𝑦𝑙 − 𝑦𝑙+1,

𝜂𝑙
def
= ∇̃Ψ(𝑦𝑙+1, 𝜉𝑙+1)− E

[︁
∇̃Ψ(𝑦𝑙+1, 𝜉𝑙+1)

]︁
for all 𝑙 ≥ 0. Note that ‖𝑎𝑙‖2 = 𝑅𝑙, ‖𝑎̃𝑙‖2 = ̃︀𝑅𝑙

and 𝑎̃0 = 𝑦0 − 𝑦1 = 0. Using this we can rewrite (4.211) in the following form:

𝐴𝑘𝑅
2
𝑘 +

𝑘−1∑︁
𝑙=0

𝐴𝑙 ̃︀𝑅2
𝑙 ≤ 𝐴+

2𝛿

𝜇𝜓

𝑘−1∑︁
𝑙=0

𝛼𝑙+1(𝑅𝑙 + ̃︀𝑅𝑙) +
2

𝜇𝜓

𝑘−1∑︁
𝑙=0

𝛼𝑙+1⟨𝜂𝑙, 𝑎𝑙 + 𝑎̃𝑙⟩

+
2

𝜇2
𝜓

𝑘−1∑︁
𝑙=0

𝛼𝑙+1‖𝜂𝑙‖22, (4.212)

where we used 𝐴 def
= 2𝐴

𝜇𝜓
and triangle inequality, i.e. ‖𝑦*−𝑦𝑙+1‖2 ≤ ‖𝑦*−𝑦𝑙‖2+‖𝑦𝑙−𝑦𝑙+1‖2 =

𝑅𝑙+ ̃︀𝑅𝑙. Next, we apply Lemma 4.5.2 with ℎ = 𝑢 = 2
𝜇𝜓

, 𝑐 = 2
𝜇2𝜓

and get that with probability

at least 1− 2𝛽

𝑅2
𝑁 ≤

𝐽2𝑅2
0

𝐴𝑁
(4.213)

where

𝑔(𝑁) =
ln
(︁
𝑁
𝛽

)︁
+ ln ln

(︀
𝐵
𝑏

)︀
(︂

1 +

√︂
3 ln

(︁
𝑁
𝛽

)︁)︂2 , 𝑏 =
2𝜎2

1𝛼
2
1𝑅

2
0

𝑟1
, 𝐷

(4.229)
= 1 +

𝜇𝜓
𝐿𝜓

+

√︂
1 +

𝜇𝜓
𝐿𝜓

,

𝐵 = 8𝐻𝐶

(︂
𝐿𝜓
𝜇𝜓

)︂3/2

𝐷𝑅2
0

(︃
𝑁

(︂
3

2

)︂𝑁
+ 1

)︃(︃
𝐴+ 2𝐷ℎ2𝐺2𝑅2

0

+2𝐶

(︂
𝐿𝜓
𝜇𝜓

)︂3/2 (︀
𝑐+ 2𝐷𝑢2

)︀
𝐻𝑅2

0

)︃
,

96

𝐽 = max

⎧⎪⎪⎨⎪⎪⎩
√︀
𝐴0,

3𝐵1𝐷 +

√︂
9𝐵2

1𝐷
2 + 4𝐴

𝑅2
0

+ 8𝑐𝐻𝐶
(︁
𝐿𝜓
𝜇𝜓

)︁3/2

2

⎫⎪⎪⎬⎪⎪⎭ ,

𝐵1 = ℎ𝐺+ 𝑢𝐶1

√︃
2𝐻𝐶

(︂
𝐿𝜓
𝜇𝜓

)︂3/2

𝑔(𝑁)

and 𝐶1 is some positive constant. However, 𝐽 depends on 𝐴 which is stochastic. That is,

to finish the proof we need first to get an upper bound for 𝐴. Recall that 𝐴 = 2𝐴
𝜇𝜓

and

𝐴
(4.210)

=
𝑅2

0

𝜇𝜓
+

2𝛿𝛼0𝑅0

𝜇𝜓
+

2𝐴𝑁𝛿
2

𝜇2
𝜓

+
2𝛼0

𝜇𝜓

⟨
∇̃Ψ(𝑦0, 𝜉0)− E

[︁
∇̃Ψ(𝑦0, 𝜉0)

]︁
, 𝑦* − 𝑦0

⟩
+

2𝛼0

𝜇2
𝜓

⃦⃦⃦
∇̃Ψ(𝑦0, 𝜉0)− E

[︁
∇̃Ψ(𝑦0, 𝜉0)

]︁⃦⃦⃦2
2
. (4.214)

Lemma 4.9.5 implies that

P

⎧⎨⎩⃦⃦⃦∇̃Ψ(𝑦0, 𝜉0)− E
[︁
∇̃Ψ(𝑦0, 𝜉0)

]︁⃦⃦⃦
2
≥
√

2(1 +
√
𝛾)

√︃
𝜎2
𝜓

𝑟0

⎫⎬⎭ ≤ exp

(︂
−𝛾

2

3

)︂
.

Taking 𝛾 =
√︁

3 ln 1
𝛽

and using 𝑟0 ≥
(︁
𝜇𝜓
𝐿𝜓

)︁3/2 𝑁2𝜎2
𝜓

(︁
1+

√︁
3 ln 𝑁

𝛽

)︁2

𝐶𝜀
, 𝜀 ≤ 𝐻𝑅2

0

𝐴𝑁
we get that with

probability at least 1− 𝛽⟨
∇̃Ψ(𝑦0, 𝜉0)− E

[︁
∇̃Ψ(𝑦0, 𝜉0)

]︁
, 𝑦* − 𝑦0

⟩
≤

⃦⃦⃦
∇̃Ψ(𝑦0, 𝜉0)− E

[︁
∇̃Ψ(𝑦0, 𝜉0)

]︁⃦⃦⃦
2
· ‖𝑦* − 𝑦0‖2

≤
(︂
𝐿𝜓
𝜇𝜓

)︂3/4
√

2𝐶𝜀𝑅0

𝑁

≤
(︂
𝐿𝜓
𝜇𝜓

)︂3/4
√

2𝐶𝐻𝑅2
0

𝑁
√
𝐴𝑁

, (4.215)⃦⃦⃦
∇̃Ψ(𝑦0, 𝜉0)− E

[︁
∇̃Ψ(𝑦0, 𝜉0)

]︁⃦⃦⃦2
2
≤

(︂
𝐿𝜓
𝜇𝜓

)︂3/2
2𝐶𝜀

𝑁2
≤
(︂
𝐿𝜓
𝜇𝜓

)︂3/2
2𝐶𝐻𝑅2

0

𝑁2𝐴𝑁
. (4.216)

From this and 𝛿 ≤ 𝐺𝑅0

𝑁
√
𝐴𝑁

we obtain that with probability ≥ 1− 𝛽

𝐴
(4.214)+(4.215)+(4.216)

≤ 𝐴𝑅2
0,

𝐴
def
=

1

𝜇𝜓
+

2𝐺

𝐿𝜓𝜇𝜓𝑁
√
𝐴𝑁

+
2𝐺2

𝜇2
𝜓𝑁

2
+

(︂
𝐿𝜓
𝜇𝜓

)︂3/4
2
√

2𝐶𝐻

𝐿𝜓𝜇𝜓𝑁
√
𝐴𝑁

+

(︂
𝐿𝜓
𝜇𝜓

)︂3/2
4𝐶𝐻

𝐿𝜓𝜇2
𝜓𝑁

2𝐴𝑁
.

Using union bound we get that with probability at least 1− 3𝛽

𝑅2
𝑁 ≤

𝐽2𝑅2
0

𝐴𝑁
,

97

where

𝑔(𝑁) =
ln
(︁
𝑁
𝛽

)︁
+ ln ln

(︁
𝐵̂
𝑏

)︁
(︂

1 +

√︂
3 ln

(︁
𝑁
𝛽

)︁)︂2 ,

𝐵̂ = 8𝐻𝐶

(︂
𝐿𝜓
𝜇𝜓

)︂3/2

𝐷𝑅4
0

(︃
𝑁

(︂
3

2

)︂𝑁
+ 1

)︃(︃
𝐴+ 2𝐷ℎ2𝐺2 + 2𝐶

(︂
𝐿𝜓
𝜇𝜓

)︂3/2 (︀
𝑐+ 2𝐷𝑢2

)︀
𝐻

)︃
,

𝐽 = max

⎧⎪⎪⎨⎪⎪⎩
√︀
𝐴0,

3𝐵̂1𝐷 +

√︂
9𝐵̂2

1𝐷
2 + 4𝐴+ 8𝑐𝐻𝐶

(︁
𝐿𝜓
𝜇𝜓

)︁3/2

2

⎫⎪⎪⎬⎪⎪⎭ ,

𝐵̂1 = ℎ𝐺+ 𝑢𝐶1

√︃
2𝐻𝐶

(︂
𝐿𝜓
𝜇𝜓

)︂3/2

𝑔(𝑁).

Note that

𝐴𝑘
(4.228)
≥ 1

𝐿𝜓

(︂
1 +

1

2

√︂
𝜇𝜓
𝐿𝜓

)︂2𝑘

.

It means that in order to achieve 𝑅2
𝑁 ≤ 𝜀 with probability at least 1 − 3𝛽 the method

requires 𝑁 = 𝑂̃
(︁√︁

𝐿𝜓
𝜇𝜓

ln 1
𝜀

)︁
iterations and

𝑁∑︁
𝑘=0

𝑟𝑘 = ̃︀𝑂(︃max

{︃√︃
𝐿𝜓
𝜇𝜓
,
𝜎2
𝜓

𝜀
ln

1

𝛽

}︃
ln

1

𝜀

)︃

oracle calls where ̃︀𝑂(·) hides polylogarithmic factors depending on 𝐿𝜓, 𝜇𝜓, 𝑅0, 𝜀 and 𝛽.

Proof of Corollary 4.5.5

Corollary 4.5.4 implies that with probability at least 1− 3𝛽

‖𝑦𝑁‖2 ≤ 2𝑅𝑦, ‖∇𝜓(𝑦𝑁)‖2 ≤
𝜀

𝑅𝑦

and the total number of oracle calls to get this is of order (4.76). Together with Theorem 4.5.2

it gives us that with probability at least 1− 3𝛽

𝑓(𝑥̂𝑁)− 𝑓(𝑥*) ≤ 2𝜀, ‖𝐴𝑥̂𝑁‖2 ≤
𝜀

𝑅𝑦

, (4.217)

where 𝑥̂𝑁 def
= 𝑥(𝐴⊤𝑦𝑁). It remains to show that 𝑥̃𝑁 and 𝑥̂𝑁 are close to each other with

high probability. Lemma 4.9.5 states that

P

{︃⃦⃦
𝑥̃𝑁 − E

[︀
𝑥̃𝑁 | 𝑦𝑁

]︀⃦⃦
2
≥ (
√

2 +
√︀

2𝛾)

√︃
𝜎2
𝑥

𝑟𝑁
| 𝑦𝑁

}︃
≤ exp

(︂
−𝛾

2

3

)︂
.

98

Taking 𝛾 =
√︁

3 ln 1
𝛽

and using 𝑟𝑁 ≥ 1
𝐶

𝜎2
𝜓𝑅

2
𝑦

(︁
1+

√︁
3 ln 1

𝛽

)︁2

𝜀2
we get that with probability at least

1− 𝛽

⃦⃦
𝑥̃𝑁 − E

[︀
𝑥̃𝑁 | 𝑦𝑁

]︀⃦⃦
2
≤

√︃
2𝐶

𝜎2
𝑥𝜀

2

𝜎2
𝜓𝑅

2
𝑦

=

√
2𝐶𝜀

𝑅𝑦

√︀
𝜆max(𝐴⊤𝐴)

,⃦⃦
𝑥̃𝑁 − 𝑥̂𝑁

⃦⃦
2
≤

⃦⃦
𝑥̃𝑁 − E

[︀
𝑥̃𝑁 | 𝑦𝑁

]︀⃦⃦
2

+
⃦⃦
E
[︀
𝑥̃𝑁 | 𝑦𝑁

]︀
− 𝑥̂𝑁

⃦⃦
2

(4.37)
≤

√
2𝐶𝜀

𝑅𝑦

√︀
𝜆max(𝐴⊤𝐴)

+
𝐺1𝜀

𝑁𝑅𝑦

≤

(︃√︃
2𝐶

𝜆max(𝐴⊤𝐴)
+𝐺1

)︃
𝜀

𝑅𝑦

. (4.218)

It implies that with probability at least 1− 𝛽

‖𝐴𝑥̃𝑁 − 𝐴𝑥̂𝑁‖2 ≤ ‖𝐴‖2 · ‖𝑥̃𝑁 − 𝑥̂𝑁‖2
(4.218)
≤

√︀
𝜆max(𝐴⊤𝐴)

(︃√︃
2𝐶

𝜆max(𝐴⊤𝐴)
+𝐺1

)︃
𝜀

𝑅𝑦

=
(︁√

2𝐶 +𝐺1

√︀
𝜆max(𝐴⊤𝐴)

)︁ 𝜀

𝑅𝑦

, (4.219)

and due to triangle inequality with probability ≥ 1− 𝛽

‖𝐴𝑥̂𝑁‖2 ≥ ‖𝐴𝑥̃𝑁‖2 − ‖𝐴𝑥̂𝑁 − 𝐴𝑥̃𝑁‖2
(4.219)
≥ ‖𝐴𝑥̃𝑁‖2 −

(︁√
2𝐶 +𝐺1

√︀
𝜆max(𝐴⊤𝐴)

)︁ 𝜀

𝑅𝑦

. (4.220)

Applying Demyanov-Danskin theorem and 𝐿𝜙-smoothness of 𝜙 with 𝐿𝜙 = 1/𝜇 we obtain

that with probability at least 1− 𝛽

‖𝑥̂𝑁‖2 = ‖∇𝜙(𝐴⊤𝑦𝑁)‖2 ≤ ‖∇𝜙(𝐴⊤𝑦𝑁)−∇𝜙(𝐴⊤𝑦*)‖2 + ‖∇𝜙(𝐴⊤𝑦*)‖2

≤ 𝐿𝜙‖𝐴⊤𝑦𝑁 − 𝐴⊤𝑦*‖2 + ‖𝑥(𝐴⊤𝑦*)‖2 ≤
√︀
𝜆max(𝐴⊤𝐴)

𝜇
‖𝑦𝑁 − 𝑦*‖2 +𝑅𝑥

(4.71)
≤

√︀
𝜆max(𝐴⊤𝐴)𝜀

𝜇𝑅𝑦

+𝑅𝑥 (4.221)

and also

‖𝑥̃𝑁‖2 ≤ ‖𝑥̃𝑁 − 𝑥̂𝑁‖2 + ‖𝑥̂𝑁‖2
(4.218)+(4.221)

≤

(︃√︃
2𝐶

𝜆max(𝐴⊤𝐴)
+𝐺1 +

√︀
𝜆max(𝐴⊤𝐴)

𝜇

)︃
𝜀

𝑅𝑦

+𝑅𝑥. (4.222)

That is, we proved that with probability at least 1 − 𝛽 points 𝑥̂𝑙 and 𝑥̃𝑙 lie in the ball

𝐵𝑅𝑓 (0). In this ball function 𝑓 is 𝐿𝑓 -Lipschitz continuous, therefore, with probability at

99

least 1− 𝛽

𝑓(𝑥̂𝑁) = 𝑓(𝑥̃𝑁) + 𝑓(𝑥̂𝑁)− 𝑓(𝑥̃𝑁) ≥ 𝑓(𝑥̃𝑁)− |𝑓(𝑥̂𝑁)− 𝑓(𝑥̃𝑁)|

≥ 𝑓(𝑥̃𝑁)− 𝐿𝑓‖𝑥̂𝑁 − 𝑥̃𝑁‖2
(4.218)
≥ 𝑓(𝑥̃𝑁)−

(︃√︃
2𝐶

𝜆max(𝐴⊤𝐴)
+𝐺1

)︃
𝐿𝑓𝜀

𝑅𝑦

. (4.223)

Combining inequalities (4.217), (4.220) and (4.223) and using union bound we get that

with probability at least 1− 4𝛽

𝑓(𝑥̃𝑁)− 𝑓(𝑥*) ≤

(︃
2 +

(︃√︃
2𝐶

𝜆max(𝐴⊤𝐴)
+𝐺1

)︃
𝐿𝑓
𝑅𝑦

)︃
𝜀,

‖𝐴𝑥̃𝑁‖2 ≤
(︁

1 +
√

2𝐶 +𝐺1

√︀
𝜆max(𝐴⊤𝐴)

)︁ 𝜀

𝑅𝑦

.

Finally, in order to get the bound for the total number of oracle calls from (4.76) we use

(4.70) together with 𝜎2
𝜓 = 𝜎2

𝑥𝜆max(𝐴
⊤𝐴) and (4.125).

4.9.9. Technical Results

Lemma 4.9.9. For the sequence 𝛼𝑘+1 ≥ 0 such that

𝐴𝑘+1 = 𝐴𝑘 + 𝛼𝑘+1, 𝐴𝑘+1 = 2𝐿𝛼2
𝑘+1 (4.224)

we have for all 𝑘 ≥ 0

𝛼𝑘+1 ≤ ̃︀𝛼𝑘+1
def
=
𝑘 + 2

2𝐿
. (4.225)

Moreover, 𝐴𝑘 = Ω
(︁
𝑁2

𝐿

)︁
.

Proof. We prove (4.225) by induction. For 𝑘 = 0 equation (4.224) gives us 𝛼1 = 2𝐿𝛼2
1 ⇐⇒

𝛼1 = 1
2𝐿

. Next we assume that (4.225) holds for all 𝑘 ≤ 𝑙 − 1 and prove it for 𝑘 = 𝑙:

2𝐿𝛼2
𝑙+1

(4.224)
=

𝑙+1∑︁
𝑖=1

𝛼𝑖
(4.225)
≤ 𝛼𝑙+1 +

1

2𝐿

𝑙∑︁
𝑖=1

(𝑖+ 1) = 𝛼𝑙+1 +
𝑙(𝑙 + 3)

4𝐿
.

This quadratic inequality implies that 𝛼𝑘+1 ≤ 1+
√
4𝑘2+12𝑘+1
4𝐿

≤ 1+
√

(2𝑘+3)2

4𝐿
≤ 2𝑘+4

4𝐿
= 𝑘+2

2𝐿
.

Finally, the relation 𝐴𝑘 = Ω
(︁
𝑁2

𝐿

)︁
is proved in Lemma 1 from [16] (see also [1]).

Lemma 4.9.10 (See Lemma 3 from [95] and Lemma 4 from [96]). For the sequence

𝛼𝑘+1 ≥ 0 such that

𝐴𝑘+1 = 𝐴𝑘 + 𝛼𝑘+1, 𝐴𝑘+1(1 + 𝐴𝑘𝜇) = 𝐿𝛼2
𝑘+1, 𝛼0 = 𝐴0 =

1

𝐿
(4.226)

100

we have for all 𝑘 ≥ 0

𝛼𝑘+1 =
1 + 𝐴𝑘𝜇

2𝐿
+

√︂
(1 + 𝐴𝑘𝜇)2

4𝐿2
+
𝐴𝑘(1 + 𝐴𝑘𝜇)

𝐿
, (4.227)

𝐴𝑘 ≥
1

𝐿

(︂
1 +

1

2

√︂
𝜇

𝐿

)︂2𝑘

, (4.228)

𝛼𝑘+1 ≤
(︂

1 +
𝜇

𝐿
+

√︂
1 +

𝜇

𝐿

)︂
𝐴𝑘. (4.229)

Proof. If we solve quadratic equation 𝐴𝑘+1(1 + 𝐴𝑘𝜇) = 𝐿𝛼2
𝑘+1, 𝐴𝑘+1 = 𝐴𝑘 + 𝛼𝑘+1 with

respect to 𝛼𝑘+1, we will get (4.227). Inequality (4.228) was established in Lemma 3 from

[95] and Lemma 4 from [96]. It remains to prove (4.229). Since
√
𝑎2 + 𝑏2 ≤ 𝑎 + 𝑏 for all

𝑎, 𝑏 ≥ 0 and 𝐴𝑘 ≥ 𝐴0 = 1
𝐿

we have

𝛼𝑘+1
(4.227)

=
1 + 𝐴𝑘𝜇

2𝐿
+

√︂
(1 + 𝐴𝑘𝜇)2

4𝐿2
+
𝐴𝑘(1 + 𝐴𝑘𝜇)

𝐿

≤ 1

2𝐿
+

𝜇

2𝐿
𝐴𝑘 +

1 + 𝐴𝑘𝜇

2𝐿
+

√︂
𝐴𝑘
𝐿

+
𝜇

𝐿
𝐴2
𝑘

≤ 1

𝐿
+
𝜇

𝐿
𝐴𝑘 + 𝐴𝑘

√︂
1 +

𝜇

𝐿
=

(︂
1 +

𝜇

𝐿
+

√︂
1 +

𝜇

𝐿

)︂
𝐴𝑘.

Lemma 4.9.11. Let 𝐴,𝐵,𝐷, 𝑟0, 𝑟1, . . . , 𝑟𝑁 , where 𝑁 ≥ 1, be non-negative numbers such

that

1

2
𝑟2𝑙 ≤ 𝐴𝑟20 +

𝐷𝑟0
(𝑁 + 1)2

𝑙−1∑︁
𝑘=0

(𝑘 + 2)𝑟𝑘 +𝐵
𝑟0
𝑁

⎯⎸⎸⎷ 𝑙−1∑︁
𝑘=0

(𝑘 + 2)𝑟2𝑘, ∀𝑙 = 1, . . . , 𝑁. (4.230)

Then for all 𝑙 = 0, . . . , 𝑁 we have

𝑟𝑙 ≤ 𝐶𝑟0, (4.231)

where 𝐶 is such positive number that 𝐶2 ≥ max{2𝐴+ 2(𝐵 +𝐷)𝐶, 1}, i.e. one can choose

𝐶 = max{𝐵 +𝐷 +
√︀

(𝐵 +𝐷)2 + 2𝐴, 1}.

