# **Linearly Converging Error Compensated SGD**

Eduard Gorbunov<sup>1,2,3,4</sup>, Dmitry Kovalev<sup>4</sup>, Dmitry Makarenko<sup>1</sup>, Peter Richtárik<sup>4</sup> <sup>1</sup>MIPT (Russia), <sup>2</sup>Yandex (Russia), <sup>3</sup>Sirius (Russia), <sup>4</sup>KAUST (Saudi Arabia)



**Problem:** Distributed optimization / training, where *n* workers (devices / clients) jointly solve a problem by communicating with a central server.

Assumptions: Smoothness and convexity of local loss functions and quasi-strong convexity of their average:

 $\begin{aligned} \|\nabla f_i(x) - \nabla f_i(y)\| &\leq L \|x - y\| \quad f_i(x) - f_i(y) \geq \langle \nabla f_i(y), x - y \rangle \\ f(x^*) &\geq f(x) + \langle \nabla f(x), x^* - x \rangle + \frac{\mu}{2} \|x^* - x\|^2 \end{aligned}$ 

The key bottleneck comes from the high cost of communication. However, one can handle this using compression of messages.

There is good theory for methods with unbiased compressors: there exist linearly converging SGD-like methods [1, 2]. However, Parallel-SGD with biased compressors diverges exponentially fast on some problems [3].

One can fix this using error compensation (EC-SGD) [4]

but **EC-SGD fails to converge linearly** even when workers compute full gradients.

### 2. Our Contributions

The first linearly converging error compensated SGD method

General theoretical framework covering error compensated methods, methods with delayed updates and non-distributed methods

In **one theorem**, we recover **the sharpest rates** for all known special cases

**16 new methods** fitting our framework: 8 error-compensated methods, 7 methods with delayed updates and DIANA with bidirectional compression

 $\checkmark$ 

### **3. Compression Operators**

Unbiased compressors  $x \to Q(x) \quad \mathbb{E}[Q(x)] = x$  $\mathbb{E}\|Q(x) - x\|^2 \le \omega \|x\|^2$  Biased compressors  $x \to \mathcal{C}(x)$  $\mathbb{E} \|\mathcal{C}(x) - x\|^2 < (1 - \delta) \|x\|^2$ 

## 4. EC-SGD-DIANA



The main innovation is reflected in the definition of  $g_i^k$ :

| $g_i^k = \hat{g}_i^k - h_i^k + h^k$ | $\mathbb{E}\left[\hat{g}_{i}^{k} \mid x^{k}\right] = \nabla f_{i}(x^{k})$ |
|-------------------------------------|---------------------------------------------------------------------------|
|-------------------------------------|---------------------------------------------------------------------------|

#### "Learned shift vectors" are the key to get linear convergence:

 $h_i^{k+1} = h_i^k + \alpha \mathcal{Q}\left(\hat{g}_i^k - h_i^k\right) \qquad h^k = \frac{1}{n} \sum_{i=1}^n h_i^k$ 

# 5. General Framework

The assumption below covers a very broad class of methods:

$$g^{k} = \frac{1}{n} \sum_{i=1}^{n} g_{i}^{k}, \quad \mathbb{E}\left[g^{k} \mid x^{k}\right] = \nabla f\left(x^{k}\right) \quad \bar{g}_{i}^{k} = \mathbb{E}\left[g_{i}^{k} \mid x^{k}\right]$$
$$\frac{1}{n} \sum_{i=1}^{n} \left\|\bar{g}_{i}^{k}\right\|^{2} \leq 2A\left(f\left(x^{k}\right) - f\left(x^{*}\right)\right) + B_{1}\sigma_{1,k}^{2} + B_{2}\sigma_{2,k}^{2} + D_{1}$$
$$\sum_{i=1}^{n} \mathbb{E}\left[\left\|g^{k}_{i} - \bar{g}_{i}^{k}\right\|^{2} \mid x^{k}\right] \leq 2\widetilde{A}\left(f\left(x^{k}\right) - f\left(x^{*}\right)\right) + \widetilde{B}_{1}\sigma_{1,k}^{2} + \widetilde{B}_{2}\sigma_{2,k}^{2} + \widetilde{D}_{1}$$
$$\mathbb{E}\left[\left\|g^{k}\right\|^{2} \mid x^{k}\right] \leq 2A'\left(f\left(x^{k}\right) - f\left(x^{*}\right)\right) + B'_{1}\sigma_{1,k}^{2} + B'_{2}\sigma_{2,k}^{2} + D'_{1}$$
$$\mathbb{E}\left[\sigma_{1,k+1}^{2} \mid \sigma_{1,k}^{2}, \sigma_{2,k}^{2}\right] \leq (1 - \rho_{1})\sigma_{1,k}^{2} + 2C_{1}\left(f\left(x^{k}\right) - f\left(x^{*}\right)\right) + G\rho_{1}\sigma_{2,k}^{2} + D'_{2}$$
$$\mathbb{E}\left[\sigma_{2,k+1}^{2} \mid \sigma_{2,k}^{2}\right] \leq (1 - \rho_{2})\sigma_{2,k}^{2} + 2C_{2}\left(f\left(x^{k}\right) - f\left(x^{*}\right)\right)$$

- Reflects smoothness properties of the problem and noises introduced by compressions and stochastic gradients
- Describes the process of variance reduction of the variance coming from compressions
- Describes the process of variance reduction of the variance coming from stochastic gradients



Table 1: Complexity of Error-Compensated SGD methods established in this paper. Symbols:  $\varepsilon =$  error tolerance;  $\delta =$  contraction factor of compressor  $\mathcal{Q}; \ \omega =$  variance parameter of compressor  $\mathcal{Q}; \ \kappa = L/\mu; \ \mathcal{L} =$  expected smoothness constant;