Proof. We prove (4.231) by induction. For 𝑙 = 0 the inequality 𝑟𝑙 ≤ 𝐶𝑟0 trivially follows

101

since 𝐶 ≥ 1. Next we assume that (4.231) holds for some 𝑙 < 𝑁 and prove it for 𝑙 + 1:

𝑟𝑙+1

(4.230)
≤

√
2

⎯⎸⎸⎸⎷𝐴𝑟20 +
𝐷𝑟0

(𝑁 + 1)2

𝑙∑︁
𝑘=0

(𝑘 + 2)𝑟𝑘 +𝐵
𝑟0
𝑁

⎯⎸⎸⎷ 𝑙∑︁
𝑘=0

(𝑘 + 2)𝑟2𝑘

(4.231)
≤ 𝑟0

√
2

⎯⎸⎸⎸⎷𝐴+
𝐷𝐶

(𝑁 + 1)2

𝑙∑︁
𝑘=0

(𝑘 + 2) +
𝐵𝐶

𝑁

⎯⎸⎸⎷ 𝑙∑︁
𝑘=0

(𝑘 + 2)

≤ 𝑟0
√

2

√︃
𝐴+

𝐷𝐶

(𝑁 + 1)2
(𝑙 + 1)(𝑙 + 2)

2
+
𝐵𝐶

𝑁

√︂
(𝑙 + 1)(𝑙 + 2)

2

≤ 𝑟0
√

2

√︃
𝐴+𝐷𝐶 +

𝐵𝐶

𝑁

√︂
𝑁(𝑁 + 1)

2
≤ 𝑟0

√︀
2𝐴+ 2(𝐵 +𝐷)𝐶⏟ ⏞

≤𝐶

≤ 𝐶𝑟0.

Lemma 4.9.12. Let 𝐶, 𝑟0, 𝑟1, . . . , 𝑟𝑁 , where 𝑁 ≥ 1, be non-negative numbers such that

𝑟2𝑙 ≤ 𝑟20 +
2𝐶

(𝑁 + 1)3/2

𝑙−1∑︁
𝑘=0

(𝑘 + 2)
1/2𝑟2𝑘+1, ∀𝑙 = 1, . . . , 𝑁, (4.232)

and 𝐶 ∈ (0, 1/4). Then for all 𝑙 = 0, . . . , 𝑁 we have

𝑟𝑙 ≤ 2𝑟0, (4.233)

Proof. We prove (4.233) by induction. For 𝑙 = 0 the inequality 𝑟𝑙 ≤ 2𝑟0 trivially follows.

Next we assume that (4.233) holds for some 𝑙 ≤ 𝑁 − 1 and prove it for 𝑙+ 1. From (4.232),

𝐶 < 1/4, 𝑁 ≥ 1 and 𝑙 ≤ 𝑁 − 1 we have

3

4
𝑟2𝑙+1 ≤

(︂
1− 2𝐶(𝑙 + 2)1/2

(𝑁 + 1)3/2

)︂
𝑟2𝑙+1

(4.232)
≤ 𝑟20 +

2𝐶

(𝑁 + 1)3/2

𝑙−1∑︁
𝑘=0

(𝑘 + 2)
1/2𝑟2𝑘+1

(4.233)
≤ 𝑟20 +

1

2(𝑁 + 1)3/2
𝑙 · (𝑙 + 1)

1/2 · 4𝑟20 ≤ 3𝑟20,

which implies 𝑟𝑙+1 ≤ 2𝑟0.

Lemma 4.9.13. Let 𝐴,𝐵,𝐷, 𝑟0, 𝑟1, . . . , 𝑟𝑁 , 𝑟0, 𝑟1, . . . , 𝑟𝑁 , 𝛼0, 𝛼1, . . . , 𝛼𝑁 , where 𝑁 ≥ 1, be

non-negative numbers such that

𝐴𝑙𝑟
2
𝑙 +

𝑙−1∑︁
𝑘=0

𝐴𝑘𝑟
2
𝑘 ≤ 𝐴𝑟20 +

𝐵𝑟0

𝑁
√
𝐴𝑁

𝑙−1∑︁
𝑘=0

𝛼𝑘+1(𝑟𝑘 + 𝑟𝑘), ∀𝑙 = 1, . . . , 𝑁, (4.234)

102

where 𝑟0 = 0, 𝐴0 = 𝛼0 > 0, 𝐴𝑙 = 𝐴𝑙−1 + 𝛼𝑙 and 𝛼𝑙 ≤ 𝐷𝐴𝑙−1 for 𝑙 = 1, . . . , 𝑁 and 𝐷 ≥ 1.

Then for all 𝑙 = 1, . . . , 𝑁 we have

𝑟𝑙 ≤
𝐶𝑟0√
𝐴𝑙
, 𝑟𝑙−1 ≤

𝐶𝑟0√
𝐴𝑙−1

(4.235)

and 𝑟0 ≤ 𝐶𝑟0√
𝐴0

where 𝐶 is such positive number that

𝐶 ≥ max

{︃√︀
𝐴0,

𝐵𝐷

2
+

√︂
𝐵2𝐷2

4
+ 𝐴+ 2𝐵𝐶𝐷

}︃
,

i.e. one can choose 𝐶 = max
{︁√

𝐴0,
3𝐵𝐷+

√
9𝐵2𝐷2+4𝐴
2

}︁
.

Proof. We prove (4.235) by induction. For 𝑙 = 1 the inequality 𝑟0 ≤ 𝐶𝑟0√
𝐴0

trivially follows

since 𝑟0 = 0. What is more, (4.234) implies that

𝐴1𝑟
2
1 ≤ 𝐴𝑟20 +

𝐵𝛼1𝑟
2
0

𝑁
√
𝐴𝑁

=⇒ 𝑟1 ≤ 𝑟0

√︃
𝐴

𝐴1

+
𝐵𝐷𝐴0

𝐴1𝑁
√
𝐴𝑁
≤ 𝑟0

√︃
𝐴+𝐵𝐷

√
𝐴0

𝐴1

≤ 𝐶𝑟0√
𝐴1

,

since 𝐶 ≥
√
𝐴0 and 𝐶 ≥

√
𝐴+𝐵𝐶𝐷 ≥

√︀
𝐴+𝐵𝐷

√
𝐴0. Note that we also have 𝑟0 ≤ 𝐶𝑟0√

𝐴0
.

Next we assume that (4.235) holds for some 𝑙 ≤ 𝑁 − 1 and prove it for 𝑙 + 1:

𝐴𝑙𝑟
2
𝑙

(4.234)
≤ 𝐴𝑟20 +

𝐵𝑟0

𝑁
√
𝐴𝑁

𝑙∑︁
𝑘=0

𝛼𝑘+1(𝑟𝑘 + 𝑟𝑘)

(4.235)
≤ 𝐴𝑟20 +

𝐵𝐶𝑟20
𝑁
√
𝐴𝑁

𝑙∑︁
𝑘=0

𝛼𝑘+1√
𝐴𝑘

+
𝐵𝐶𝑟20
𝑁
√
𝐴𝑁

𝑙−1∑︁
𝑘=0

𝛼𝑘+1√
𝐴𝑘

+
𝐵𝑟0𝛼𝑙+1𝑟𝑙

𝑁
√
𝐴𝑁

≤ 𝐴𝑟20 +
𝐵𝐶𝐷𝑟20
𝑁
√
𝐴𝑁

𝑙∑︁
𝑘=0

√︀
𝐴𝑘 +

𝐵𝐶𝐷𝑟20
𝑁
√
𝐴𝑁

𝑙−1∑︁
𝑘=0

√︀
𝐴𝑘 +

𝐵𝐷𝑟0𝐴𝑙𝑟𝑙√
𝐴𝑁

≤ 𝐴𝑟20 +
𝐵𝐶𝐷𝑟20
𝑁
√
𝐴𝑁

(𝑙 + 1)
√︀
𝐴𝑙 +

𝐵𝐶𝐷𝑟20
𝑁
√
𝐴𝑁

𝑙
√︀
𝐴𝑙−1 +

𝐵𝐷𝑟0𝐴𝑙𝑟𝑙√
𝐴𝑁

≤ (𝐴+ 2𝐵𝐶𝐷)𝑟20 +
𝐵𝐷𝑟0𝐴𝑙𝑟𝑙√

𝐴𝑁

0 ≥ 𝑟2𝑙 −
𝐵𝐷𝑟0𝑟𝑙√

𝐴𝑁
− (𝐴+ 2𝐵𝐶𝐷)𝑟20

𝐴𝑙
.

From this we have that 𝑟𝑙 is not greater than the biggest root of the quadratic equation

corresponding to the last inequality, i.e.

𝑟𝑙 ≤
𝐵𝐷𝑟0

2
√
𝐴𝑁

+

√︃
𝐵2𝐷2𝑟20

4𝐴𝑁
+

(𝐴+ 2𝐵𝐶𝐷)𝑟20
𝐴𝑙

≤

(︃
𝐵𝐷

2
+

√︂
𝐵2𝐷2

4
+ 𝐴+ 2𝐵𝐶𝐷

)︃
⏟ ⏞

≤𝐶

𝑟0√
𝐴𝑙
≤ 𝐶𝑟0√

𝐴𝑙
.

103

It implies that

𝐴𝑙+1𝑟
2
𝑙+1

(4.234)
≤ 𝐴𝑟20 +

𝐵𝑟0

𝑁
√
𝐴𝑁

𝑙∑︁
𝑘=0

𝛼𝑘+1(𝑟𝑘 + 𝑟𝑘)

(4.235)
≤ 𝐴𝑟20 +

2𝐵𝐶𝑟20
𝑁
√
𝐴𝑁

𝑙∑︁
𝑘=0

𝛼𝑘+1√
𝐴𝑘

≤ 𝐴𝑟20 +
2𝐵𝐶𝐷𝑟20
𝑁
√
𝐴𝑁

(𝑙 + 1)
√︀
𝐴𝑙 ≤ 𝐴𝑟20 + 2𝐵𝐶𝐷𝑟20,

𝑟𝑙+1 ≤ 𝑟0

√︃
𝐴+ 2𝐵𝐶𝐷

𝐴𝑙+1

≤ 𝐶𝑟0√
𝐴𝑙+1

.

That is, we proved the statement of the lemma for

𝐶 ≥ max

{︃√︀
𝐴0,

𝐵𝐷

2
+

√︂
𝐵2𝐷2

4
+ 𝐴+ 2𝐵𝐶𝐷

}︃
.

In particular, via solving the equation

𝐶 =
𝐵𝐷

2
+

√︂
𝐵2𝐷2

4
+ 𝐴+ 2𝐵𝐶𝐷

w.r.t. 𝐶 one can show that the choice 𝐶 = max
{︁√

𝐴0,
3𝐵𝐷+

√
9𝐵2𝐷2+4𝐴
2

}︁
satisfies the

assumption of the lemma on 𝐶.

104

Chapter 5

Stochastic Derivative Free Optimization Methods with

Momentum

The theoretical results proposed in this chapter were obtained by the author of this

thesis in [97].

5.1. Introduction

In this paper, we consider the following minimization problem

min
𝑥∈R𝑛

𝑓(𝑥), (5.1)

where 𝑓 : R𝑛 → R is "smooth"but not necessarily a convex function in a Derivative-Free

Optimization (DFO) setting where only function evaluations are possible. The function

𝑓 is bounded from below by 𝑓(𝑥*) where 𝑥* is a minimizer. Lastly and throughout the

paper, we assume that 𝑓 is 𝐿-smooth.

DFO. In DFO setting [98, 99], the derivatives of the objective function 𝑓 are not accessible.

That is they are either impractical to evaluate, noisy (function 𝑓 is noisy) [100] or they

are simply not available at all. In standard applications of DFO, evaluations of 𝑓 are only

accessible through simulations of black-box engine or software as in reinforcement learning

and continuous control environments [101]. This setting of optimization problems appears

also in applications from computational medicine [102] and fluid dynamics [103–105] to

localization [106, 107] and continuous control [108, 109] to name a few.

The literature on DFO for solving (5.1) is long and rich. The first approaches were

based on deterministic direct search (DDS) and they span half a century of work [110–112].

However, for DDS methods complexity bounds have only been established recently by

the work of Vicente and coauthors [113, 114]. In particular, the work of Vicente [113]

showed the first complexity results on non-convex 𝑓 and the results were extended to

better complexities when 𝑓 is convex [114]. However, there have been several variants of

DDS, including randomized approaches [115–120]. Only very recently, complexity bounds

have also been derived for randomized methods [27, 121–124]. For instance, the work of

[121, 124] imposes a decrease condition on whether to accept or reject a step of a set

105

of random directions. Moreover, [125] derived new complexity bounds when the random

directions are normally distributed vectors for both smooth and non-smooth 𝑓 . They

proposed both accelerated and non-accelerated zero-order (ZO) methods. Accelerated

derivative-free methods in the case of inexact oracle information was proposed in [15]. An

extension of [125] for non-Euclidean proximal setup was proposed by [126] for the smooth

stochastic convex optimization with inexact oracle. In [127, 128] authors also consider

acceleration of ZO methods and, in particular, develop the method called SARP, proved

that its convergence rate is not worse than for non-accelerated ZO methods and showed

that in some cases it works even better.

More recently and closely related to our work, [129] proposed a new randomized direct

search method called Stochastic Three Points (STP). At each iteration 𝑘 STP generates

a random search direction 𝑠𝑘 according to a certain probability law and compares the

objective function at three points: current iterate 𝑥𝑘, a point in the direction of 𝑠𝑘 and a

point in the direction of −𝑠𝑘 with a certain step size 𝛼𝑘. The method then chooses the

best of these three points as the new iterate:

𝑥𝑘+1 = arg min{𝑓(𝑥𝑘), 𝑓(𝑥𝑘 + 𝛼𝑘𝑠𝑘), 𝑓(𝑥𝑘 − 𝛼𝑘𝑠𝑘)}.

The key properties of STP are its simplicity, generality and practicality. Indeed, the

update rule for STP makes it extremely simple to implement, the proofs of convergence

results for STP are short and clear and assumptions on random search directions cover

a lot of strategies of choosing decent direction and even some of first-order methods fit

the STP scheme which makes it a very flexible in comparison with other zeroth-order

methods (e.g. two-point evaluations methods like in [125], [27], [123], [126] that try to

approximate directional derivatives along random direction at each iteration). Motivated

by these properties of STP we focus on further developing of this method.

Momentum. Heavy ball momentum1 is a special technique introduced by Polyak in 1964

[130] to get faster convergence to the optimum for the first-order methods. In the original

paper, Polyak proved that his method converges locally with 𝑂
(︁√︀

𝐿/𝜇 log 1/𝜀
)︁

rate for

twice continuously differentiable 𝜇-strongly convex and 𝐿-smooth functions. Despite the

long history of this approach, there is still an open question whether heavy ball method

converges to the optimum globally with accelerated rate when the objective function is

twice continuous differentiable, 𝐿-smooth and 𝜇-strongly convex. For this class of functions,
1 We will refer to this as momentum.

106

only non-accelerated global convergence was proved [131] and for the special case of

quadratic strongly convex and 𝐿-smooth functions Lessard et. al. [132] recently proved

asymptotic accelerated global convergence. However, heavy ball method performs well in

practice and, therefore, is widely used. One can find more detailed survey of the literature

about heavy ball momentum in [133].

Importance Sampling. Importance sampling has been celebrated and extensively studied

in stochastic gradient based methods [134] or in coordinate based methods [135]. Only

very recently, [136] proposed, STP_IS, the first DFO algorithm with importance sampling.

In particular, under coordinate-wise smooth function, they show that sampling coordinate

directions, can be generalized to arbitrary directions, with probabilities proportional to

the function coordinate smoothness constants, improves the leading constant by the same

factor typically gained in gradient based methods.

Contributions. Our contributions can be summarized into three folds.

∙ First ZO method with heavy ball momentum. Motivated by practical effectiveness

of first-order momentum heavy ball method, we introduce momentum into STP

method and propose new DFO algorithm with heavy ball momentum (SMTP). We

summarized the method in Algorithm 9, with theoretical guarantees for non-convex,

convex and strongly convex functions under generic sampling directions 𝒟. We

emphasize that the SMTP with momentum is not a straightforward generalization of

STP and Polyak’s method and requires insights from virtual iterates analysis from

[137].

To the best of our knowledge it is the first analysis of derivative-free method with

heavy ball momentum, i.e. we show that the same momentum trick that works for

the first order method could be applied for zeroth-order methods as well.

∙ First ZO method with both heavy ball momentum and importance sampling.

In order to get more gain from momentum in the case when the sampling directions

are coordinate directions and the objective function is coordinate-wise 𝐿-smooth

(see Assumption 5.3.1), we consider importance sampling to the above method. In

fact, we propose the first zeroth-order momentum method with importance sampling

(SMTP_IS) summarized in Algorithm 10 with theoretical guarantees for non-convex,

convex and strongly convex functions. The details and proofs are left for Section 5.3

and Appendix 5.7.3.

107

Algorithm 9 SMTP: Stochastic Momentum Three Points

Require: learning rates {𝛾𝑘}𝑘≥0, starting point 𝑥0 ∈ R𝑑, 𝒟 — distribution on R𝑑, 0 ≤

𝛽 < 1 — momentum parameter

1: Set 𝑣−1 = 0 and 𝑧0 = 𝑥0

2: for 𝑘 = 0, 1, . . . do

3: Sample 𝑠𝑘 ∼ 𝒟

4: Let 𝑣𝑘+ = 𝛽𝑣𝑘−1 + 𝑠𝑘 and 𝑣𝑘− = 𝛽𝑣𝑘−1 − 𝑠𝑘

5: Let 𝑥𝑘+1
+ = 𝑥𝑘 − 𝛾𝑘𝑣𝑘+ and 𝑥𝑘+1

− = 𝑥𝑘 − 𝛾𝑘𝑣𝑘−
6: Let 𝑧𝑘+1

+ = 𝑥𝑘+1
+ − 𝛾𝑘𝛽

1−𝛽𝑣
𝑘
+ and 𝑧𝑘+1

− = 𝑥𝑘+1
− − 𝛾𝑘𝛽

1−𝛽𝑣
𝑘
−

7: Set 𝑧𝑘+1 = arg min
{︀
𝑓(𝑧𝑘), 𝑓(𝑧𝑘+1

+), 𝑓(𝑧𝑘+1
−)

}︀

8: Set 𝑥𝑘+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥𝑘+1
+ , if 𝑧𝑘+1 = 𝑧𝑘+1

+

𝑥𝑘+1
− , if 𝑧𝑘+1 = 𝑧𝑘+1

−

𝑥𝑘, if 𝑧𝑘+1 = 𝑧𝑘

and 𝑣𝑘+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑣𝑘+1
+ , if 𝑧𝑘+1 = 𝑧𝑘+1

+

𝑣𝑘+1
− , if 𝑧𝑘+1 = 𝑧𝑘+1

−

𝑣𝑘, if 𝑧𝑘+1 = 𝑧𝑘

9: end for

∙ Practicality. We conduct extensive experiments on continuous control tasks from

the MuJoCo suite [101] following recent success of DFO compared to model-free

reinforcement learning [108, 109]. We achieve with SMTP_IS the state-of-the-art

results on across all tested environments on the continuous control outperforming

DFO [108] and policy gradient methods [138, 139].

We provide more detailed comparison of SMTP and SMTP_IS in Section 5.4 of the

Appendix.

5.2. Stochastic Momentum Three Points (SMTP)

Our analysis of SMTP is based on the following key assumption.

Assumption 5.2.1. The probability distribution 𝒟 on R𝑛 satisfies the following properties:

1. The quantity 𝛾𝒟
def
= E𝑠∼𝒟‖𝑠‖22 is finite.

2. There is a constant 𝜇𝒟 > 0 for a norm ‖ · ‖𝒟 in R𝑛 such that for all 𝑔 ∈ R𝑛

E𝑠∼𝒟|⟨𝑔, 𝑠⟩| ≥ 𝜇𝒟‖𝑔‖𝒟. (5.2)

108

Assumptions on 𝑓
SMTP

Complexity
Theorem

Importance

Sampling

SMTP_IS

Complexity
Theorem

None 2𝑟0𝐿𝛾𝒟
𝜇2𝒟𝜀

2 5.2.1 𝑝𝑖 =
𝐿𝑖∑︀𝑛
𝑖=1 𝐿𝑖

2𝑟0𝑛
∑︀𝑛
𝑖=1 𝐿𝑖

𝜀2
5.3.1

Convex, 𝑅0 <∞ 1
𝜀
𝐿𝛾𝒟𝑅

2
0

𝜇2𝒟
ln
(︀
2𝑟0
𝜀

)︀
5.2.2 𝑝𝑖 =

𝐿𝑖∑︀𝑛
𝑖=1 𝐿𝑖

𝑅2
0𝑛

∑︀𝑛
𝑖=1 𝐿𝑖
𝜀 ln

(︀
2𝑟0
𝜀

)︀
5.3.2

𝜇-strongly convex 𝐿
𝜇𝜇2𝒟

ln
(︀
2𝑟0
𝜀

)︀
5.2.5 𝑝𝑖 =

𝐿𝑖∑︀𝑛
𝑖=1 𝐿𝑖

∑︀𝑛
𝑖=1 𝐿𝑖
𝜇 ln

(︀
2𝑟0
𝜀

)︀
5.3.5

Table 5.1: Summary of the new derived complexity results of SMTP and SMTP_IS. The

complexities for SMTP are under a generic sampling distribution 𝒟 satisfying Assumption

5.2.1 while for SMTP_IS are under an arbitrary discrete sampling from a set of coordinate

directions following [136] where we propose an importance sampling that improves the

leading constant marked in red. Note that 𝑟0 = 𝑓(𝑥0)− 𝑓(𝑥*) and that all assumptions

listed are in addition to 𝐿-smoothness. Complexity means number of iterations in order to

guarantee E‖∇𝑓(𝑧𝐾)‖𝒟 ≤ 𝜀 for the non-convex case, E
[︀
𝑓(𝑧𝐾)− 𝑓(𝑥*)

]︀
≤ 𝜀 for convex

and strongly convex cases. 𝑅0 <∞ is the radius in ‖·‖*𝒟-norm of a bounded level set where

the exact definition is given in Assumption 5.2.2. We notice that for SMTP_IS ‖ · ‖𝒟 = ‖ · ‖1
and ‖ · ‖*𝒟 = ‖ · ‖∞ in non-convex and convex cases and ‖ · ‖𝒟 = ‖ · ‖2 in the strongly

convex case.

Some examples of distributions that meet above assumption are described in Lemma 3.4

from [129]. For convenience we provide the statement of the lemma in the Appendix (see

Lemma 5.7.4).

Recall that one possible view on STP [129] is as following. If we substitute gradient

∇𝑓(𝑥𝑘) in the update rule for the gradient descent 𝑥𝑘+1 = 𝑥𝑘−𝛾𝑘∇𝑓(𝑥𝑘) by ±𝑠𝑘 where 𝑠𝑘

is sampled from distribution 𝒟 satisfied Assumption 5.2.1 and then select 𝑥𝑘+1 as the best

point in terms of functional value among 𝑥𝑘, 𝑥𝑘 − 𝛾𝑘𝑠𝑘, 𝑥𝑘 + 𝛾𝑘𝑠𝑘 we will get exactly STP

method. However, gradient descent is not the best algorithm to solve unconstrained smooth

minimization problems and the natural idea is to try to perform the same substitution-trick

with more efficient first-order methods than gradient descent.

We put our attention on Polyak’s heavy ball method where the update rule could be

written in the following form:

𝑣𝑘 = 𝛽𝑣𝑘−1 +∇𝑓(𝑥𝑘), 𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘𝑣𝑘. (5.3)

As in STP, we substitute ∇𝑓(𝑥𝑘) by ±𝑠𝑘 and consider new sequences {𝑣𝑘+}𝑘≥0 and

109

{𝑣𝑘−}𝑘≥0 defined in the Algorithm 9. However, it is not straightforward how to choose

next 𝑥𝑘+1 and 𝑣𝑘 and the virtual iterates analysis [137] hints the update rule. We

consider new iterates 𝑧𝑘+1
+ = 𝑥𝑘+1

+ − 𝛾𝑘𝛽
1−𝛽𝑣

𝑘
+ and 𝑧𝑘+1

− = 𝑥𝑘+1
− − 𝛾𝑘𝛽

1−𝛽𝑣
𝑘
− and define 𝑧𝑘+1

as arg min
{︀
𝑓(𝑧𝑘), 𝑓(𝑧𝑘+1

+), 𝑓(𝑧𝑘+1
−)

}︀
. Next we update 𝑥𝑘+1 and 𝑣𝑘 in order to have the

same relationship between 𝑧𝑘+1, 𝑥𝑘+1 and 𝑣𝑘 as between 𝑧𝑘+1
+ , 𝑥𝑘+1

+ and 𝑣𝑘+ and 𝑧𝑘+1
− , 𝑥𝑘+1

−

and 𝑣𝑘−. Such scheme allows easily apply virtual iterates analysis and and generalize Key

Lemma from [129] which is the main tool in the analysis of STP.

By definition of 𝑧𝑘+1, we get that the sequence {𝑓(𝑧𝑘)}𝑘≥0 is monotone:

𝑓(𝑧𝑘+1) ≤ 𝑓(𝑧𝑘) ∀𝑘 ≥ 0. (5.4)

Now, we establish the key result which will be used to prove the main complexity

results and remaining theorems in this section.

Lemma 5.2.1. Assume that 𝑓 is 𝐿-smooth and 𝒟 satisfies Assumption 5.2.1. Then for

the iterates of SMTP the following inequalities hold:

𝑓(𝑧𝑘+1) ≤ 𝑓(𝑧𝑘)− 𝛾𝑘

1− 𝛽
|⟨∇𝑓(𝑧𝑘), 𝑠𝑘⟩|+ 𝐿(𝛾𝑘)2

2(1− 𝛽)2
‖𝑠𝑘‖22 (5.5)

and

E𝑠𝑘∼𝒟
[︀
𝑓(𝑧𝑘+1)

]︀
≤ 𝑓(𝑧𝑘)− 𝛾𝑘𝜇𝒟

1− 𝛽
‖∇𝑓(𝑧𝑘)‖𝒟 +

𝐿(𝛾𝑘)2𝛾𝒟
2(1− 𝛽)2

. (5.6)

5.2.1. Non-Convex Case

In this section, we show our complexity results for Algorithm 9 in the case when f is

allowed to be non-convex. In particular, we show that SMTP in Algorithm 9 guarantees

complexity bounds with the same order as classical bounds, i.e. 1/
√
𝐾 where 𝐾 is the

number of iterations, in the literature. We notice that query complexity (i.e. number of

oracle calls) of SMTP coincides with its iteration complexity up to numerical constant factor.

For clarity and completeness, proofs are left for the appendix.

Theorem 5.2.1. Let Assumption 5.2.1 be satisfied and function 𝑓 be 𝐿-smooth. Let SMTP

with 𝛾𝑘 ≡ 𝛾 > 0 produce points {𝑧0, 𝑧1, . . . , 𝑧𝐾−1} and 𝑧𝐾 is chosen uniformly at random

among them. Then

E
[︀
‖∇𝑓(𝑧𝐾)‖𝒟

]︀
≤ (1− 𝛽)(𝑓(𝑥0)− 𝑓(𝑥*))

𝐾𝛾𝜇𝒟
+

𝐿𝛾𝛾𝒟
2𝜇𝒟(1− 𝛽)

. (5.7)

110

Moreover, if we choose 𝛾 = 𝛾0√
𝐾

the complexity (5.7) reduces to

E
[︀
‖∇𝑓(𝑧𝐾)‖𝒟

]︀
≤ 1√

𝐾

(︂
(1− 𝛽)(𝑓(𝑧0)− 𝑓(𝑥*))

𝛾0𝜇𝒟
+

𝐿𝛾0𝛾𝒟
2𝜇𝒟(1− 𝛽)

)︂
. (5.8)

Then 𝛾0 =
√︁

2(1−𝛽)2(𝑓(𝑥0)−𝑓(𝑥*))
𝐿𝛾𝒟

minimizes the right-hand side of (5.8) and for this choice

we have

E
[︀
‖∇𝑓(𝑧𝐾)‖𝒟

]︀
≤
√︀

2 (𝑓(𝑥0)− 𝑓(𝑥*))𝐿𝛾𝒟

𝜇𝒟
√
𝐾

. (5.9)

In other words, the above theorem states that SMTP converges no worse than STP

for non-convex problems to the stationary point. In the next sections we also show that

theoretical convergence guarantees for SMTP are not worse than for STP for convex and

strongly convex problems. However, in practice SMTP significantly outperforms STP. So, the

relationship between SMTP and STP correlates with the known in the literature relationship

between Polyak’s heavy ball method and gradient descent.

5.2.2. Convex Case

In this section, we present our complexity results for Algorithm 9 when 𝑓 is convex.

In particular, we show that this method guarantees complexity bounds with the same

order as classical bounds, i.e. 1/𝐾, in the literature. We will need the following additional

assumption in the sequel.

Assumption 5.2.2. We assume that 𝑓 is convex, has a minimizer 𝑥* and has bounded

level set at 𝑥0:

𝑅0
def
= max

{︀
‖𝑥− 𝑥*‖*𝒟 | 𝑓(𝑥) ≤ 𝑓(𝑥0)

}︀
< +∞, (5.10)

where ‖𝜉‖*𝒟
def
= max {⟨𝜉, 𝑥⟩ | ‖𝑥‖𝒟 ≤ 1} defines the dual norm to ‖ · ‖𝒟.

From the above assumption and Cauchy-Schwartz inequality we get the following

implication:

𝑓(𝑥) ≤ 𝑓(𝑥0) =⇒ 𝑓(𝑥)− 𝑓(𝑥*) ≤ ⟨∇𝑓(𝑥), 𝑥− 𝑥*⟩ ≤ ‖∇𝑓(𝑥)‖𝒟‖𝑥− 𝑥*‖*𝒟 ≤ 𝑅0‖∇𝑓(𝑥)‖𝒟,

which implies

‖∇𝑓(𝑥)‖𝒟 ≥
𝑓(𝑥)− 𝑓(𝑥*)

𝑅0

∀𝑥 : 𝑓(𝑥) ≤ 𝑓(𝑥0). (5.11)

111

Theorem 5.2.2 (Constant stepsize). Let Assumptions 5.2.1 and 5.2.2 be satisfied and 𝑓

be 𝐿-smooth. If we set 𝛾𝑘 ≡ 𝛾 < (1−𝛽)𝑅0

𝜇𝒟
, then for the iterates of SMTP method the following

inequality holds:

E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
≤
(︂

1− 𝛾𝜇𝒟

(1− 𝛽)𝑅0

)︂𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+

𝐿𝛾𝛾𝒟𝑅0

2(1− 𝛽)𝜇𝒟
. (5.12)

If we choose 𝛾 = 𝜀(1−𝛽)𝜇𝒟
𝐿𝛾𝒟𝑅0

for some 0 < 𝜀 ≤ 𝐿𝛾𝒟𝑅
2
0

𝜇2𝒟
and run SMTP for 𝑘 = 𝐾 iterations

where

𝐾 =
1

𝜀

𝐿𝛾𝒟𝑅
2
0

𝜇2
𝒟

ln

(︂
2(𝑓(𝑥0)− 𝑓(𝑥*))

𝜀

)︂
, (5.13)

then we will get E
[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤ 𝜀.

In order to get rid of factor ln 2(𝑓(𝑥0)−𝑓(𝑥*))
𝜀

in the complexity we consider decreasing

stepsizes.

Theorem 5.2.3 (Decreasing stepsizes). Let Assumptions 5.2.1 and 5.2.2 be satisfied and

function 𝑓 be 𝐿-smooth. If we set 𝛾𝑘 = 2
𝛼𝑘+𝜃

, where 𝛼 = 𝜇𝒟
(1−𝛽)𝑅0

and 𝜃 ≥ 2
𝛼
, then for the

iterates of SMTP method the following inequality holds:

E
[︀
𝑓(𝑧𝑘)

]︀
− 𝑓(𝑥*) ≤ 1

𝜂𝑘 + 1
max

{︂
𝑓(𝑥0)− 𝑓(𝑥*),

2𝐿𝛾𝒟
𝛼𝜃(1− 𝛽)2

}︂
, (5.14)

where 𝜂 def
= 𝛼

𝜃
. Then, if we choose 𝛾𝑘 = 2𝛼

𝛼2𝑘+2
where 𝛼 = 𝜇𝒟

(1−𝛽)𝑅0
and run SMTP for 𝑘 = 𝐾

iterations where

𝐾 =
1

𝜀
· 2𝑅2

0

𝜇2
𝒟

max
{︀

(1− 𝛽)2(𝑓(𝑥0)− 𝑓(𝑥*)), 𝐿𝛾𝒟
}︀
− 2(1− 𝛽)2𝑅2

0

𝜇2
𝒟

, 𝜀 > 0, (5.15)

we get E
[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤ 𝜀.

We notice that if we choose 𝛽 sufficiently close to 1, we will obtain from the formula

(5.15) that 𝐾 ≈ 2𝑅2
0𝐿𝛾𝒟
𝜀𝜇2𝒟

.

5.2.3. Strongly Convex Case

In this section we present our complexity results for Algorithm 9 when 𝑓 is 𝜇-strongly

convex.

Assumption 5.2.3. We assume that 𝑓 is 𝜇-strongly convex with respect to the norm

‖ · ‖*𝒟:

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+
𝜇

2
(‖𝑦 − 𝑥‖*𝒟)2, ∀𝑥, 𝑦 ∈ R𝑛. (5.16)

112

It is well known that strong convexity implies

‖∇𝑓(𝑥)‖2𝒟 ≥ 2𝜇 (𝑓(𝑥)− 𝑓(𝑥*)) . (5.17)

Theorem 5.2.4 (Solution-dependent stepsizes). Let Assumptions 5.2.1 and 5.2.3 be

satisfied and function 𝑓 be 𝐿-smooth. If we set 𝛾𝑘 = (1−𝛽)𝜃𝑘𝜇𝒟
𝐿

√︀
2𝜇(𝑓(𝑧𝑘)− 𝑓(𝑥*)) for

some 𝜃𝑘 ∈ (0, 2) such that 𝜃 = inf
𝑘≥0
{2𝜃𝑘 − 𝛾𝒟𝜃2𝑘} ∈ (0, 𝐿/(𝜇2𝒟𝜇)), then for the iterates of SMTP,

the following inequality holds:

E
[︀
𝑓(𝑧𝑘)

]︀
− 𝑓(𝑥*) ≤

(︂
1− 𝜃𝜇2

𝒟𝜇

𝐿

)︂𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
. (5.18)

Then, If we run SMTP for 𝑘 = 𝐾 iterations where

𝐾 =
𝜅

𝜃𝜇2
𝒟

ln

(︂
𝑓(𝑥0)− 𝑓(𝑥*)

𝜀

)︂
, 𝜀 > 0, (5.19)

where 𝜅 def
= 𝐿

𝜇
is the condition number of the objective, we will get E

[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤ 𝜀.

Note that the previous result uses stepsizes that depends on the optimal solution

𝑓(𝑥*) which is often not known in practice. The next theorem removes this drawback

without spoiling the convergence rate. However, we need an additional assumption on the

distribution 𝒟 and one extra function evaluation.

Assumption 5.2.4. We assume that for all 𝑠 ∼ 𝒟 we have ‖𝑠‖2 = 1.

Theorem 5.2.5 (Solution-free stepsizes). Let Assumptions 5.2.1, 5.2.3 and 5.2.4 be

satisfied and function 𝑓 be 𝐿-smooth. If additionally we compute 𝑓(𝑧𝑘 + 𝑡𝑠𝑘), set 𝛾𝑘 =

(1−𝛽)|𝑓(𝑧𝑘+𝑡𝑠𝑘)−𝑓(𝑧𝑘)|/(𝐿𝑡) for 𝑡 > 0 and assume that 𝒟 is such that 𝜇2
𝒟 ≤ 𝐿/𝜇, then for the

iterates of SMTP the following inequality holds:

E
[︀
𝑓(𝑧𝑘)

]︀
− 𝑓(𝑥*) ≤

(︂
1− 𝜇2

𝒟𝜇

𝐿

)︂𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+

𝐿2𝑡2

8𝜇2
𝒟𝜇

. (5.20)

Moreover, for any 𝜀 > 0 if we set 𝑡 such that

0 < 𝑡 ≤
√︂

4𝜀𝜇2
𝒟𝜇

𝐿2
, (5.21)

and run SMTP for 𝑘 = 𝐾 iterations where

𝐾 =
𝜅

𝜇2
𝒟

ln

(︂
2(𝑓(𝑥0)− 𝑓(𝑥*))

𝜀

)︂
, (5.22)

where 𝜅 def
= 𝐿

𝜇
is the condition number of 𝑓 , we will have E

[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤ 𝜀.

113

5.3. Stochastic Momentum Three Points with Importance

Sampling (SMTP_IS)

In this section we consider another assumption, in a similar spirit to [136], on the

objective.

Assumption 5.3.1 (Coordinate-wise 𝐿-smoothness). We assume that the objective 𝑓 has

coordinate-wise Lipschitz gradient, with Lipschitz constants 𝐿1, . . . , 𝐿𝑛 > 0, i.e.

𝑓(𝑥+ ℎ𝑒𝑖) ≤ 𝑓(𝑥) +∇𝑖𝑓(𝑥)ℎ+
𝐿𝑖
2
ℎ2, ∀𝑥 ∈ R𝑛, ℎ ∈ R, (5.23)

where ∇𝑖𝑓(𝑥) is 𝑖-th partial derivative of 𝑓 at the point 𝑥.

For this kind of problems we modify SMTP and present STMP_IS method in Algorithm 10.

In general, the idea behind methods with importance sampling and, in particular, behind

SMTP_IS is to adjust probabilities of sampling in such a way that gives better convergence

guarantees. In the case when 𝑓 satisfies coordinate-wise 𝐿-smoothness and Lipschitz

constants 𝐿𝑖 are known it is natural to sample direction 𝑠𝑘 = 𝑒𝑖 with probability depending

on 𝐿𝑖 (e.g. proportional to 𝐿𝑖). One can find more detailed discussion of the importance

sampling in [134] and [135].

Now, we establish the key result which will be used to prove the main complexity

results of STMP_IS.

Lemma 5.3.1. Assume that 𝑓 satisfies Assumption 5.3.1. Then for the iterates of SMTP_IS

the following inequalities hold:

𝑓(𝑧𝑘+1) ≤ 𝑓(𝑧𝑘)− 𝛾𝑘𝑖
1− 𝛽

|∇𝑖𝑘𝑓(𝑧𝑘)|+ 𝐿𝑖𝑘(𝛾
𝑘
𝑖)2

2(1− 𝛽)2
(5.24)

and

E𝑠𝑘∼𝒟
[︀
𝑓(𝑧𝑘+1)

]︀
≤ 𝑓(𝑧𝑘)− 1

1− 𝛽
E
[︀
𝛾𝑘𝑖 |∇𝑖𝑘𝑓(𝑧𝑘)| | 𝑧𝑘

]︀
+

1

2(1− 𝛽)2
E
[︀
𝐿𝑖𝑘(𝛾

𝑘
𝑖)2 | 𝑧𝑘

]︀
.

(5.25)

5.3.1. Non-convex Case

Theorem 5.3.1. Assume that 𝑓 satisfies Assumption 5.3.1. Let SMTP_IS with 𝛾𝑘𝑖 = 𝛾
𝑤𝑖𝑘

for some 𝛾 > 0 produce points {𝑧0, 𝑧1, . . . , 𝑧𝐾−1} and 𝑧𝐾 is chosen uniformly at random

114

Algorithm 10 SMTP_IS: Stochastic Momentum Three Points with Importance Sampling
Require: stepsize parameters 𝑤1, . . . , 𝑤𝑛 > 0, probabilities 𝑝1, . . . , 𝑝𝑛 > 0 summing to 1,

starting point 𝑥0 ∈ R𝑛, 0 ≤ 𝛽 < 1 — momentum parameter

1: Set 𝑣−1 = 0 and 𝑧0 = 𝑥0

2: for 𝑘 = 0, 1, . . . do

3: Select 𝑖𝑘 = 𝑖 with probability 𝑝𝑖 > 0

4: Choose stepsize 𝛾𝑘𝑖 proportional to 1
𝑤𝑖𝑘

5: Let 𝑣𝑘+ = 𝛽𝑣𝑘−1 + 𝑒𝑖𝑘 and 𝑣𝑘− = 𝛽𝑣𝑘−1 − 𝑒𝑖𝑘
6: Let 𝑥𝑘+1

+ = 𝑥𝑘 − 𝛾𝑘𝑖 𝑣𝑘+ and 𝑥𝑘+1
− = 𝑥𝑘 − 𝛾𝑘𝑖 𝑣𝑘−

7: Let 𝑧𝑘+1
+ = 𝑥𝑘+1

+ − 𝛾𝑘𝑖 𝛽

1−𝛽𝑣
𝑘
+ and 𝑧𝑘+1

− = 𝑥𝑘+1
− − 𝛾𝑘𝑖 𝛽

1−𝛽𝑣
𝑘
−

8: Set 𝑧𝑘+1 = arg min
{︀
𝑓(𝑧𝑘), 𝑓(𝑧𝑘+1

+), 𝑓(𝑧𝑘+1
−)

}︀

9: Set 𝑥𝑘+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥𝑘+1
+ , if 𝑧𝑘+1 = 𝑧𝑘+1

+

𝑥𝑘+1
− , if 𝑧𝑘+1 = 𝑧𝑘+1

−

𝑥𝑘, if 𝑧𝑘+1 = 𝑧𝑘

and 𝑣𝑘+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑣𝑘+1
+ , if 𝑧𝑘+1 = 𝑧𝑘+1

+

𝑣𝑘+1
− , if 𝑧𝑘+1 = 𝑧𝑘+1

−

𝑣𝑘, if 𝑧𝑘+1 = 𝑧𝑘

10: end for

among them. Then

E
[︀
‖∇𝑓(𝑧𝐾)‖1

]︀
≤ (1− 𝛽)(𝑓(𝑥0)− 𝑓(𝑥*))

𝐾𝛾 min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

+
𝛾

2(1− 𝛽) min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

. (5.26)

Moreover, if we choose 𝛾 = 𝛾0√
𝐾

, then

E
[︀
‖∇𝑓(𝑧𝐾)‖1

]︀
≤ 1√

𝐾 min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

(︃
(1− 𝛽)(𝑓(𝑥0)− 𝑓(𝑥*))

𝛾0
+

𝛾0
2(1− 𝛽)

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

)︃
. (5.27)

Note that if we choose 𝛾0 =

√︃
2(1−𝛽)2(𝑓(𝑥0)−𝑓(𝑥*))

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

in order to minimize right-hand side of

(5.27), we will get

E
[︀
‖∇𝑓(𝑧𝐾)‖1

]︀
≤

√︂
2 (𝑓(𝑥0)− 𝑓(𝑥*))

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

√
𝐾 min

𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

. (5.28)

Note that for 𝑝𝑖 = 𝐿𝑖/
∑︀
𝑖 𝐿𝑖 with 𝑤𝑖 = 𝐿𝑖 we have that the rates improves to

E
[︀
‖∇𝑓(𝑧𝐾)‖1

]︀
≤
√︀

2(𝑓(𝑥0)− 𝑓(𝑥*))𝑛
∑︀𝑛

𝑖=1 𝐿𝑖√
𝐾

. (5.29)

115

5.3.2. Convex Case

As for SMTP to tackle convex problems by SMTP_IS we use Assumption 5.2.2 with

‖ · ‖𝒟 = ‖ · ‖1. Note that in this case 𝑅0 = max {‖𝑥− 𝑥*‖∞ | 𝑓(𝑥) ≤ 𝑓(𝑥0)}.

Theorem 5.3.2 (Constant stepsize). Let Assumptions 5.2.2 and 5.3.1 be satisfied. If we

set 𝛾𝑘𝑖 = 𝛾
𝑤𝑖𝑘

such that 0 < 𝛾 ≤ (1−𝛽)𝑅0

min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

, then for the iterates of SMTP_IS method the

following inequality holds:

E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
≤

⎛⎝1−
𝛾 min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

(1− 𝛽)𝑅0

⎞⎠𝑘 (︀
𝑓(𝑧0)− 𝑓(𝑥*)

)︀
+

𝛾𝑅0

2(1− 𝛽) min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

.

(5.30)

Moreover, if we choose 𝛾 =
𝜀(1−𝛽) min

𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

𝑅0

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

for some 0 < 𝜀 ≤
𝑅2

0

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

min
𝑖=1,...,𝑛

𝑝2
𝑖
𝑤2
𝑖

and run SMTP_IS

for 𝑘 = 𝐾 iterations where

𝐾 =
1

𝜀

𝑅2
0

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

min
𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

ln

(︂
2(𝑓(𝑥0)− 𝑓(𝑥*))

𝜀

)︂
, (5.31)

we will get E
[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤ 𝜀. Moreover, for 𝑝𝑖 = 𝐿𝑖/

∑︀
𝑖 𝐿𝑖 with 𝑤𝑖 = 𝐿𝑖, the rate

improves to

𝐾 =
1

𝜀
𝑅2

0𝑑
𝑛∑︁
𝑖=1

𝐿𝑖 ln

(︂
2(𝑓(𝑥0)− 𝑓(𝑥*))

𝜀

)︂
. (5.32)

Theorem 5.3.3 (Decreasing stepsizes). Let Assumptions 5.2.2 and 5.3.1 be satisfied. If

we set 𝛾𝑘𝑖 = 𝛾𝑘

𝑤𝑖𝑘
and 𝛾𝑘 = 2

𝛼𝑘+𝜃
, where 𝛼 =

min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

(1−𝛽)𝑅0
and 𝜃 ≥ 2

𝛼
, then for the iterates of

SMTP_IS method the following inequality holds:

E
[︀
𝑓(𝑧𝑘)

]︀
− 𝑓(𝑥*) ≤ 1

𝜂𝑘 + 1
max

{︃
𝑓(𝑥0)− 𝑓(𝑥*),

2

𝛼𝜃(1− 𝛽)2

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

}︃
, (5.33)

where 𝜂 def
= 𝛼

𝜃
. Moreover, if we choose 𝛾𝑘 = 2𝛼

𝛼2𝑘+2
where 𝛼 =

min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

(1−𝛽)𝑅0
and run SMTP_IS for

𝑘 = 𝐾 iterations where

𝐾 =
1

𝜀
· 2𝑅2

0

min
𝑖=1,...,𝑑

𝑝2𝑖
𝑤2
𝑖

max

{︃
(1− 𝛽)2(𝑓(𝑥0)− 𝑓(𝑥*)),

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

}︃
− 2(1− 𝛽)2𝑅2

0

min
𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

, 𝜀 > 0,

(5.34)

we will get E
[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤ 𝜀.

116

5.3.3. Strongly Convex Case

Theorem 5.3.4 (Solution-dependent stepsizes). Let Assumptions 5.2.3 (with ‖ · ‖𝒟 =

‖ · ‖1) and 5.3.1 be satisfied. If we set 𝛾𝑘𝑖 =
(1−𝛽)𝜃𝑘 min

𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

𝑤𝑖𝑘

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

√︀
2𝜇(𝑓(𝑧𝑘)− 𝑓(𝑥*)) for some

𝜃𝑘 ∈ (0, 2) such that 𝜃 = inf
𝑘≥0
{2𝜃𝑘−𝜃2𝑘} ∈

⎛⎝0,

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

𝜇 min
𝑖=1,...,𝑛

𝑝2
𝑖
𝑤2
𝑖

⎞⎠, then for the iterates of SMTP_IS

method the following inequality holds:

E
[︀
𝑓(𝑧𝑘)

]︀
− 𝑓(𝑥*) ≤

⎛⎜⎜⎝1−
𝜃𝜇 min

𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

⎞⎟⎟⎠
𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
. (5.35)

If we run SMTP_IS for 𝑘 = 𝐾 iterations where

𝐾 =

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

𝜃𝜇 min
𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

ln

(︂
𝑓(𝑥0)− 𝑓(𝑥*)

𝜀

)︂
, 𝜀 > 0, (5.36)

we will get E
[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤ 𝜀.

The previous result based on the choice of 𝛾𝑘 which depends on the 𝑓(𝑧𝑘)− 𝑓(𝑥*)

which is often unknown in practice. The next theorem does not have this drawback and

makes it possible to obtain the same rate of convergence as in the previous theorem using

one extra function evaluation.

Theorem 5.3.5 (Solution-free stepsizes). Let Assumptions 5.2.3 (with ‖ · ‖𝒟 = ‖ · ‖2)

and 5.3.1 be satisfied. If additionally we compute 𝑓(𝑧𝑘 + 𝑡𝑒𝑖𝑘), set 𝛾𝑘𝑖 =
(1−𝛽)|𝑓(𝑧𝑘+𝑡𝑒𝑖𝑘)−𝑓(𝑧

𝑘)|
𝐿𝑖𝑘 𝑡

for 𝑡 > 0, then for the iterates of SMTP_IS method the following inequality holds:

E
[︀
𝑓(𝑧𝑘)

]︀
− 𝑓(𝑥*) ≤

(︂
1− 𝜇 min

𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

)︂𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+

𝑡2

8𝜇 min
𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

𝑛∑︁
𝑖=1

𝑝𝑖𝐿𝑖. (5.37)

Moreover, for any 𝜀 > 0 if we set 𝑡 such that

0 < 𝑡 ≤

⎯⎸⎸⎸⎸⎷4𝜀𝜇 min
𝑙=1,...,𝑛

𝑝𝑖
𝐿𝑖

𝑛∑︀
𝑖=1

𝑝𝑖𝐿𝑖

, (5.38)

and run SMTP_IS for 𝑘 = 𝐾 iterations where

𝐾 =
1

𝜇 min
𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

ln

(︂
2(𝑓(𝑥0)− 𝑓(𝑥*))

𝜀

)︂
, (5.39)

117

Assumptions on 𝑓
SMTP

Compleixty
Theorem

Importance

Sampling

SMTP_IS

Complexity
Theorem

None 𝜋𝑟0𝑛𝐿
𝜀2

5.2.1 𝑝𝑖 =
𝐿𝑖∑︀𝑛
𝑖=1 𝐿𝑖

2𝑟0𝑛
∑︀𝑛
𝑖=1 𝐿𝑖

𝜀2
5.3.1

Convex, 𝑅0 <∞
𝜋𝑅2

0,ℓ2
𝑛𝐿

2𝜀 ln
(︀
2𝑟0
𝜀

)︀
5.2.2 𝑝𝑖 =

𝐿𝑖∑︀𝑛
𝑖=1 𝐿𝑖

𝑅2
0,ℓ∞𝑛

∑︀𝑛
𝑖=1 𝐿𝑖

𝜀 ln
(︀
2𝑟0
𝜀

)︀
5.3.2

𝜇-strongly convex 𝜋𝑛𝐿
2𝜇 ln

(︀
2𝑟0
𝜀

)︀
5.2.5 𝑝𝑖 =

𝐿𝑖∑︀𝑛
𝑖=1 𝐿𝑖

∑︀𝑛
𝑖=1 𝐿𝑖
𝜇 ln

(︀
2𝑟0
𝜀

)︀
5.3.5

Table 5.2: Comparison of SMTP with 𝒟 = 𝑁
(︀
0, 𝐼

𝑛

)︀
and SMTP_IS with 𝑝𝑖 = 𝐿𝑖/∑︀𝑛

𝑖=1 𝐿𝑖. Here

𝑟0 = 𝑓(𝑥0)− 𝑓(𝑥*), 𝑅0,ℓ2 corresponds to the 𝑅0 from Assumption 5.7.3 with ‖ · ‖𝒟 = ‖ · ‖2
and 𝑅0,ℓ∞ corresponds to the 𝑅0 from Assumption 5.7.3 with ‖ · ‖𝒟 = ‖ · ‖1.

we will get E
[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤ 𝜀. Moreover, note that for 𝑝𝑖 = 𝐿𝑖/

∑︀𝑛
𝑖 𝐿𝑖 with 𝑤𝑖 = 𝐿𝑖, the

rate improves to

𝐾 =

∑︀𝑛
𝑖=1 𝐿𝑖
𝜇

ln

(︂
2(𝑓(𝑥0)− 𝑓(𝑥*))

𝜀

)︂
. (5.40)

5.4. Comparison of SMTP and SMTP_IS

Here we compare SMTP when 𝒟 is normal distribution with zero mean and 𝐼
𝑛

covariance

matrix with SMTP_IS with probabilities 𝑝𝑖 = 𝐿𝑖/∑︀𝑛
𝑖=1 𝐿𝑖. We choose such a distribution for

SMTP since it shows the best dimension dependence among other distributions considered in

Lemma 5.7.4. Note that if 𝑓 satisfies Assumption 5.3.1, it is 𝐿-smooth with 𝐿 = max
𝑖=1,...,𝑛

𝐿𝑖.

So, we always have that
∑︀𝑛

𝑖=1 𝐿𝑖 ≤ 𝑛𝐿. Table 5.2 summarizes complexities in this case.

We notice that for SMTP we have ‖ · ‖𝒟 = ‖ · ‖2. That is why one needs to compare

SMTP with SMTP_IS accurately. At the first glance, Table 5.2 says that for non-convex

and convex cases we get an extra 𝑛 factor in the complexity of SMTP_IS when 𝐿1 =

. . . = 𝐿𝑛 = 𝐿. However, it is natural since we use different norms for SMTP and SMTP_IS.

In the non-convex case for SMTP we give number of iterations in order to guarantee

E
[︀
‖∇𝑓(𝑧𝐾)‖2

]︀
≤ 𝜀 while for SMTP_IS we provide number of iterations in order to guarantee

E
[︀
‖∇𝑓(𝑧𝐾)‖1

]︀
≤ 𝜀. From Holder’s inequality ‖ · ‖1 ≤

√
𝑛‖ · ‖2 and, therefore, in order to

have E
[︀
‖∇𝑓(𝑧𝐾)‖1

]︀
≤ 𝜀 for SMTP we need to ensure that E

[︀
‖∇𝑓(𝑧𝐾)‖2

]︀
≤ 𝜀√

𝑛
. That is,

to guarantee E
[︀
‖∇𝑓(𝑧𝐾)‖1

]︀
≤ 𝜀 SMTP for aforementioned distribution needs to perform

𝜋𝑟0𝑛2𝐿
𝜀2

iterations.

Analogously, in the convex case using Cauchy-Schwartz inequality ‖ · ‖2 ≤
√
𝑛‖ · ‖∞

118

we have that 𝑅0,ℓ2 ≤
√
𝑛𝑅0,ℓ∞ . Typically this inequality is tight and if we assume that

𝑅0,ℓ∞ ≥ 𝐶
𝑅0,ℓ2√
𝑛

, we will get that SMTP_IS complexity is
𝑅2

0,ℓ2

∑︀𝑛
𝑖=1 𝐿𝑖

𝜀
ln
(︀
2𝑟0
𝜀

)︀
up to constant

factor.

That is, in all cases SMTP_IS shows better complexity than SMTP up to some constant

factor.

5.5. Experiments

Experimental Setup. We conduct extensive experiments on challenging non-convex

problems on the continuous control task from the MuJoCO suit [101]. In particular,

we address the problem of model-free control of a dynamical system. Policy gradient

methods for model-free reinforcement learning algorithms provide an off-the-shelf model-free

approach to learn how to control a dynamical system and are often benchmarked in a

simulator. We compare our proposed momentum stochastic three points method SMTP

and the momentum with importance sampling version SMTP_IS against state-of-art DFO

based methods as STP_IS [136] and ARS [108]. Moreover, we also compare against classical

policy gradient methods as TRPO [138] and NG [139]. We conduct experiments on several

environments with varying difficulty Swimmer-v1, Hopper-v1, HalfCheetah-v1, Ant-v1,

and Humanoid-v1.

Note that due to the stochastic nature of problem where 𝑓 is stochastic, we use

the mean of the function values of 𝑓(𝑥𝑘), 𝑓(𝑥𝑘+) and 𝑓(𝑥𝑘−), see Algorithm 9, over K

observations. Similar to the work in [136], we use 𝐾 = 2 for Swimmer-v1, 𝐾 = 4 for

both Hopper-v1 and HalfCheetah-v1, 𝐾 = 40 for Ant-v1 and Humanoid-v1. Similar

to [136], these values were chosen based on the validation performance over the grid

that is 𝐾 ∈ {1, 2, 4, 8, 16} for the smaller dimensional problems Swimmer-v1, Hopper-v1,

HalfCheetah-v1 and 𝐾 ∈ {20, 40, 80, 120} for larger dimensional problems Ant-v1, and

Humanoid-v1. As for the momentum term, for SMTP we set 𝛽 = 0.5. For SMTP_IS, as

the smoothness constants are not available for continuous control, we use the coordinate

smoothness constants of a 𝜃 parameterized smooth function 𝑓𝜃 (multi-layer perceptron)

that estimates 𝑓 . In particular, consider running any DFO for n steps; with the queried

sampled {𝑥𝑖, 𝑓(𝑥𝑖)}𝑛𝑖=1, we estimate 𝑓 by solving 𝜃𝑛+1 = argmin𝜃
∑︀

𝑖(𝑓(𝑥𝑖)− 𝑓(𝑥𝑖; 𝜃))
2. See

[136] for further implementation details as we follow the same experimental procedure.

In contrast to STP_IS, our method (SMTP) does not required sampling from directions in

119

Humanoid-v1

Number of Episodes

A
v
e
ra
g
e
R
e
w
a
rd

0 100000 200000 300000 4000000

2000

4000

6000

Ant-v1

Number of Episodes

A
v
e
ra
g
e
R
e
w
a
rd

0 20000 40000 60000 80000 100000 120000 140000

1000

2000

3000

4000

HalfCheetah-v1

Number of Episodes

A
v
e
ra
g
e
R
e
w
a
rd

Hopper-v1

Number of Episodes

A
v
e
ra
g
e
R
e
w
a
rd

Swimmer-v1

Number of Episodes

A
v
e
ra
g
e
R
e
w
a
rd

0 50 100 150 200 250 300 350 400
0

100

200

300

0 1000 2000 3000 4000
0

1000

2000

3000

0 2000 4000 6000 8000 10000 12000 14000
0

1000

2000

3000

4000

5000

Figure 5.1: SMTP is far superior to STP on all 5 different MuJoCo tasks particularly on the

high dimensional Humanoid-v1 problem. The horizontal dashed lines are the thresholds

used in Table 5.3 to demonstrate complexity of each method.

the canonical basis; hence, we use directions from standard Normal distribution in each

iteration. For SMTP_IS, we follow a similar procedure as [136] and sample from columns of

a random matrix 𝐵.

Similar to the standard practice, we perform all experiments with 5 different initialization

and measure the average reward, in continuous control we are maximizing the reward

function 𝑓 , and best and worst run per iteration. We compare algorithms in terms of

reward vs. sample complexity.

Comparison Against STP. Our method improves sample complexity of STP and

STP_IS significantly. Especially for high dimensional problems like Ant-v1 and Humanoid-v1,

sample efficiency of SMTP is at least as twice as the STP. Moreover, SMTP_IS helps in some

experiments by improving over SMTP. However, this is not consistent in all environments.

We believe this is largely due to the fact that SMTP_IS can only handle sampling from

canonical basis similar to STP_IS.

Comparison Against State-of-The-Art. We compare our method with state-of­

the-art DFO and policy gradient algorithms. For the environments, Swimmer-v1, Hopper-v1,

HalfCheetah-v1 and Ant-v1, our method outperforms the state-of-the-art results. Whereas

for Humanoid-v1, our methods results in a comparable sample complexity.

120

Table 5.3: For each MuJoCo task, we report the average number of episodes required to

achieve a predefined reward threshold. Results for our method is averaged over five random

seeds, the rest is copied from [108] (N/A means the method failed to reach the threshold.

UNK means the results is unknown since they are not reported in the literature.)

Threshold STP STPIS SMTP SMTPIS ARS(V1-t) ARS(V2-t) NG-lin TRPO-nn

Swimmer-v1 325 320 110 80 100 100 427 1450 N/A

Hopper-v1 3120 3970 2400 1264 1408 51840 1973 13920 10000

HalfCheetah-v1 3430 13760 4420 1872 1624 8106 1707 11250 4250

Ant-v1 3580 107220 43860 19890 14420 58133 20800 39240 73500

Humanoid-v1 6000 N/A 530200 161230 207160 N/A 142600 130000 UNK

5.6. Conclusion

We have proposed, SMTP, the first heavy ball momentum DFO based algorithm with

convergence rates for non-convex, convex and strongly convex functions under generic

sampling direction. We specialize the sampling to the set of coordinate bases and further

improve rates by proposing a momentum and importance sampling version SMPT_IS

with new convergence rates for non-convex, convex and strongly convex functions too.

We conduct large number of experiments on the task of controlling dynamical systems.

We outperform two different policy gradient methods and achieve comparable or better

performance to the best DFO algorithm (ARS) on the respective environments.

5.7. Missing Proofs, Technical Lemmas and Auxiliary Results

5.7.1. Preliminaries

We first list the main assumptions.

Assumption 5.7.1. (𝐿-smoothness) We say that 𝑓 is 𝐿-smooth if:

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖2 ≤ 𝐿‖𝑥− 𝑦‖2 ∀𝑥, 𝑦 ∈ R𝑛. (5.41)

Assumption 5.7.2. The probability distribution 𝒟 on R𝑛 satisfies the following properties:

1. The quantity 𝛾𝒟
def
= E𝑠∼𝒟‖𝑠‖22 is positive and finite.

2. There is a constant 𝜇𝒟 > 0 and norm ‖ · ‖𝒟 on R𝑛 such that for all 𝑔 ∈ R𝑛

E𝑠∼𝒟|⟨𝑔, 𝑠⟩| ≥ 𝜇𝒟‖𝑔‖𝒟. (5.42)

121

We establish the key lemma which will be used to prove the theorems stated in the

paper.

Lemma 5.7.1. Assume that 𝑓 is 𝐿-smooth and 𝒟 satisfies Assumption 5.7.2. Then for

the iterates of SMTP the following inequalities hold:

𝑓(𝑧𝑘+1) ≤ 𝑓(𝑧𝑘)− 𝛾𝑘

1− 𝛽
|⟨∇𝑓(𝑧𝑘), 𝑠𝑘⟩|+ 𝐿(𝛾𝑘)2

2(1− 𝛽)2
‖𝑠𝑘‖22 (5.43)

and

E𝑠𝑘∼𝒟
[︀
𝑓(𝑧𝑘+1)

]︀
≤ 𝑓(𝑧𝑘)− 𝛾𝑘𝜇𝒟

1− 𝛽
‖∇𝑓(𝑧𝑘)‖𝒟 +

𝐿(𝛾𝑘)2𝛾𝒟
2(1− 𝛽)2

. (5.44)

Proof. By induction one can show that

𝑧𝑘 = 𝑥𝑘 − 𝛾𝑘𝛽

1− 𝛽
𝑣𝑘−1. (5.45)

That is, for 𝑘 = 0 this recurrence holds and update rules for 𝑧𝑘, 𝑥𝑘 and 𝑣𝑘−1 do not brake

it. From this we get

𝑧𝑘+1
+ = 𝑥𝑘+1

+ − 𝛾𝑘𝛽

1− 𝛽
𝑣𝑘+ = 𝑥𝑘 − 𝛾𝑘𝑣𝑘+ −

𝛾𝑘𝛽

1− 𝛽
𝑣𝑘+

= 𝑥𝑘 − 𝛾𝑘

1− 𝛽
𝑣𝑘+ = 𝑥𝑘 − 𝛾𝑘𝛽

1− 𝛽
𝑣𝑘−1 − 𝛾𝑘

1− 𝛽
𝑠𝑘

(5.45)
= 𝑧𝑘 − 𝛾𝑘

1− 𝛽
𝑠𝑘.

Similarly,

𝑧𝑘+1
− = 𝑥𝑘+1

− − 𝛾𝑘𝛽

1− 𝛽
𝑣𝑘− = 𝑥𝑘 − 𝛾𝑘𝑣𝑘− −

𝛾𝑘𝛽

1− 𝛽
𝑣𝑘−

= 𝑥𝑘 − 𝛾𝑘

1− 𝛽
𝑣𝑘− = 𝑥𝑘 − 𝛾𝑘𝛽

1− 𝛽
𝑣𝑘−1 +

𝛾𝑘

1− 𝛽
𝑠𝑘

(5.45)
= 𝑧𝑘 +

𝛾𝑘

1− 𝛽
𝑠𝑘.

It implies that

𝑓(𝑧𝑘+1
+)

(3.3)
≤ 𝑓(𝑧𝑘) + ⟨∇𝑓(𝑧𝑘), 𝑧𝑘+1

+ − 𝑧𝑘⟩+
𝐿

2
‖𝑧𝑘+1

+ − 𝑧𝑘‖22

= 𝑓(𝑧𝑘)− 𝛾𝑘

1− 𝛽
⟨∇𝑓(𝑧𝑘), 𝑠𝑘⟩+

𝐿(𝛾𝑘)2

2(1− 𝛽)2
‖𝑠𝑘‖22

and

𝑓(𝑧𝑘+1
−) ≤ 𝑓(𝑧𝑘) +

𝛾𝑘

1− 𝛽
⟨∇𝑓(𝑧𝑘), 𝑠𝑘⟩+

𝐿(𝛾𝑘)2

2(1− 𝛽)2
‖𝑠𝑘‖22.

122

Unifying these two inequalities we get

𝑓(𝑧𝑘+1) ≤ min{𝑓(𝑧𝑘+1
+), 𝑓(𝑧𝑘+1

−)} = 𝑓(𝑧𝑘)− 𝛾𝑘

1− 𝛽
|⟨∇𝑓(𝑧𝑘), 𝑠𝑘⟩|+ 𝐿(𝛾𝑘)2

2(1− 𝛽)2
‖𝑠𝑘‖22,

which proves (5.43). Finally, taking the expectation E𝑠𝑘∼𝒟 of both sides of the previous

inequality and invoking Assumption 5.7.2, we obtain

E𝑠𝑘∼𝒟
[︀
𝑓(𝑧𝑘+1)

]︀
≤ 𝑓(𝑧𝑘)− 𝛾𝑘𝜇𝒟

1− 𝛽
‖∇𝑓(𝑧𝑘)‖𝒟 +

𝐿(𝛾𝑘)2𝛾𝒟
2(1− 𝛽)2

.

5.7.2. Missing Proofs from Section 5.2

Non-Convex Case

Theorem 5.7.1. Let Assumptions 5.7.1 and 5.7.2 be satisfied. Let SMTP with 𝛾𝑘 ≡ 𝛾 > 0

produce points {𝑧0, 𝑧1, . . . , 𝑧𝐾−1} and 𝑧𝐾 is chosen uniformly at random among them.

Then

E
[︀
‖∇𝑓(𝑧𝐾)‖𝒟

]︀
≤ (1− 𝛽)(𝑓(𝑥0)− 𝑓(𝑥*))

𝐾𝛾𝜇𝒟
+

𝐿𝛾𝛾𝒟
2𝜇𝒟(1− 𝛽)

. (5.46)

Moreover, if we choose 𝛾 = 𝛾0√
𝐾

the complexity (5.46) reduces to

E
[︀
‖∇𝑓(𝑧𝐾)‖𝒟

]︀
≤ 1√

𝐾

(︂
(1− 𝛽)(𝑓(𝑧0)− 𝑓(𝑥*))

𝛾0𝜇𝒟
+

𝐿𝛾0𝛾𝒟
2𝜇𝒟(1− 𝛽)

)︂
. (5.47)

Then 𝛾0 =
√︁

2(1−𝛽)2(𝑓(𝑥0)−𝑓(𝑥*))
𝐿𝛾𝒟

minimizes the right-hand side of (5.47) and for this choice

we have

E
[︀
‖∇𝑓(𝑧𝐾)‖𝒟

]︀
≤
√︀

2 (𝑓(𝑥0)− 𝑓(𝑥*))𝐿𝛾𝒟

𝜇𝒟
√
𝐾

. (5.48)

Proof. Taking full expectation from both sides of inequality (5.44) we get

E
[︀
‖∇𝑓(𝑧𝑘)‖𝒟

]︀
≤

(1− 𝛽)E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑧𝑘+1)

]︀
𝛾𝜇𝒟

+
𝐿𝛾𝛾𝒟

2𝜇𝒟(1− 𝛽)
.

Further, summing up the results for 𝑘 = 0, 1, . . . , 𝐾−1, dividing both sides of the obtained

inequality by 𝐾 and using tower property of the mathematical expectation we get

E
[︀
‖∇𝑓(𝑧𝐾)‖𝒟

]︀
=

1

𝐾

𝐾−1∑︁
𝑘=0

E
[︀
‖∇𝑓(𝑧𝑘)‖𝒟

]︀
≤ (1− 𝛽)(𝑓(𝑧0)− 𝑓(𝑥*))

𝐾𝛾𝜇𝒟
+

𝐿𝛾𝛾𝒟
2𝜇𝒟(1− 𝛽)

.

The last part where 𝛾 = 𝛾0√
𝐾

is straightforward.

123

Convex Case

Assumption 5.7.3. We assume that 𝑓 is convex, has a minimizer 𝑥* and has bounded

level set at 𝑥0:

𝑅0
def
= max

{︀
‖𝑥− 𝑥*‖*𝒟 | 𝑓(𝑥) ≤ 𝑓(𝑥0)

}︀
< +∞, (5.49)

where ‖𝜉‖*𝒟
def
= max {⟨𝜉, 𝑥⟩ | ‖𝑥‖𝒟 ≤ 1} defines the dual norm to ‖ · ‖𝒟.

Theorem 5.7.2 (Constant stepsize). Let Assumptions 5.7.1, 5.7.2 and 5.7.3 be satisfied.

If we set 𝛾𝑘 ≡ 𝛾 < (1−𝛽)𝑅0

𝜇𝒟
, then for the iterates of SMTP method the following inequality

holds:

E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
≤
(︂

1− 𝛾𝜇𝒟

(1− 𝛽)𝑅0

)︂𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+

𝐿𝛾𝛾𝒟𝑅0

2(1− 𝛽)𝜇𝒟
. (5.50)

If we choose 𝛾 = 𝜀(1−𝛽)𝜇𝒟
𝐿𝛾𝒟𝑅0

for some 0 < 𝜀 ≤ 𝐿𝛾𝒟𝑅
2
0

𝜇2𝒟
and run SMTP for 𝑘 = 𝐾 iterations

where

𝐾 =
1

𝜀

𝐿𝛾𝒟𝑅
2
0

𝜇2
𝒟

ln

(︂
2(𝑓(𝑥0)− 𝑓(𝑥*))

𝜀

)︂
, (5.51)

then we will get E
[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤ 𝜀.

Proof. From the (5.44) and monotonicity of {𝑓(𝑧𝑘)}𝑘≥0 we have

E𝑠∼𝒟
[︀
𝑓(𝑧𝑘+1)

]︀
≤ 𝑓(𝑧𝑘)− 𝛾𝜇𝒟

1− 𝛽
‖∇𝑓(𝑧𝑘)‖𝒟 +

𝐿𝛾2𝛾𝒟
2(1− 𝛽)2

(5.11)
≤ 𝑓(𝑧𝑘)− 𝛾𝜇𝒟

(1− 𝛽)𝑅0

(𝑓(𝑧𝑘)− 𝑓(𝑥*)) +
𝐿𝛾2𝛾𝒟

2(1− 𝛽)2
.

Taking full expectation, subtracting 𝑓(𝑥*) from the both sides of the previous inequality

and using the tower property of mathematical expectation we get

E
[︀
𝑓(𝑧𝑘+1)− 𝑓(𝑥*)

]︀
≤
(︂

1− 𝛾𝜇𝒟

(1− 𝛽)𝑅0

)︂
E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
+

𝐿𝛾2𝛾𝒟
2(1− 𝛽)2

. (5.52)

Since 𝛾 < (1−𝛽)𝑅0

𝜇𝒟
the term 1− 𝛾𝜇𝒟

(1−𝛽)𝑅0
is positive and we can unroll the recurrence (5.52):

E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
≤

(︂
1− 𝛾𝜇𝒟

(1− 𝛽)𝑅0

)︂𝑘 (︀
𝑓(𝑧0)− 𝑓(𝑥*)

)︀
+

𝐿𝛾2𝛾𝒟
2(1− 𝛽)2

𝑘−1∑︁
𝑙=0

(︂
1− 𝛾𝜇𝒟

(1− 𝛽)𝑅0

)︂𝑙
≤

(︂
1− 𝛾𝜇𝒟

(1− 𝛽)𝑅0

)︂𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+

𝐿𝛾2𝛾𝒟
2(1− 𝛽)2

∞∑︁
𝑙=0

(︂
1− 𝛾𝜇𝒟

(1− 𝛽)𝑅0

)︂𝑙
≤

(︂
1− 𝛾𝜇𝒟

(1− 𝛽)𝑅0

)︂𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+

𝐿𝛾2𝛾𝒟
2(1− 𝛽)2

· (1− 𝛽)𝑅0

𝛾𝜇𝒟

=

(︂
1− 𝛾𝜇𝒟

(1− 𝛽)𝑅0

)︂𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+

𝐿𝛾𝛾𝒟𝑅0

2(1− 𝛽)𝜇𝒟
.

124

Lastly, putting 𝛾 = 𝜀(1−𝛽)𝜇𝒟
𝐿𝛾𝒟𝑅0

and 𝑘 = 𝐾 from (5.51) in (5.50) we have

E[𝑓(𝑧𝐾)]− 𝑓(𝑥*) =

(︂
1− 𝜀𝜇2

𝒟
𝐿𝛾𝒟𝑅2

0

)︂𝐾 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+
𝜀

2

≤ exp

{︂
−𝐾 · 𝜀𝜇2

𝒟
𝐿𝛾𝒟𝑅2

0

}︂(︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+
𝜀

2
(5.51)
=

𝜀

2
+
𝜀

2
= 𝜀.

Next we use technical lemma from [39]. We provide the original proof for completeness.

Lemma 5.7.2 (Lemma 6 from [39]). Let a sequence {𝑎𝑘}𝑘≥0 satisfy inequality 𝑎𝑘+1 ≤

(1− 𝛾𝑘𝛼)𝑎𝑘 + (𝛾𝑘)2𝑁 for any positive 𝛾𝑘 ≤ 𝛾0 with some constants 𝛼 > 0, 𝑁 > 0, 𝛾0 > 0.

Further, let 𝜃 ≥ 2
𝛾0

and take 𝐶 such that 𝑁 ≤ 𝛼𝜃
4
𝐶 and 𝑎0 ≤ 𝐶. Then, it holds

𝑎𝑘 ≤ 𝐶
𝛼
𝜃
𝑘 + 1

if we set 𝛾𝑘 = 2
𝛼𝑘+𝜃

.

Proof. We will show the inequality for 𝑎𝑘 by induction. Since inequality 𝑎0 ≤ 𝐶 is one of

our assumptions, we have the initial step of the induction. To prove the inductive step,

consider

𝑎𝑘+1 ≤ (1− 𝛾𝑘𝛼)𝑎𝑘 + (𝛾𝑘)2𝑁 ≤
(︂

1− 2𝛼

𝛼𝑘 + 𝜃

)︂
𝜃𝐶

𝛼𝑘 + 𝜃
+ 𝜃𝛼

𝐶

(𝛼𝑘 + 𝜃)2
.

To show that the right-hand side is upper bounded by 𝜃𝐶
𝛼(𝑘+1)+𝜃

, one needs to have, after

multiplying both sides by (𝛼𝑘 + 𝜃)(𝛼𝑘 + 𝛼 + 𝜃)(𝜃𝐶)−1,(︂
1− 2𝛼

𝛼𝑘 + 𝜃

)︂
(𝛼𝑘 + 𝛼 + 𝜃) + 𝛼

𝛼𝑘 + 𝛼 + 𝜃

𝛼𝑘 + 𝜃
≤ 𝛼𝑘 + 𝜃,

which is equivalent to

𝛼− 𝛼𝛼𝑘 + 𝛼 + 𝜃

𝛼𝑘 + 𝜃
≤ 0.

The last inequality is trivially satisfied for all 𝑘 ≥ 0.

Theorem 5.7.3 (Decreasing stepsizes). Let Assumptions 5.7.1, 5.7.2 and 5.7.3 be satisfied.

If we set 𝛾𝑘 = 2
𝛼𝑘+𝜃

, where 𝛼 = 𝜇𝒟
(1−𝛽)𝑅0

and 𝜃 ≥ 2
𝛼
, then for the iterates of SMTP method

the following inequality holds:

E
[︀
𝑓(𝑧𝑘)

]︀
− 𝑓(𝑥*) ≤ 1

𝜂𝑘 + 1
max

{︂
𝑓(𝑥0)− 𝑓(𝑥*),

2𝐿𝛾𝒟
𝛼𝜃(1− 𝛽)2

}︂
, (5.53)

125

where 𝜂 def
= 𝛼

𝜃
. Then, if we choose 𝛾𝑘 = 2𝛼

𝛼2𝑘+2
where 𝛼 = 𝜇𝒟

(1−𝛽)𝑅0
and run SMTP for 𝑘 = 𝐾

iterations where

𝐾 =
1

𝜀
· 2𝑅2

0

𝜇2
𝒟

max
{︀

(1− 𝛽)2(𝑓(𝑥0)− 𝑓(𝑥*)), 𝐿𝛾𝒟
}︀
− 2(1− 𝛽)2𝑅2

0

𝜇2
𝒟

, 𝜀 > 0, (5.54)

we get E
[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤ 𝜀.

Proof. In (5.52) we proved that

E
[︀
𝑓(𝑧𝑘+1)− 𝑓(𝑥*)

]︀
≤
(︂

1− 𝛾𝜇𝒟

(1− 𝛽)𝑅0

)︂
E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
+

𝐿𝛾2𝛾𝒟
2(1− 𝛽)2

.

Having that, we can apply Lemma 5.7.2 to the sequence E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
. The constants

for the lemma are: 𝑁 = 𝐿𝛾𝒟
2(1−𝛽)2 , 𝛼 = 𝜇𝒟

(1−𝛽)𝑅0
and 𝐶 = max

{︁
𝑓(𝑥0)− 𝑓(𝑥*), 2𝐿𝛾𝒟

𝛼𝜃(1−𝛽)2

}︁
.

Lastly, choosing 𝛾𝑘 = 2𝛼
𝛼2𝑘+2

is equivalent to the choice 𝜃 = 2
𝛼
. In this case, we have 𝛼𝜃 = 2,

𝐶 = max
{︁
𝑓(𝑥0)− 𝑓(𝑥*), 𝐿𝛾𝒟

(1−𝛽)2

}︁
and 𝜂 = 𝛼

𝜃
= 𝛼2

2
=

𝜇2𝒟
2(1−𝛽)2𝑅2

0
. Putting these parameters

and 𝐾 from (5.54) in the (5.53) we get the result.

Strongly Convex Case

Assumption 5.7.4. We assume that 𝑓 is 𝜇-strongly convex with respect to the norm

‖ · ‖*𝒟:

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+
𝜇

2
(‖𝑦 − 𝑥‖*𝒟)2, ∀𝑥, 𝑦 ∈ R𝑛. (5.55)

It is well known that strong convexity implies

‖∇𝑓(𝑥)‖2𝒟 ≥ 2𝜇 (𝑓(𝑥)− 𝑓(𝑥*)) . (5.56)

Theorem 5.7.4 (Solution-dependent stepsizes). Let Assumptions 5.7.1, 5.7.2 and 5.7.4

be satisfied. If we set 𝛾𝑘 = (1−𝛽)𝜃𝑘𝜇𝒟
𝐿

√︀
2𝜇(𝑓(𝑧𝑘)− 𝑓(𝑥*)) for some 𝜃𝑘 ∈ (0, 2) such that

𝜃 = inf
𝑘≥0
{2𝜃𝑘 − 𝛾𝒟𝜃2𝑘} ∈

(︁
0, 𝐿

𝜇2𝒟𝜇

)︁
, then for the iterates of SMTP the following inequality

holds:

E
[︀
𝑓(𝑧𝑘)

]︀
− 𝑓(𝑥*) ≤

(︂
1− 𝜃𝜇2

𝒟𝜇

𝐿

)︂𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
. (5.57)

If we run SMTP for 𝑘 = 𝐾 iterations where

𝐾 =
𝜅

𝜃𝜇2
𝒟

ln

(︂
𝑓(𝑥0)− 𝑓(𝑥*)

𝜀

)︂
, 𝜀 > 0, (5.58)

where 𝜅 def
= 𝐿

𝜇
is the condition number of the objective, we will get E

[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤ 𝜀.

126

Proof. From (5.44) and 𝛾𝑘 = 𝜃𝑘𝜇𝒟
𝐿

√︀
2𝜇(𝑓(𝑥𝑘)− 𝑓(𝑥*)) we have

E𝑠𝑘∼𝒟
[︀
𝑓(𝑧𝑘+1)

]︀
− 𝑓(𝑥*) ≤ 𝑓(𝑧𝑘)− 𝑓(𝑥*)− 𝛾𝑘𝜇𝒟

1− 𝛽
‖∇𝑓(𝑧𝑘)‖𝒟 +

𝐿(𝛾𝑘)2𝛾𝒟
2(1− 𝛽)2

(5.56)
≤ 𝑓(𝑧𝑘)− 𝑓(𝑥*)− 𝛾𝑘𝜇𝒟

1− 𝛽
√︀

2𝜇(𝑓(𝑧𝑘)− 𝑓(𝑥*))

+
𝛾𝒟𝜃

2
𝑘𝜇

2
𝒟𝜇

𝐿
(𝑓(𝑧𝑘)− 𝑓(𝑥*))

≤ 𝑓(𝑧𝑘)− 𝑓(𝑥*)− 2𝜃𝑘𝜇2
𝒟𝜇

𝐿
(𝑓(𝑧𝑘)− 𝑓(𝑥*))

+
𝛾𝒟𝜃

2
𝑘𝜇

2
𝒟𝜇

𝐿
(𝑓(𝑧𝑘)− 𝑓(𝑥*))

≤
(︂

1− (2𝜃𝑘 − 𝛾𝒟𝜃2𝑘)
𝜇2
𝒟𝜇

𝐿

)︂
(𝑓(𝑧𝑘)− 𝑓(𝑥*)).

Using 𝜃 = inf
𝑘≥0
{2𝜃𝑘 − 𝛾𝒟𝜃2𝑘} ∈

(︁
0, 𝐿

𝜇2𝒟𝜇

)︁
and taking the full expectation from the previous

inequality we get

E
[︀
𝑓(𝑧𝑘+1)− 𝑓(𝑥*)

]︀
≤

(︂
1− 𝜃𝜇2

𝒟𝜇

𝐿

)︂
E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
≤

(︂
1− 𝜃𝜇2

𝒟𝜇

𝐿

)︂𝑘+1 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
.

Lastly, from (5.57) we have

E
[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤

(︂
1− 𝜃𝜇2

𝒟𝜇

𝐿

)︂𝐾 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
≤ exp

{︂
−𝐾𝜃𝜇2

𝒟𝜇

𝐿

}︂(︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
(5.58)
≤ 𝜀.

Assumption 5.7.5. We assume that for all 𝑠 ∼ 𝒟 we have ‖𝑠‖2 = 1.

Theorem 5.7.5 (Solution-free stepsizes). Let Assumptions 5.7.1, 5.7.2, 5.7.4 and 5.7.5 be

satisfied. If additionally we compute 𝑓(𝑧𝑘 + 𝑡𝑠𝑘), set 𝛾𝑘 = (1−𝛽)|𝑓(𝑧𝑘+𝑡𝑠𝑘)−𝑓(𝑧𝑘)|
𝐿𝑡

for 𝑡 > 0 and

assume that 𝒟 is such that 𝜇2
𝒟 ≤ 𝐿

𝜇
, then for the iterates of SMTP the following inequality

holds:

E
[︀
𝑓(𝑧𝑘)

]︀
− 𝑓(𝑥*) ≤

(︂
1− 𝜇2

𝒟𝜇

𝐿

)︂𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+

𝐿2𝑡2

8𝜇2
𝒟𝜇

. (5.59)

Moreover, for any 𝜀 > 0 if we set 𝑡 such that

0 < 𝑡 ≤
√︂

4𝜀𝜇2
𝒟𝜇

𝐿2
, (5.60)

127

and run SMTP for 𝑘 = 𝐾 iterations where

𝐾 =
𝜅

𝜇2
𝒟

ln

(︂
2(𝑓(𝑥0)− 𝑓(𝑥*))

𝜀

)︂
, (5.61)

where 𝜅 def
= 𝐿

𝜇
is the condition number of 𝑓 , we will have E

[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤ 𝜀.

Proof. Recall that from (5.43) we have

𝑓(𝑧𝑘+1) ≤ 𝑓(𝑧𝑘)− 𝛾𝑘

1− 𝛽
|⟨∇𝑓(𝑧𝑘), 𝑠𝑘⟩|+ 𝐿(𝛾𝑘)2

2(1− 𝛽)2
.

If we minimize the right hand side of the previous inequality as a function of 𝛾𝑘, we will

get that the optimal choice in this sense is 𝛾𝑘opt = (1−𝛽)|⟨∇𝑓(𝑧𝑘),𝑠𝑘⟩|
𝐿

. However, this stepsize

is impractical for derivative-free optimization, since it requires to know ∇𝑓(𝑧𝑘). The

natural way to handle this is to approximate directional derivative ⟨∇𝑓(𝑧𝑘), 𝑠𝑘⟩ by finite

difference 𝑓(𝑧𝑘+𝑡𝑠𝑘)−𝑓(𝑧𝑘)
𝑡

and that is what we do. We choose 𝛾𝑘 = (1−𝛽)|𝑓(𝑧𝑘+𝑡𝑠𝑘)−𝑓(𝑧𝑘)|
𝐿𝑡

=

(1−𝛽)|⟨∇𝑓(𝑧𝑘),𝑠𝑘⟩|
𝐿

+ (1−𝛽)|𝑓(𝑧𝑘+𝑡𝑠𝑘)−𝑓(𝑧𝑘)|
𝐿𝑡

− (1−𝛽)|⟨∇𝑓(𝑧𝑘),𝑠𝑘⟩|
𝐿

def
= 𝛾𝑘opt + 𝛿𝑘. From this we get

𝑓(𝑧𝑘+1) ≤ 𝑓(𝑧𝑘)− |⟨∇𝑓(𝑧𝑘), 𝑠𝑘⟩|2

2𝐿
+

𝐿

2(1− 𝛽)2
(𝛿𝑘)2.

Next we estimate |𝛿𝑘|:

|𝛿𝑘| =
(1− 𝛽)

𝐿𝑡

⃒⃒
|𝑓(𝑧𝑘 + 𝑡𝑠𝑘)− 𝑓(𝑧𝑘)| − |⟨∇𝑓(𝑧𝑘), 𝑡𝑠𝑘⟩|

⃒⃒
≤ (1− 𝛽)

𝐿𝑡

⃒⃒
𝑓(𝑧𝑘 + 𝑡𝑠𝑘)− 𝑓(𝑧𝑘)− ⟨∇𝑓(𝑧𝑘), 𝑡𝑠𝑘⟩

⃒⃒
(3.3)
≤ (1− 𝛽)

𝐿𝑡
· 𝐿

2
‖𝑡𝑠𝑘‖22 =

(1− 𝛽)𝑡

2
.

It implies that

𝑓(𝑧𝑘+1) ≤ 𝑓(𝑧𝑘)− |⟨∇𝑓(𝑧𝑘), 𝑠𝑘⟩|2

2𝐿
+

𝐿

2(1− 𝛽)2
· (1− 𝛽)2𝑡2

4

= 𝑓(𝑧𝑘)− |⟨∇𝑓(𝑧𝑘), 𝑠𝑘⟩|2

2𝐿
+
𝐿𝑡2

8

and after taking full expectation from the both sides of the obtained inequality we get

E
[︀
𝑓(𝑧𝑘+1)− 𝑓(𝑥*)

]︀
≤ E

[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
− 1

2𝐿
E
[︀
|⟨∇𝑓(𝑧𝑘), 𝑠𝑘⟩|2

]︀
+
𝐿𝑡2

8
.

Note that from the tower property of mathematical expectation and Jensen’s inequality

we have

E
[︀
|⟨∇𝑓(𝑧𝑘), 𝑠𝑘⟩|2

]︀
= E

[︀
E𝑠𝑘∼𝒟

[︀
|⟨∇𝑓(𝑧𝑘), 𝑠𝑘⟩|2 | 𝑧𝑘

]︀]︀
≥ E

[︁(︀
E𝑠𝑘∼𝒟

[︀
|⟨∇𝑓(𝑧𝑘), 𝑠𝑘⟩| | 𝑧𝑘

]︀)︀2]︁
(5.42)
≥ E

[︀
𝜇2
𝒟‖∇𝑓(𝑧𝑘)‖2𝒟

]︀ (5.56)
≥ 2𝜇2

𝒟𝜇E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
.

128

Putting all together we get

E
[︀
𝑓(𝑧𝑘+1)− 𝑓(𝑥*)

]︀
≤
(︂

1− 𝜇2
𝒟𝜇

𝐿

)︂
E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
+
𝐿𝑡2

8
.

Due to 𝜇2
𝒟 ≤ 𝐿

𝜇
we have

E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
≤

(︂
1− 𝜇2

𝒟𝜇

𝐿

)︂𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+
𝐿𝑡2

8

𝑘−1∑︁
𝑙=0

(︂
1− 𝜇2

𝒟𝜇

𝐿

)︂𝑙
≤

(︂
1− 𝜇2

𝒟𝜇

𝐿

)︂𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+
𝐿𝑡2

8

∞∑︁
𝑙=0

(︂
1− 𝜇2

𝒟𝜇

𝐿

)︂𝑙
=

(︂
1− 𝜇2

𝒟𝜇

𝐿

)︂𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+

𝐿2𝑡2

8𝜇2
𝒟𝜇

.

Lastly, from (5.59) we have

E
[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤

(︂
1− 𝜇2

𝒟𝜇

𝐿

)︂𝐾 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+

𝐿2𝑡2

8𝜇2
𝒟𝜇

(5.60)
≤ exp

{︂
−𝐾𝜇2

𝒟𝜇

𝐿

}︂(︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+
𝜀

2
(5.61)
≤ 𝜀

2
+
𝜀

2
= 𝜀.

5.7.3. Missing Proofs from Section 5.3

Again by definition of 𝑧𝑘+1 we get that the sequence {𝑓(𝑧𝑘)}𝑘≥0 is monotone:

𝑓(𝑧𝑘+1) ≤ 𝑓(𝑧𝑘) ∀𝑘 ≥ 0. (5.62)

Lemma 5.7.3. Assume that 𝑓 satisfies Assumption 5.3.1. Then for the iterates of SMTP_IS

the following inequalities hold:

𝑓(𝑧𝑘+1) ≤ 𝑓(𝑧𝑘)− 𝛾𝑘𝑖
1− 𝛽

|∇𝑖𝑘𝑓(𝑧𝑘)|+ 𝐿𝑖𝑘(𝛾
𝑘
𝑖)2

2(1− 𝛽)2
(5.63)

and

E𝑠𝑘∼𝒟
[︀
𝑓(𝑧𝑘+1)

]︀
≤ 𝑓(𝑧𝑘)− 1

1− 𝛽
E
[︀
𝛾𝑘𝑖 |∇𝑖𝑘𝑓(𝑧𝑘)| | 𝑧𝑘

]︀
+

1

2(1− 𝛽)2
E
[︀
𝐿𝑖𝑘(𝛾

𝑘
𝑖)2 | 𝑧𝑘

]︀
.

(5.64)

Proof. In the similar way as in Lemma 5.7.1 one can show that

𝑧𝑘 = 𝑥𝑘 − 𝛾𝑘𝑖 𝛽

1− 𝛽
𝑣𝑘−1 (5.65)

129

and

𝑧𝑘+1
+ = 𝑧𝑘 − 𝛾𝑘𝑖

1− 𝛽
𝑒𝑖𝑘 ,

𝑧𝑘+1
− = 𝑧𝑘 +

𝛾𝑘𝑖
1− 𝛽

𝑒𝑖𝑘 .

It implies that

𝑓(𝑧𝑘+1
+)

(5.23)
≤ 𝑓(𝑧𝑘)− 𝛾𝑘𝑖

1− 𝛽
∇𝑖𝑓(𝑧𝑘) +

𝐿𝑖𝑘(𝛾
𝑘
𝑖)2

2(1− 𝛽)2

and

𝑓(𝑧𝑘+1
−) ≤ 𝑓(𝑧𝑘) +

𝛾𝑘𝑖
1− 𝛽

∇𝑖𝑓(𝑧𝑘) +
𝐿𝑖𝑘(𝛾

𝑘
𝑖)2

2(1− 𝛽)2
.

Unifying these two inequalities we get

𝑓(𝑧𝑘+1) ≤ min{𝑓(𝑧𝑘+1
+), 𝑓(𝑧𝑘+1

−)} = 𝑓(𝑧𝑘)− 𝛾𝑘𝑖
1− 𝛽

|∇𝑖𝑓(𝑧𝑘)|+ 𝐿𝑖𝑘(𝛾
𝑘
𝑖)2

2(1− 𝛽)2
,

which proves (5.63). Finally, taking the expectation E[· | 𝑧𝑘] conditioned on 𝑧𝑘 from the

both sides of the previous inequality we obtain

E
[︀
𝑓(𝑧𝑘+1) | 𝑧𝑘

]︀
≤ 𝑓(𝑧𝑘)− 1

1− 𝛽
E
[︀
𝛾𝑘𝑖 |∇𝑖𝑘𝑓(𝑧𝑘)| | 𝑧𝑘

]︀
+

1

2(1− 𝛽)2
E
[︀
𝐿𝑖𝑘(𝛾

𝑘
𝑖)2 | 𝑧𝑘

]︀
.

Non-convex Case

Theorem 5.7.6. Assume that 𝑓 satisfies Assumption 5.3.1. Let SMTP_IS with 𝛾𝑘𝑖 = 𝛾
𝑤𝑖𝑘

for some 𝛾 > 0 produce points {𝑧0, 𝑧1, . . . , 𝑧𝐾−1} and 𝑧𝐾 is chosen uniformly at random

among them. Then

E
[︀
‖∇𝑓(𝑧𝐾)‖1

]︀
≤ (1− 𝛽)(𝑓(𝑥0)− 𝑓(𝑥*))

𝐾𝛾 min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

+
𝛾

2(1− 𝛽) min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

. (5.66)

Moreover, if we choose 𝛾 = 𝛾0√
𝐾

, then

E
[︀
‖∇𝑓(𝑧𝐾)‖1

]︀
≤ 1√

𝐾 min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

(︃
(1− 𝛽)(𝑓(𝑥0)− 𝑓(𝑥*))

𝛾0
+

𝛾0
2(1− 𝛽)

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

)︃
. (5.67)

130

Note that if we choose 𝛾0 =

√︃
2(1−𝛽)2(𝑓(𝑥0)−𝑓(𝑥*))

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

in order to minimize right-hand side of

(5.67), we will get

E
[︀
‖∇𝑓(𝑧𝐾)‖1

]︀
≤

√︂
2 (𝑓(𝑥0)− 𝑓(𝑥*))

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

√
𝐾 min

𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

. (5.68)

Note that for 𝑝𝑖 = 𝐿𝑖/
∑︀
𝑖 𝐿𝑖 with 𝑤𝑖 = 𝐿𝑖 we have that the rates improves to

E
[︀
‖∇𝑓(𝑧𝐾)‖1

]︀
≤

√︁
2(𝑓(𝑥0)− 𝑓(𝑥*))𝑑

∑︀𝑑
𝑖=1 𝐿𝑖√

𝐾
. (5.69)

Proof. Recall that from (5.64) we have

E
[︀
𝑓(𝑧𝑘+1) | 𝑧𝑘

]︀
≤ 𝑓(𝑧𝑘)− 1

1− 𝛽
E
[︀
𝛾𝑘𝑖 |∇𝑖𝑘𝑓(𝑧𝑘)| | 𝑧𝑘

]︀
+

1

2(1− 𝛽)2
E
[︀
𝐿𝑖𝑘(𝛾

𝑘
𝑖)2 | 𝑧𝑘

]︀
.

(5.70)

Using our choice 𝛾𝑘𝑖 = 𝛾
𝑤𝑖𝑘

we derive

E
[︀
𝛾𝑘𝑖 |∇𝑖𝑘𝑓(𝑧𝑘)| | 𝑧𝑘

]︀
= 𝛾

𝑛∑︁
𝑖=1

𝑝𝑖
𝑤𝑖
|∇𝑖𝑓(𝑧𝑘)| ≥ 𝛾‖∇𝑓(𝑧𝑘)‖1 min

𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

and

E
[︀
𝐿𝑖𝑘(𝛾

𝑘
𝑖)2 | 𝑧𝑘

]︀
= 𝛾2

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

.

Putting it in (5.70) and taking full expectation from the both sides of obtained inequality

we get

E
[︀
𝑓(𝑧𝑘+1)

]︀
≤ E

[︀
𝑓(𝑧𝑘)

]︀
−
𝛾 min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

1− 𝛽
E‖∇𝑓(𝑧𝑘)‖1 +

𝛾2

2(1− 𝛽)2

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

,

whence

‖∇𝑓(𝑧𝑘)‖1 ≤
(1− 𝛽)

(︀
E
[︀
𝑓(𝑧𝑘)

]︀
− E

[︀
𝑓(𝑧𝑘+1)

]︀)︀
𝛾 min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

+
𝛾

2(1− 𝛽) min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

.

Summing up previous inequality for 𝑘 = 0, 1, . . . , 𝐾 − 1 and dividing both sides of the

result by 𝐾, we get

1

𝐾

𝐾−1∑︁
𝑘=0

E
[︀
‖∇𝑓(𝑧𝑘)‖1

]︀
≤ (1− 𝛽)(𝑓(𝑧0)− 𝑓(𝑥*))

𝐾𝛾 min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

+
𝛾

2(1− 𝛽) min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

.

It remains to notice that 1
𝐾

𝐾−1∑︀
𝑘=0

E
[︀
‖∇𝑓(𝑧𝑘)‖1

]︀
= E

[︀
‖∇𝑓(𝑧𝐾)‖1

]︀
. The last part where

𝛾 = 𝛾0√
𝐾

is straightforward.

131

Convex Case

Theorem 5.7.7 (Constant stepsize). Let Assumptions 5.2.2 and 5.3.1 be satisfied. If we

set 𝛾𝑘𝑖 = 𝛾
𝑤𝑖𝑘

such that 0 < 𝛾 ≤ (1−𝛽)𝑅0

min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

, then for the iterates of SMTP_IS method the

following inequality holds:

E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
≤

⎛⎝1−
𝛾 min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

(1− 𝛽)𝑅0

⎞⎠𝑘 (︀
𝑓(𝑧0)− 𝑓(𝑥*)

)︀
+

𝛾𝑅0

2(1− 𝛽) min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

.

(5.71)

Moreover, if we choose 𝛾 =
𝜀(1−𝛽) min

𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

𝑅0

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

for some 0 < 𝜀 ≤
𝑅2

0

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

min
𝑖=1,...,𝑛

𝑝2
𝑖
𝑤2
𝑖

and run SMTP_IS

for 𝑘 = 𝐾 iterations where

𝐾 =
1

𝜀

𝑅2
0

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

min
𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

ln

(︂
2(𝑓(𝑥0)− 𝑓(𝑥*))

𝜀

)︂
, (5.72)

we will get E
[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤ 𝜀. Moreover, for 𝑝𝑖 = 𝐿𝑖/

∑︀
𝑖 𝐿𝑖 with 𝑤𝑖 = 𝐿𝑖, the rate

improves to

𝐾 =
1

𝜀
𝑅2

0𝑛
𝑛∑︁
𝑖=1

𝐿𝑖 ln

(︂
2(𝑓(𝑥0)− 𝑓(𝑥*))

𝜀

)︂
. (5.73)

Proof. Recall that from (5.64) we have

E
[︀
𝑓(𝑧𝑘+1) | 𝑧𝑘

]︀
≤ 𝑓(𝑧𝑘)− 1

1− 𝛽
E
[︀
𝛾𝑘𝑖 |∇𝑖𝑘𝑓(𝑧𝑘)| | 𝑧𝑘

]︀
+

1

2(1− 𝛽)2
E
[︀
𝐿𝑖𝑘(𝛾

𝑘
𝑖)2 | 𝑧𝑘

]︀
.

(5.74)

Using our choice 𝛾𝑘𝑖 = 𝛾
𝑤𝑖𝑘

we derive

E
[︀
𝛾𝑘𝑖∇𝑖𝑘𝑓(𝑧𝑘) | 𝑧𝑘

]︀
= 𝛾

𝑛∑︁
𝑖=1

𝑝𝑖
𝑤𝑖
|∇𝑖𝑓(𝑧𝑘)| ≥ 𝛾‖∇𝑓(𝑧𝑘)‖1 min

𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

(5.11)
≥ 𝛾

𝑅0

min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

(︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

)︀
and

E
[︀
𝐿𝑖𝑘(𝛾

𝑘
𝑖)2 | 𝑧𝑘

]︀
= 𝛾2

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

.

Putting it in (5.74) and taking full expectation from the both sides of obtained inequality

we get

E
[︀
𝑓(𝑧𝑘+1)− 𝑓(𝑥*)

]︀
≤

⎛⎝1−
𝛾 min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

(1− 𝛽)𝑅0

⎞⎠E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
+

𝛾2

2(1− 𝛽)2

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

.

(5.75)

132

Due to our choice of 𝛾 ≤ (1−𝛽)𝑅0

min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

we have that the factor
(︂

1− 𝛾
(1−𝛽)𝑅0

min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

)︂
is

non-negative and, therefore,

E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
≤

(︂
1− 𝛾

(1− 𝛽)𝑅0

min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

)︂𝑘 (︀
𝑓(𝑧0)− 𝑓(𝑥*)

)︀
+

(︃
𝛾2

2(1− 𝛽)2

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

)︃
𝑘−1∑︁
𝑙=0

(︂
1− 𝛾

(1− 𝛽)𝑅0

min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

)︂𝑙
≤

(︂
1− 𝛾

(1− 𝛽)𝑅0

min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

)︂𝑘 (︀
𝑓(𝑧0)− 𝑓(𝑥*)

)︀
+

(︃
𝛾2

2(1− 𝛽)2

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

)︃
∞∑︁
𝑙=0

(︂
1− 𝛾

(1− 𝛽)𝑅0

min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

)︂𝑙

≤

⎛⎝1−
𝛾 min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

(1− 𝛽)𝑅0

⎞⎠𝑘 (︀
𝑓(𝑧0)− 𝑓(𝑥*)

)︀
+

𝛾𝑅0

2(1− 𝛽) min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

.

Then, putting 𝛾 =
𝜀(1−𝛽) min

𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

𝑅0

𝑑∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

and 𝑘 = 𝐾 from (5.31) in (5.30) we have

E[𝑓(𝑧𝐾)]− 𝑓(𝑥*) =

⎛⎜⎜⎝1−
𝜀 min
𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

𝑅2
0

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

⎞⎟⎟⎠
𝐾 (︀

𝑓(𝑧0)− 𝑓(𝑥*)
)︀

+
𝜀

2

≤ exp

⎧⎪⎪⎨⎪⎪⎩−𝐾 ·
𝜀 min
𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

𝑅2
0

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

⎫⎪⎪⎬⎪⎪⎭
(︀
𝑓(𝑧0)− 𝑓(𝑥*)

)︀
+
𝜀

2

(5.31)
=

𝜀

2
+
𝜀

2
= 𝜀.

Theorem 5.7.8 (Decreasing stepsizes). Let Assumptions 5.2.2 and 5.3.1 be satisfied. If

we set 𝛾𝑘𝑖 = 𝛾𝑘

𝑤𝑖𝑘
and 𝛾𝑘 = 2

𝛼𝑘+𝜃
, where 𝛼 =

min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

(1−𝛽)𝑅0
and 𝜃 ≥ 2

𝛼
, then for the iterates of

SMTP_IS method the following inequality holds:

E
[︀
𝑓(𝑧𝑘)

]︀
− 𝑓(𝑥*) ≤ 1

𝜂𝑘 + 1
max

{︃
𝑓(𝑥0)− 𝑓(𝑥*),

2

𝛼𝜃(1− 𝛽)2

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

}︃
, (5.76)

where 𝜂 def
= 𝛼

𝜃
. Moreover, if we choose 𝛾𝑘 = 2𝛼

𝛼2𝑘+2
where 𝛼 =

min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

(1−𝛽)𝑅0
and run SMTP_IS for

𝑘 = 𝐾 iterations where

𝐾 =
1

𝜀
· 2𝑅2

0

min
𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

max

{︃
(1− 𝛽)2(𝑓(𝑥0)− 𝑓(𝑥*)),

𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

}︃
− 2(1− 𝛽)2𝑅2

0

min
𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

, 𝜀 > 0,

(5.77)

133

we will get E
[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤ 𝜀.

Proof. In (5.75) we proved that

E
[︀
𝑓(𝑧𝑘+1)− 𝑓(𝑥*)

]︀
≤

⎛⎝1−
𝛾 min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

(1− 𝛽)𝑅0

⎞⎠E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
+

𝛾2

2(1− 𝛽)2

𝑛∑︁
𝑙=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

.

Having that, we can apply Lemma 5.7.2 to the sequence E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
. The constants

for the lemma are:𝑁 = 1
2(1−𝛽)2

𝑛∑︀
𝑙=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

, 𝛼 =
min

𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

(1−𝛽)𝑅0
and 𝐶 = max

{︂
𝑓(𝑥0)− 𝑓(𝑥*), 2

𝛼𝜃(1−𝛽)2
𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

}︂
.

Lastly, note that choosing 𝛾𝑘 = 2𝛼
𝛼2𝑘+2

is equivalent to choice 𝜃 = 2
𝛼
. In this case we have

𝛼𝜃 = 2 and 𝐶 = max

{︂
𝑓(𝑥0)− 𝑓(𝑥*), 1

(1−𝛽)2
𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

}︂
and 𝜂 = 𝛼

𝜃
= 𝛼2

2
=

min
𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

2(1−𝛽)2𝑅2
0
. Putting

these parameters and 𝐾 from (5.34) in the (5.33) we get the result.

Strongly Convex Case

Theorem 5.7.9 (Solution-dependent stepsizes). Let Assumptions 5.2.3 (with ‖ · ‖𝒟 =

‖ · ‖1) and 5.3.1 be satisfied. If we set 𝛾𝑘𝑖 =
(1−𝛽)𝜃𝑘 min

𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

𝑤𝑖𝑘

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

√︀
2𝜇(𝑓(𝑧𝑘)− 𝑓(𝑥*)) for some

𝜃𝑘 ∈ (0, 2) such that 𝜃 = inf
𝑘≥0
{2𝜃𝑘−𝜃2𝑘} ∈

⎛⎝0,

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

𝜇 min
𝑖=1,...,𝑛

𝑝2
𝑖
𝑤2
𝑖

⎞⎠, then for the iterates of SMTP_IS

method the following inequality holds:

E
[︀
𝑓(𝑧𝑘)

]︀
− 𝑓(𝑥*) ≤

⎛⎜⎜⎝1−
𝜃𝜇 min

𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

⎞⎟⎟⎠
𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
. (5.78)

If we run SMTP_IS for 𝑘 = 𝐾 iterations where

𝐾 =

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

𝜃𝜇 min
𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

ln

(︂
𝑓(𝑥0)− 𝑓(𝑥*)

𝜀

)︂
, 𝜀 > 0, (5.79)

we will get E
[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤ 𝜀.

Proof. Recall that from (5.64) we have

E
[︀
𝑓(𝑧𝑘+1) | 𝑧𝑘

]︀
≤ 𝑓(𝑧𝑘)− 1

1− 𝛽
E
[︀
𝛾𝑘𝑖 |∇𝑖𝑘𝑓(𝑧𝑘)| | 𝑧𝑘

]︀
+

1

2(1− 𝛽)2
E
[︀
𝐿𝑖𝑘(𝛾

𝑘
𝑖)2 | 𝑧𝑘

]︀
.

(5.80)

134

Using our choice 𝛾𝑘𝑖 =
(1−𝛽)𝜃𝑘 min

𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

𝑤𝑖𝑘

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

√︀
2𝜇(𝑓(𝑧𝑘)− 𝑓(𝑥*)) we derive

E
[︀
𝛾𝑘𝑖∇𝑖𝑘𝑓(𝑧𝑘) | 𝑧𝑘

]︀
=

(1− 𝛽)𝜃𝑘 min
𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

√︀
2𝜇(𝑓(𝑧𝑘)− 𝑓(𝑥*))

𝑛∑︁
𝑖=1

𝑝𝑖
𝑤𝑖
|∇𝑖𝑓(𝑧𝑘)|

≥
(1− 𝛽)𝜃𝑘

(︂
min

𝑖=1,...,𝑛

𝑝𝑖
𝑤𝑖

)︂2

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

√︀
2𝜇(𝑓(𝑧𝑘)− 𝑓(𝑥*))‖∇𝑓(𝑧𝑘)‖1

(5.17)
≥

2(1− 𝛽)𝜃𝑘 min
𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

𝜇(𝑓(𝑧𝑘)− 𝑓(𝑥*))

and

E
[︀
𝐿𝑖𝑘(𝛾

𝑘
𝑖)2 | 𝑧𝑘

]︀
=

2(1− 𝛽)2𝜃2𝑘 min
𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖(︂

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

)︂2 𝜇(𝑓(𝑧𝑘)− 𝑓(𝑥*))
𝑛∑︁
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

=
2(1− 𝛽)2𝜃2𝑘 min

𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

𝜇(𝑓(𝑧𝑘)− 𝑓(𝑥*)).

Putting it in (5.80) and taking full expectation from the both sides of obtained inequality

we get

E
[︀
𝑓(𝑧𝑘+1)− 𝑓(𝑥*)

]︀
≤

⎛⎜⎜⎝1− (2𝜃 − 𝜃2)
𝜇 min
𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

⎞⎟⎟⎠E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
.

Using 𝜃 = inf
𝑘≥0
{2𝜃𝑘 − 𝜃2𝑘} ∈

⎛⎝0,

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

𝜇 min
𝑖=1,...,𝑛

𝑝2
𝑖
𝑤2
𝑖

⎞⎠ we obtain

E
[︀
𝑓(𝑧𝑘+1)− 𝑓(𝑥*)

]︀
≤

⎛⎜⎜⎝1−
𝜃𝜇 min

𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

⎞⎟⎟⎠E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀

≤

⎛⎜⎜⎝1−
𝜃𝜇 min

𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

⎞⎟⎟⎠
𝑘+1 (︀

𝑓(𝑥0)− 𝑓(𝑥*)
)︀
.

135

Lastly, from (5.35) we have

E
[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤

⎛⎜⎜⎝1−
𝜃𝜇 min

𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

⎞⎟⎟⎠
𝐾 (︀

𝑓(𝑥0)− 𝑓(𝑥*)
)︀

≤ exp

⎧⎪⎪⎨⎪⎪⎩−𝐾
𝜃𝜇 min

𝑖=1,...,𝑛

𝑝2𝑖
𝑤2
𝑖

𝑛∑︀
𝑖=1

𝐿𝑖𝑝𝑖
𝑤2
𝑖

⎫⎪⎪⎬⎪⎪⎭
(︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
(5.36)
≤ 𝜀.

Theorem 5.7.10 (Solution-free stepsizes). Let Assumptions 5.2.3 (with ‖ · ‖𝒟 = ‖ · ‖2)

and 5.3.1 be satisfied. If additionally we compute 𝑓(𝑧𝑘 + 𝑡𝑒𝑖𝑘), set 𝛾𝑘𝑖 =
(1−𝛽)|𝑓(𝑧𝑘+𝑡𝑒𝑖𝑘)−𝑓(𝑧

𝑘)|
𝐿𝑖𝑘 𝑡

for 𝑡 > 0, then for the iterates of SMTP_IS method the following inequality holds:

E
[︀
𝑓(𝑧𝑘)

]︀
− 𝑓(𝑥*) ≤

(︂
1− 𝜇 min

𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

)︂𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+

𝑡2

8𝜇 min
𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

𝑛∑︁
𝑖=1

𝑝𝑖𝐿𝑖. (5.81)

Moreover, for any 𝜀 > 0 if we set 𝑡 such that

0 < 𝑡 ≤

⎯⎸⎸⎸⎸⎷4𝜀𝜇 min
𝑙=1,...,𝑛

𝑝𝑖
𝐿𝑖

𝑛∑︀
𝑖=1

𝑝𝑖𝐿𝑖

, (5.82)

and run SMTP_IS for 𝑘 = 𝐾 iterations where

𝐾 =
1

𝜇 min
𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

ln

(︂
2(𝑓(𝑥0)− 𝑓(𝑥*))

𝜀

)︂
, (5.83)

we will get E
[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤ 𝜀. Moreover, note that for 𝑝𝑖 = 𝐿𝑖/

∑︀
𝑖 𝐿𝑖 with 𝑤𝑖 = 𝐿𝑖, the

rate improves to

𝐾 =

∑︀𝑛
𝑖=1 𝐿𝑖
𝜇

ln

(︂
2(𝑓(𝑥0)− 𝑓(𝑥*))

𝜀

)︂
. (5.84)

Proof. Recall that from (5.63) we have

𝑓(𝑧𝑘+1) ≤ 𝑓(𝑧𝑘)− 𝛾𝑘𝑖
1− 𝛽

|∇𝑖𝑘𝑓(𝑧𝑘)|+ 𝐿𝑖𝑘(𝛾
𝑘
𝑖)2

2(1− 𝛽)2
.

If we minimize the right hand side of the previous inequality as a function of 𝛾𝑘𝑖 , we will

get that the optimal choice in this sense is 𝛾𝑘opt =
(1−𝛽)|∇𝑖𝑘𝑓(𝑧

𝑘)|
𝐿𝑖𝑘

. However, this stepsize

is impractical for derivative-free optimization, since it requires to know ∇𝑖𝑘𝑓(𝑧𝑘). The

136

natural way to handle this is to approximate directional derivative ∇𝑖𝑘𝑓(𝑧𝑘) by finite

difference 𝑓(𝑧𝑘+𝑡𝑒𝑖𝑘)−𝑓(𝑧
𝑘)

𝑡
and that is what we do. We choose 𝛾𝑘𝑖 =

(1−𝛽)|𝑓(𝑧𝑘+𝑡𝑒𝑖𝑘)−𝑓(𝑧
𝑘)|

𝐿𝑖𝑘 𝑡
=

(1−𝛽)|∇𝑖𝑘𝑓(𝑧
𝑘)|

𝐿𝑖𝑘
+

(1−𝛽)|𝑓(𝑧𝑘+𝑡𝑒𝑖𝑘)−𝑓(𝑧
𝑘)|

𝐿𝑖𝑘 𝑡
− (1−𝛽)|∇𝑖𝑘𝑓(𝑧

𝑘)|
𝐿𝑖𝑘

def
= 𝛾𝑘opt + 𝛿𝑘𝑖 . From this we get

𝑓(𝑧𝑘+1) ≤ 𝑓(𝑧𝑘)− |∇𝑖𝑘𝑓(𝑧𝑘)|2

2𝐿𝑖𝑘
+

𝐿𝑖𝑘
2(1− 𝛽)2

(𝛿𝑘𝑖)2.

Next we estimate |𝛿𝑘𝑖 |:

|𝛿𝑘𝑖 | =
(1− 𝛽)

𝐿𝑖𝑘𝑡

⃒⃒
|𝑓(𝑧𝑘 + 𝑡𝑒𝑖𝑘)− 𝑓(𝑧𝑘)| − |∇𝑖𝑘𝑓(𝑧𝑘)|𝑡

⃒⃒
≤ (1− 𝛽)

𝐿𝑖𝑘𝑡

⃒⃒
𝑓(𝑧𝑘 + 𝑡𝑒𝑖𝑘)− 𝑓(𝑧𝑘)−∇𝑖𝑘𝑓(𝑧𝑘)𝑡

⃒⃒
(5.23)
≤ (1− 𝛽)

𝐿𝑖𝑘𝑡
· 𝐿𝑖𝑘𝑡

2

2
=

(1− 𝛽)𝑡

2
.

It implies that

𝑓(𝑧𝑘+1) ≤ 𝑓(𝑧𝑘)− |∇𝑖𝑘𝑓(𝑧𝑘)|2

2𝐿𝑖𝑘
+

𝐿𝑖𝑘
2(1− 𝛽)2

· (1− 𝛽)2𝑡2

4

= 𝑓(𝑧𝑘)− |∇𝑖𝑘𝑓(𝑧𝑘)|2

2𝐿𝑖𝑘
+
𝐿𝑖𝑘𝑡

2

8

and after taking expectation E
[︀
· | 𝑧𝑘

]︀
conditioned on 𝑧𝑘 from the both sides of the obtained

inequality we get

E
[︀
𝑓(𝑧𝑘+1) | 𝑧𝑘

]︀
≤ 𝑓(𝑧𝑘)− 1

2
E

[︂
|∇𝑖𝑘𝑓(𝑧𝑘)|2

𝐿𝑖𝑘
| 𝑧𝑘
]︂

+
𝑡2

8
E
[︀
𝐿𝑖𝑘 | 𝑧𝑘

]︀
.

Note that

E

[︂
|∇𝑖𝑘𝑓(𝑧𝑘)|2

𝐿𝑖𝑘
| 𝑧𝑘
]︂

=
𝑛∑︁
𝑖=1

𝑝𝑖
𝐿𝑖
|∇𝑖𝑓(𝑧𝑘)|2

≥ ‖∇𝑓(𝑧𝑘)‖22 min
𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

(5.56)
≥ 2𝜇

(︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

)︀
min

𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖
,

since ‖ · ‖𝒟 = ‖ · ‖2, and

E
[︀
𝐿𝑖𝑘 | 𝑧𝑘

]︀
=

𝑛∑︁
𝑖=1

𝑝𝑖𝐿𝑖.

Putting all together we get

E
[︀
𝑓(𝑧𝑘+1) | 𝑧𝑘

]︀
≤ 𝑓(𝑧𝑘)− 𝜇 min

𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

(︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

)︀
+
𝑡2

8

𝑛∑︁
𝑖=1

𝑝𝑖𝐿𝑖.

137

Taking full expectation from the previous inequality we get

E
[︀
𝑓(𝑧𝑘+1)− 𝑓(𝑥*)

]︀
≤
(︂

1− 𝜇 min
𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

)︂
E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
+
𝑡2

8

𝑛∑︁
𝑖=1

𝑝𝑖𝐿𝑖.

Since 𝜇 ≤ 𝐿𝑖 for all 𝑖 = 1, . . . , 𝑛 we have

E
[︀
𝑓(𝑧𝑘)− 𝑓(𝑥*)

]︀
≤

(︂
1− 𝜇 min

𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

)︂𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+

(︃
𝑡2

8

𝑛∑︁
𝑖=1

𝑝𝑖𝐿𝑖

)︃
𝑘−1∑︁
𝑙=0

(︂
1− 𝜇 min

𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

)︂𝑙
≤

(︂
1− 𝜇 min

𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

)︂𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+

(︃
𝑡2

8

𝑛∑︁
𝑖=1

𝑝𝑖𝐿𝑖

)︃
∞∑︁
𝑙=0

(︂
1− 𝜇 min

𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

)︂𝑙
=

(︂
1− 𝜇 min

𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

)︂𝑘 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+

𝑡2

8𝜇 min
𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

𝑛∑︁
𝑖=1

𝑝𝑖𝐿𝑖.

Lastly, from (5.37) we have

E
[︀
𝑓(𝑧𝐾)

]︀
− 𝑓(𝑥*) ≤

(︂
1− 𝜇 min

𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

)︂𝐾 (︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+

𝑡2

8𝜇 min
𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

𝑛∑︁
𝑖=1

𝑝𝑖𝐿𝑖

(5.38)
≤ exp

{︂
−𝐾𝜇 min

𝑖=1,...,𝑛

𝑝𝑖
𝐿𝑖

}︂(︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
+
𝜀

2
(5.39)
≤ 𝜀

2
+
𝜀

2
= 𝜀.

5.7.4. Auxiliary results

Lemma 5.7.4 (Lemma 3.4 from [129]). Let 𝑔 ∈ R𝑛.

1. If 𝒟 is the uniform distribution on the unit sphere in R𝑛, then

𝛾𝒟 = 1 and E𝑠∼𝒟 | ⟨𝑔, 𝑠⟩ | ∼
1√
2𝜋𝑛
‖𝑔‖2. (5.85)

Hence, 𝒟 satisfies Assumption 5.2.1 with 𝛾𝒟 = 1, ‖ · ‖𝒟 = ‖ · ‖2 and 𝜇𝒟 ∼ 1√
2𝜋𝑛

.

2. If 𝒟 is the normal distribution with zero mean and identity over 𝑛 as covariance

matrix (i.e. 𝑠 ∼ 𝑁(0, 𝐼
𝑛
)) then

𝛾𝒟 = 1 and E𝑠∼𝒟 | ⟨𝑔, 𝑠⟩ | =
√

2√
𝑛𝜋
‖𝑔‖2. (5.86)

Hence, 𝒟 satisfies Assumption 5.2.1 with 𝛾𝒟 = 1, ‖ · ‖𝒟 = ‖ · ‖2 and 𝜇𝒟 =
√
2√
𝑛𝜋

.

138

3. If 𝒟 is the uniform distribution on {𝑒1, . . . , 𝑒𝑛}, then

𝛾𝒟 = 1 and E𝑠∼𝒟 | ⟨𝑔, 𝑠⟩ | =
1

𝑛
‖𝑔‖1. (5.87)

Hence, 𝒟 satisfies Assumption 5.2.1 with 𝛾𝒟 = 1, ‖ · ‖𝒟 = ‖ · ‖1 and 𝜇𝒟 = 1
𝑛
.

4. If 𝒟 is an arbitrary distribution on {𝑒1, . . . , 𝑒𝑛} given by P {𝑠 = 𝑒𝑖} = 𝑝𝑖 > 0, then

𝛾𝒟 = 1 and E𝑠∼𝒟 | ⟨𝑔, 𝑠⟩ | = ‖𝑔‖𝒟
def
=

𝑛∑︁
𝑖=1

𝑝𝑖|𝑔𝑖|. (5.88)

Hence, 𝒟 satisfies Assumption 5.2.1 with 𝛾𝒟 = 1 and 𝜇𝒟 = 1.

5. If 𝒟 is a distribution on 𝐷 = {𝑢1, . . . , 𝑢𝑛} where 𝑢1, . . . , 𝑢𝑛 form an orthonormal

basis of R𝑛 and P {𝑠 = 𝑢𝑖} = 𝑝𝑖, then

𝛾𝒟 = 1 and E𝑠∼𝒟 | ⟨𝑔, 𝑠⟩ | = ‖𝑔‖𝒟
def
=

𝑛∑︁
𝑖=1

𝑝𝑖|𝑔𝑖|. (5.89)

Hence, 𝒟 satisfies Assumption 5.2.1 with 𝛾𝒟 = 1 and 𝜇𝒟 = 1.

139

References

1. Nesterov Y. Introductory Lectures on Convex Optimization: a basic course. Kluwer

Academic Publishers, Massachusetts, 2004.

2. Gorbunov E., Dvinskikh D., Gasnikov A. Optimal decentralized distributed algorithms

for stochastic convex optimization // arXiv preprint arXiv:1911.07363. 2019.

3. Shalev-Shwartz S., Ben-David S. Understanding machine learning: From theory to

algorithms. Cambridge university press, 2014.

4. Shapiro A., Dentcheva D., Ruszczyński A. Lectures on Stochastic Pro­

gramming. Society for Industrial and Applied Mathematics, 2009.

http://epubs.siam.org/doi/pdf/10.1137/1.9780898718751. URL: http:

//epubs.siam.org/doi/abs/10.1137/1.9780898718751.

5. Spokoiny V. et al. Parametric estimation. Finite sample theory // The Annals of

Statistics. 2012. Vol. 40, no. 6. P. 2877–2909.

6. Cesa-Bianchi N., Conconi A., Gentile C. On the generalization ability of on-line

learning algorithms. IEEE, 2004. Vol. 50. P. 2050–2057.

7. Shalev-Shwartz S., Shamir O., Srebro N., Sridharan K. Stochastic Convex Optimiza­

tion. // COLT. 2009.

8. Feldman V., Vondrak J. High probability generalization bounds for uniformly stable

algorithms with nearly optimal rate // arXiv preprint arXiv:1902.10710. 2019.

9. Gower R. M., Loizou N., Qian X. et al. SGD: General Analysis and Improved Rates //

arXiv preprint arXiv:1901.09401. 2019.

10. Nemirovski A., Juditsky A., Lan G., Shapiro A. Robust Stochastic Approximation

Approach to Stochastic Programming // SIAM Journal on Optimization. 2009.

Vol. 19, no. 4. P. 1574–1609. URL: https://doi.org/10.1137/070704277.

11. Nguyen L. M., Nguyen P. H., van Dijk M. et al. SGD and Hogwild! convergence

without the bounded gradients assumption // arXiv preprint arXiv:1802.03801. 2018.

12. Robbins H., Monro S. A stochastic approximation method // Annals of Mathematical

Statistics. 1951. Vol. 22. P. 400–407.

13. Vaswani S., Bach F., Schmidt M. Fast and Faster Convergence of SGD for Over­

Parameterized Models and an Accelerated Perceptron // The 22nd International

Conference on Artificial Intelligence and Statistics. 2019. P. 1195–1204.

http://dx.doi.org/10.1137/1.9780898718751
http://dx.doi.org/10.1137/1.9780898718751
http://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/1.9780898718751
http://epubs.siam.org/doi/abs/10.1137/1.9780898718751
http://epubs.siam.org/doi/abs/10.1137/1.9780898718751
http://dx.doi.org/10.1137/070704277
https://doi.org/10.1137/070704277

140

14. Lan G. An optimal method for stochastic composite optimization // Mathematical

Programming. 2012. — Jun. Vol. 133, no. 1. P. 365–397. Firs appeared in June 2008.

URL: https://doi.org/10.1007/s10107-010-0434-y.

15. Dvurechensky P., Gasnikov A., Tiurin A. Randomized similar triangles method: A

unifying framework for accelerated randomized optimization methods (coordinate de­

scent, directional search, derivative-free method) // arXiv preprint arXiv:1707.08486.

2017.

16. Gasnikov A. V., Nesterov Y. E. Universal method for stochastic composite opti­

mization problems // Computational Mathematics and Mathematical Physics. 2018.

Vol. 58, no. 1. P. 48–64.

17. Nesterov Y. Lectures on convex optimization. Springer, 2018. Vol. 137.

18. Defazio A., Bach F., Lacoste-Julien S. SAGA: A Fast Incremental Gradient Method

with Support for Non-strongly Convex Composite Objectives // Proceedings of the

27th International Conference on Neural Information Processing Systems. NIPS’14.

Cambridge, MA, USA: MIT Press, 2014. P. 1646–1654. URL: http://dl.acm.org/

citation.cfm?id=2968826.2969010.

19. Gorbunov E., Hanzely F., Richtárik P. A Unified Theory of SGD: Variance Reduction,

Sampling, Quantization and Coordinate Descent // arXiv preprint arXiv:1905.11261.

2019.

20. Johnson R., Zhang T. Accelerating stochastic gradient descent using predictive

variance reduction // Advances in neural information processing systems. 2013.

P. 315–323.

21. Schmidt M., Le Roux N., Bach F. Minimizing finite sums with the stochastic average

gradient // Mathematical Programming. 2017. Vol. 162, no. 1-2. P. 83–112.

22. Allen-Zhu Z. Katyusha: The First Direct Acceleration of Stochastic Gradient Meth­

ods // Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of

Computing. STOC 2017. New York, NY, USA: ACM, 2017. P. 1200–1205. arX­

iv:1603.05953. URL: http://doi.acm.org/10.1145/3055399.3055448.

23. Zhou K. Direct acceleration of SAGA using sampled negative momentum // arXiv

preprint arXiv:1806.11048. 2018.

24. Zhou K., Shang F., Cheng J. A simple stochastic variance reduced algorithm with

fast convergence rates // arXiv preprint arXiv:1806.11027. 2018.

https://doi.org/10.1007/s10107-010-0434-y
https://doi.org/10.1007/s10107-010-0434-y
https://doi.org/10.1007/s10107-010-0434-y
http://dl.acm.org/citation.cfm?id=2968826.2969010
http://dl.acm.org/citation.cfm?id=2968826.2969010
http://dl.acm.org/citation.cfm?id=2968826.2969010
http://dl.acm.org/citation.cfm?id=2968826.2969010
http://dx.doi.org/10.1145/3055399.3055448
http://dx.doi.org/10.1145/3055399.3055448
http://doi.acm.org/10.1145/3055399.3055448

141

25. Devolder O. Exactness, inexactness and stochasticity in first-order methods for

large-scale convex optimization: Ph.D. thesis / ICTEAM and CORE, Université

Catholique de Louvain. 2013.

26. Dvurechensky P., Gasnikov A. Stochastic Intermediate Gradient Method for Convex

Problems with Stochastic Inexact Oracle // Journal of Optimization Theory and

Applications. 2016. Vol. 171, no. 1. P. 121–145. URL: http://dx.doi.org/10.

1007/s10957-016-0999-6.

27. Ghadimi S., Lan G. Stochastic first-and zeroth-order methods for nonconvex stochastic

programming // SIAM Journal on Optimization. 2013. Vol. 23, no. 4. P. 2341–2368.

28. Bertsekas D. P., Tsitsiklis J. N. Parallel and distributed computation: numerical

methods. Prentice hall Englewood Cliffs, NJ, 1989. Vol. 23.

29. Scaman K., Bach F., Bubeck S. et al. Optimal algorithms for smooth and strongly

convex distributed optimization in networks // Proceedings of the 34th International

Conference on Machine Learning-Volume 70 / JMLR. org. 2017. P. 3027–3036.

30. Khaled A., Mishchenko K., Richtárik P. Better Communication Complexity for Local

SGD // arXiv preprint arXiv:1909.04746. 2019.

31. Khaled A., Mishchenko K., Richtárik P. First analysis of local gd on heterogeneous

data // arXiv preprint arXiv:1909.04715. 2019.

32. Stich S. U. Local SGD converges fast and communicates little // arXiv preprint

arXiv:1805.09767. 2018.

33. Yu H., Jin R., Yang S. On the linear speedup analysis of communication efficient

momentum sgd for distributed non-convex optimization // arXiv preprint arX­

iv:1905.03817. 2019.

34. Karimireddy S. P., Rebjock Q., Stich S. U., Jaggi M. Error feedback fixes signsgd

and other gradient compression schemes // arXiv preprint arXiv:1901.09847. 2019.

35. Stich S. U., Cordonnier J.-B., Jaggi M. Sparsified SGD with memory // Advances in

Neural Information Processing Systems. 2018. P. 4447–4458.

36. Alistarh D., Grubic D., Li J. et al. QSGD: Communication-efficient SGD via gradient

quantization and encoding // Advances in Neural Information Processing Systems.

2017. P. 1709–1720.

37. Horvath S., Ho C.-Y., Horvath L. et al. Natural Compression for Distributed Deep

Learning // arXiv preprint arXiv:1905.10988. 2019.

http://dx.doi.org/10.1007/s10957-016-0999-6
http://dx.doi.org/10.1007/s10957-016-0999-6
http://dx.doi.org/10.1007/s10957-016-0999-6
http://dx.doi.org/10.1007/s10957-016-0999-6

142

38. Horváth S., Kovalev D., Mishchenko K. et al. Stochastic distributed learning with

gradient quantization and variance reduction // arXiv preprint arXiv:1904.05115.

2019.

39. Mishchenko K., Gorbunov E., Takáč M., Richtárik P. Distributed Learning with

Compressed Gradient Differences // arXiv preprint arXiv:1901.09269. 2019.

40. Wen W., Xu C., Yan F. et al. Terngrad: Ternary gradients to reduce communication

in distributed deep learning // Advances in Neural Information Processing Systems.

2017. P. 1509–1519.

41. Basu D., Data D., Karakus C., Diggavi S. Qsparse-local-SGD: Distributed SGD

with Quantization, Sparsification, and Local Computations // arXiv preprint arX­

iv:1906.02367. 2019.

42. Liu X., Li Y., Tang J., Yan M. A Double Residual Compression Algorithm for Efficient

Distributed Learning // arXiv preprint arXiv:1910.07561. 2019.

43. Kibardin V. Decomposition into functions in the minimization problem // Avtomatika

i Telemekhanika. 1979. no. 9. P. 66–79.

44. Rogozin A., Gasnikov A. Projected Gradient Method for Decentralized Optimization

over Time-Varying Networks // arXiv preprint arXiv:1911.08527. 2019.

45. Dvinskikh D., Gasnikov A. Decentralized and Parallelized Primal and Dual Accel­

erated Methods for Stochastic Convex Programming Problems // arXiv preprint

arXiv:1904.09015. 2019.

46. Dvinskikh D., Gorbunov E., Gasnikov A. et al. On Dual Approach for Distributed

Stochastic Convex Optimization over Networks // arXiv preprint arXiv:1903.09844.

2019.

47. Gorbunov E., Dvurechensky P., Gasnikov A. An Accelerated Method for Deriva­

tive-Free Smooth Stochastic Convex Optimization // arXiv preprint arXiv:1802.09022.

2018.

48. Stonyakin F. S., Dvinskikh D., Dvurechensky P. et al. Gradient methods for problems

with inexact model of the objective // International Conference on Mathematical

Optimization Theory and Operations Research / Springer. 2019. P. 97–114.

49. Gasnikov A. Universal gradient descent // MIPT. 2018.

50. Nesterov Y. Primal-dual subgradient methods for convex problems // Mathemat­

ical Programming. 2009. — Aug. Vol. 120, no. 1. P. 221–259. First appeared

http://dx.doi.org/10.1007/s10107-007-0149-x
http://dx.doi.org/10.1007/s10107-007-0149-x

143

in 2005 as CORE discussion paper 2005/67. URL: https://doi.org/10.1007/

s10107-007-0149-x.

51. Ben-Tal A., Nemirovski A. Lectures on Modern Convex Opti­

mization. Society for Industrial and Applied Mathematics, 2001.

http://epubs.siam.org/doi/pdf/10.1137/1.9780898718829. URL: http:

//epubs.siam.org/doi/abs/10.1137/1.9780898718829.

52. Juditsky A., Nemirovski A. First Order Methods for Non-smooth Convex Large-scale

Optimization, I: General purpose methods // Optimization for Machine Learning /

Ed. by S. W. Suvrit Sra, Sebastian Nowozin. Cambridge, MA: MIT Press, 2012.

P. 121–184.

53. Lan G. Lectures on Optimization Methods for Machine Learning // e-print. 2019.

54. Dvurechenskii P., Dvinskikh D., Gasnikov A. et al. Decentralize and randomize:

Faster algorithm for wasserstein barycenters // Advances in Neural Information

Processing Systems. 2018. P. 10760–10770.

55. Hendrikx H., Bach F., Massoulié L. Accelerated decentralized optimization with local

updates for smooth and strongly convex objectives // arXiv preprint arXiv:1810.02660.

2018.

56. Gasnikov A. Universal gradient descent // arXiv preprint arXiv:1711.00394. 2017.

57. Shalev-Shwartz S., Zhang T. Accelerated Proximal Stochastic Dual Coordinate Ascent

for Regularized Loss Minimization // Proceedings of the 31st International Conference

on Machine Learning / Ed. by E. P. Xing, T. Jebara. Vol. 32 of Proceedings of

Machine Learning Research. Bejing, China: PMLR, 2014. — 22–24 Jun. P. 64–72.

First appeared in arXiv:1309.2375. URL: http://proceedings.mlr.press/v32/

shalev-shwartz14.html.

58. Fallah A., Gurbuzbalaban M., Ozdaglar A. et al. Robust Distributed Accelerated

Stochastic Gradient Methods for Multi-Agent Networks // arXiv preprint arX­

iv:1910.08701. 2019.

59. Aybat N. S., Fallah A., Gurbuzbalaban M., Ozdaglar A. A universally optimal

multistage accelerated stochastic gradient method // arXiv preprint arXiv:1901.08022.

2019.

60. Lan G. Gradient sliding for composite optimization // Mathematical Program­

ming. 2016. — Sep. Vol. 159, no. 1. P. 201–235. URL: https://doi.org/10.1007/

https://doi.org/10.1007/s10107-007-0149-x
https://doi.org/10.1007/s10107-007-0149-x
http://dx.doi.org/10.1137/1.9780898718829
http://dx.doi.org/10.1137/1.9780898718829
http://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/1.9780898718829
http://epubs.siam.org/doi/abs/10.1137/1.9780898718829
http://epubs.siam.org/doi/abs/10.1137/1.9780898718829
http://proceedings.mlr.press/v32/shalev-shwartz14.html
http://proceedings.mlr.press/v32/shalev-shwartz14.html
http://proceedings.mlr.press/v32/shalev-shwartz14.html
http://proceedings.mlr.press/v32/shalev-shwartz14.html
http://dx.doi.org/10.1007/s10107-015-0955-5
http://dx.doi.org/10.1007/s10107-015-0955-5
https://doi.org/10.1007/s10107-015-0955-5

144

s10107-015-0955-5.

61. Uribe C. A., Lee S., Gasnikov A., Nedić A. Optimal algorithms for distributed

optimization // arXiv preprint arXiv:1712.00232. 2017.

62. Kakade S., Shalev-Shwartz S., Tewari A. On the duality of strong convexity and

strong smoothness: Learning applications and matrix regularization // Unpublished

Manuscript, http://ttic. uchicago. edu/shai/papers/KakadeShalevTewari09.pdf. 2009.

Vol. 2, no. 1.

63. Rockafellar R. T. Convex analysis. Princeton university press, 2015.

64. Allen-Zhu Z. How to make the gradients small stochastically: Even faster convex

and nonconvex sgd // Advances in Neural Information Processing Systems. 2018.

P. 1157–1167.

65. Anikin A. S., Gasnikov A. V., Dvurechensky P. E. et al. Dual approaches to the

minimization of strongly convex functionals with a simple structure under affine

constraints // Computational Mathematics and Mathematical Physics. 2017. — Aug.

Vol. 57, no. 8. P. 1262–1276. URL: https://doi.org/10.1134/S0965542517080048.

66. Nesterov Y. How to make the gradients small // Optima. 2012. Vol. 88. P. 10–11.

67. Foster D., Sekhari A., Shamir O. et al. The Complexity of Making the Gradient

Small in Stochastic Convex Optimization // arXiv preprint arXiv:1902.04686. 2019.

68. Ghadimi S., Lan G. Optimal Stochastic Approximation Algorithms for Strongly

Convex Stochastic Composite Optimization I: A Generic Algorithmic Framework //

SIAM Journal on Optimization. 2012. Vol. 22, no. 4. P. 1469–1492.

69. Arjevani Y., Shamir O. Communication complexity of distributed convex learning

and optimization // Advances in neural information processing systems. 2015.

P. 1756–1764.

70. Xu J., Tian Y., Sun Y., Scutari G. Accelerated Primal-Dual Algorithms for Distributed

Smooth Convex Optimization over Networks // arXiv preprint arXiv:1910.10666.

2019.

71. Lan G., Lee S., Zhou Y. Communication-efficient algorithms for decentralized and

stochastic optimization // Mathematical Programming. 2017. P. 1–48.

72. Lan G., Zhou Z. Algorithms for stochastic optimization with expectation constraints //

arXiv:1604.03887. 2016.

73. Scaman K., Bach F., Bubeck S. et al. Optimal Convergence Rates for Convex

https://doi.org/10.1007/s10107-015-0955-5
https://doi.org/10.1007/s10107-015-0955-5
http://dx.doi.org/10.1134/S0965542517080048
https://doi.org/10.1134/S0965542517080048

145

Distributed Optimization in Networks // Journal of Machine Learning Research.

2019. Vol. 20, no. 159. P. 1–31.

74. Scaman K., Bach F., Bubeck S. et al. Optimal algorithms for non-smooth distributed

optimization in networks // Advances in Neural Information Processing Systems.

2018. P. 2745–2754.

75. Kulunchakov A., Mairal J. Estimate sequences for stochastic composite optimiza­

tion: Variance reduction, acceleration, and robustness to noise // arXiv preprint

arXiv:1901.08788. 2019.

76. Kulunchakov A., Mairal J. Estimate Sequences for Variance-Reduced Stochastic

Composite Optimization // arXiv preprint arXiv:1905.02374. 2019.

77. Kulunchakov A., Mairal J. A Generic Acceleration Framework for Stochastic Com­

posite Optimization // arXiv preprint arXiv:1906.01164. 2019.

78. Lan G., Zhou Y. Random gradient extrapolation for distributed and stochastic

optimization // SIAM Journal on Optimization. 2018. Vol. 28, no. 4. P. 2753–2782.

79. Olshevsky A., Paschalidis I. C., Pu S. Asymptotic Network Independence in Dis­

tributed Optimization for Machine Learning // arXiv preprint arXiv:1906.12345.

2019.

80. Olshevsky A., Paschalidis I. C., Pu S. A Non-Asymptotic Analysis of Network Indepen­

dence for Distributed Stochastic Gradient Descent // arXiv preprint arXiv:1906.02702.

2019.

81. Devolder O., Glineur F., Nesterov Y. Double smoothing technique for large-scale

linearly constrained convex optimization // SIAM Journal on Optimization. 2012.

Vol. 22, no. 2. P. 702–727.

82. Nesterov Y. Smooth minimization of non-smooth functions // Mathematical Pro­

gramming. 2005. Vol. 103, no. 1. P. 127–152. URL: http://dx.doi.org/10.1007/

s10107-004-0552-5.

83. Tang J., Egiazarian K., Golbabaee M., Davies M. The Practicality of Stochastic

Optimization in Imaging Inverse Problems // arXiv preprint arXiv:1910.10100. 2019.

84. Dvinskikh D. SA vs SAA for population Wasserstein barycenter calculation // arXiv

preprint arXiv:2001.07697. 2020.

85. Peyré G., Cuturi M. et al. Computational optimal transport // Foundations and

Trends R○ in Machine Learning. 2019. Vol. 11, no. 5-6. P. 355–607.

http://dx.doi.org/10.1007/s10107-004-0552-5
http://dx.doi.org/10.1007/s10107-004-0552-5
http://dx.doi.org/10.1007/s10107-004-0552-5
http://dx.doi.org/10.1007/s10107-004-0552-5

146

86. Rigollet P., Weed J. Entropic optimal transport is maximum-likelihood deconvolu­

tion // Comptes Rendus Mathematique. 2018. Vol. 356, no. 11-12. P. 1228–1235.

87. Cuturi M., Peyré G. A smoothed dual approach for variational Wasserstein problems //

SIAM Journal on Imaging Sciences. 2016. Vol. 9, no. 1. P. 320–343.

88. Juditsky A., Nesterov Y. Deterministic and Stochastic Primal-Dual Subgradient

Algorithms for Uniformly Convex Minimization // Stochastic Systems. 2014. Vol. 4,

no. 1. P. 44–80. URL: https://doi.org/10.1287/10-SSY010.

89. Gasnikov A. V., Lagunovskaya A. A., Usmanova I. N., Fedorenko F. A. Gradient-free

proximal methods with inexact oracle for convex stochastic nonsmooth optimiza­

tion problems on the simplex // Automation and Remote Control. 2016. — Nov.

Vol. 77, no. 11. P. 2018–2034. arXiv:1412.3890. URL: http://dx.doi.org/10.1134/

S0005117916110114.

90. Kroshnin A., Dvinskikh D., Dvurechensky P. et al. On the Complexity of Approxi­

mating Wasserstein Barycenter // arXiv preprint arXiv:1901.08686. 2019.

91. Guminov S., Dvurechensky P., Gasnikov A. Accelerated alternating minimization //

arXiv preprint arXiv:1906.03622. 2019.

92. Jin C., Netrapalli P., Ge R. et al. A Short Note on Concentration Inequalities for

Random Vectors with SubGaussian Norm // arXiv preprint arXiv:1902.03736. 2019.

93. Juditsky A., Nemirovski A. S. Large deviations of vector-valued martingales in

2-smooth normed spaces // arXiv preprint arXiv:0809.0813. 2008.

94. Chernov A., Dvurechensky P., Gasnikov A. Fast Primal-Dual Gradient Method

for Strongly Convex Minimization Problems with Linear Constraints // Discrete

Optimization and Operations Research: 9th International Conference, DOOR 2016,

Vladivostok, Russia, September 19-23, 2016, Proceedings / Ed. by Y. Kochetov,

M. Khachay, V. Beresnev et al. Springer International Publishing, 2016. P. 391–403.

95. Gasnikov A., Nesterov Y. Universal fast gradient method for stochastic composit

optimization problems // arXiv:1604.05275. 2016.

96. Devolder O., Glineur F., Nesterov Y. et al. First-order methods with inexact oracle:

the strongly convex case. 2013.

97. Gorbunov E., Bibi A., Sener O. et al. A stochastic derivative free optimization method

with momentum // arXiv preprint arXiv:1905.13278. 2019.

98. Conn A. R., Scheinberg K., Vicente L. N. Introduction to Derivative-Free Optimiza­

http://dx.doi.org/10.1287/10-SSY010
https://doi.org/10.1287/10-SSY010
http://dx.doi.org/10.1134/S0005117916110114
http://dx.doi.org/10.1134/S0005117916110114
http://dx.doi.org/10.1134/S0005117916110114

147

tion. Philadelphia, PA, USA: SIAM, 2009.

99. Kolda T. G., Lewis R. M., Torczon V. J. Optimization by direct search: New per­

spectives on some classical and modern methods // SIAM Review. 2003. Vol. 45.

P. 385–482.

100. Chen R. Stochastic Derivative-Free Optimization of Noisy Functions // PhD thesis

at Lehigh University. 2015.

101. Todorov E., Erez T., Tassa Y. Mujoco: A physics engine for model-based control //

Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference

on / IEEE. 2012. P. 5026–5033.

102. Marsden A. L., Feinstein J. A., Taylor C. A. A computational framework for deriva­

tive-free optimization of cardiovascular geometries // Computer Methods in Applied

Mechanics and Engineering. 2008. Vol. 197. P. 1890–1905.

103. Allaire G. Shape Optimization by the Homogenization Method. New York, USA:

Springer, 2001.

104. Haslinger J., Mäckinen R. Introduction to Shape Optimization: Theory, Approxima­

tion, and Computation. Philadelphia, PA, USA: SIAM, 2003.

105. Mohammadi B., Pironneau O. Applied Shape Optimization for Fluids. Clarendon

Press, Oxford, 2001.

106. Marsden A. L., Wang M., Dennis J. E., Moin P. Optimal aeroacustic shape design

using the surrogate management framework // Optimization and Engineering. 2004.

Vol. 5. P. 235–262.

107. Marsden A. L., Wang M., Dennis J. E., Moin P. Trailing-edge noise reduction using

derivative-free optimization and large-eddy simulation // Journal of Fluid Mechanics.

2007. Vol. 5. P. 235–262.

108. Mania H., Guy A., Recht B. Simple random search provides a competitive approach

to reinforcement learning // arXiv preprint arXiv:1803.07055. 2018.

109. Salimans T., Ho J., Chen X. et al. Evolution strategies as a scalable alternative to

reinforcement learning // arXiv preprint arXiv:1703.03864. 2017.

110. Hooke R., Jeeves T. Direct search solution of numerical and statistical problems //

J. Assoc. Comput. Mach. 1961. Vol. 8. P. 212–229.

111. Su Y. W. Positive basis and a class of direct search techniques // Scientia Sinica (in

Chinese). 1979. Vol. 9, no. S1. P. 53–67.

148

112. Torczon V. On the convergence of pattern search algorithms // SIAM Journal on

optimization. 1997. Vol. 7, no. 1. P. 1–25.

113. Vicente L. N. Worst case complexity of direct search // EURO Journal on Computa­

tional Optimization. 2013. Vol. 1, no. 1-2. P. 143–153.

114. Dodangeh M., Vicente L. N. Worst case complexity of direct search under convexity //

Mathematical Programming. 2016. Vol. 155, no. 1-2. P. 307–332.

115. Matyas J. Random optimization // Automation and Remote Control. 1965. Vol. 26.

P. 246–253.

116. Karmanov V. G. Convergence estimates for iterative minimization methods // USSR

Computational Mathematics and Mathematical Physics. 1974. Vol. 14. P. 1–13.

117. Karmanov V. G. On convergence of a random search method in convex minimization

problems // Theory of Probability and its applications. 1974. Vol. 19. P. 788–794.

118. Baba N. Convergence of a Random Optimization Method for Constrained Optimiza­

tion Problems // Journal of Optimization Theory and Applications. 1981. Vol. 33.

P. 1–11.

119. Dorea C. Expected number of steps of a random optimization method // Journal of

Optimization Theory and Applications. 1983. Vol. 39. P. 165–171.

120. Sarma M. On the convergence of the Baba and Dorea random optimization methods //

Journal of Optimization Theory and Applications. 1990. Vol. 66. P. 337–343.

121. Diniz-Ehrhardt M. A., Martinez J. M., Raydan M. A derivative-free nonmonotone

line-search technique for unconstrained optimization // Journal of Optimization

Theory and Applications. 2008. Vol. 219. P. 383–397.

122. Stich S. U., Muller C. L., Gartner B. Optimization of Convex Functions with Random

Pursuit // arXiv preprint arXiv:1111.0194. 2011.

123. Ghadimi S., Lan G., Zhang H. Mini-batch stochastic approximation methods for

nonconvex stochastic composite optimization // Mathematical Programming. 2016.

Vol. 155, no. 1-2. P. 267–305.

124. Gratton S., Royer C. W., Vicente L. N., Zhang Z. DIRECT SEARCH BASED ON

PROBABILISTIC DESCENT // SIAM Journal on Optimization. 2015. Vol. 25,

no. 3. P. 1515–1541.

125. Nesterov Y., Spokoiny V. Random Gradient-Free Minimization of Convex Functions //

Foundations of Computational Mathematics. 2017. Vol. 17. P. 527–566.

149

126. Gorbunov E., Dvurechensky P., Gasnikov A. An Accelerated Method for Deriva­

tive-Free Smooth Stochastic Convex Optimization // arXiv preprint arXiv:1802.09022.

2018.

127. Stich S. U. Convex optimization with random pursuit: Ph.D. thesis / ETH Zurich.

2014.

128. Stich S. U. On low complexity acceleration techniques for randomized optimization //

International Conference on Parallel Problem Solving from Nature / Springer. 2014.

P. 130–140.

129. Bergou E. H., Gorbunov E., Richtárik P. Stochastic Three Points Method for Uncon­

strained Smooth Minimization // arXiv preprint arXiv:1902.03591. 2019.

130. Polyak B. T. Some methods of speeding up the convergence of iteration methods //

USSR Computational Mathematics and Mathematical Physics. 1964. Vol. 4, no. 5.

P. 1–17.

131. Ghadimi E., Feyzmahdavian H. R., Johansson M. Global convergence of the heavy-ball

method for convex optimization // 2015 European Control Conference (ECC) / IEEE.

2015. P. 310–315.

132. Lessard L., Recht B., Packard A. Analysis and design of optimization algorithms

via integral quadratic constraints // SIAM Journal on Optimization. 2016. Vol. 26,

no. 1. P. 57–95.

133. Loizou N., Richtárik P. Momentum and stochastic momentum for stochastic gra­

dient, Newton, proximal point and subspace descent methods // arXiv preprint

arXiv:1712.09677. 2017.

134. Zhao P., Zhang T. Stochastic optimization with importance sampling for regularized

loss minimization // international conference on machine learning. 2015. P. 1–9.

135. Richtárik P., Takáč M. On optimal probabilities in stochastic coordinate descent

methods // Optimization Letters. 2016. Vol. 10, no. 6. P. 1233–1243.

136. Bibi A., Bergou E. H., Sener O. et al. Stochastic Derivative-Free Optimization Method

with Importance Sampling // arXiv preprint arXiv:1902.01272. 2019.

137. Yang T., Lin Q., Li Z. Unified convergence analysis of stochastic momentum methods

for convex and non-convex optimization // arXiv preprint arXiv:1604.03257. 2016.

138. Schulman J., Levine S., Abbeel P. et al. Trust region policy optimization // Interna­

tional Conference on Machine Learning. 2015. P. 1889–1897.

150

139. Rajeswaran A., Lowrey K., Todorov E. V., Kakade S. M. Towards generalization

and simplicity in continuous control // Advances in Neural Information Processing

Systems. 2017. P. 6550–6561.

	Chapter 1.1em Аннотация
	Chapter 2.1em Introduction
	Chapter 3.1em Notations and Definitions
	Chapter 4.1em Optimal Decentralized Distributed Algorithms for Stochastic Convex Optimization
	4.1.1em Introduction
	4.1.1.1em Contributions

	4.2.1em Optimal Bounds for Stochastic Convex Optimization
	4.3.1em Similar Triangles Method with Inexact Proximal Step
	4.4.1em Stochastic Convex Optimization with Affine Constraints: Primal Approach
	4.5.1em Stochastic Convex Optimization with Affine Constraints: Dual Approach
	4.5.1.1em Convex Dual Function
	4.5.2.1em Strongly Convex Dual Functions and Restarts Technique
	4.5.3.1em Direct Acceleration for Strongly Convex Dual Function

	4.6.1em Applications to Decentralized Distributed Optimization
	4.7.1em Discussion
	4.7.1.1em Possible Extensions

	4.8.1em Application for Population Wasserstein Barycenter Calculation
	4.8.1.1em Definitions and Properties
	4.8.2.1em SA Approach
	4.8.3.1em SAA Approach
	4.8.4.1em SA vs SAA comparison

	4.9.1em Missing Proofs, Technical Lemmas and Auxiliary Results
	4.9.1.1em Basic Facts
	4.9.2.1em Useful Facts about Duality
	4.9.3.1em Auxiliary Results
	4.9.4.1em Missing Proofs from Section 4.3
	Proof of Lemma 4.3.1
	Proof of Lemma 4.3.2
	Proof of Theorem 4.3.1
	Proof of Corollary 4.3.1

	4.9.5.1em Missing Proofs from Section 4.4
	Proof of Theorem 4.4.1
	Proof of Theorem 4.4.2

	4.9.6.1em Missing Lemmas and Proofs from Section 4.5.1
	Lemmas
	Proof of Theorem 4.5.1

	4.9.7.1em Missing Proofs from Section 4.5.2
	Proof of Theorem 4.5.5
	Proof of Corollary 4.5.3

	4.9.8.1em Missing Proofs from Section 4.5.3
	Proof of Lemma 4.5.1
	Proof of Lemma 4.5.2
	Proof of Theorem 4.5.6
	Proof of Corollary 4.5.5

	4.9.9.1em Technical Results

	Chapter 5.1em Stochastic Derivative Free Optimization Methods with Momentum
	5.1.1em Introduction
	5.2.1em Stochastic Momentum Three Points (SMTP)
	5.2.1.1em Non-Convex Case
	5.2.2.1em Convex Case
	5.2.3.1em Strongly Convex Case

	5.3.1em Stochastic Momentum Three Points with Importance Sampling (SMTP_IS)
	5.3.1.1em Non-convex Case
	5.3.2.1em Convex Case
	5.3.3.1em Strongly Convex Case

	5.4.1em Comparison of SMTP and SMTP_IS
	5.5.1em Experiments
	5.6.1em Conclusion
	5.7.1em Missing Proofs, Technical Lemmas and Auxiliary Results
	5.7.1.1em Preliminaries
	5.7.2.1em Missing Proofs from Section 5.2
	Non-Convex Case
	Convex Case
	Strongly Convex Case

	5.7.3.1em Missing Proofs from Section 5.3
	Non-convex Case
	Convex Case
	Strongly Convex Case

	5.7.4.1em Auxiliary results

	References

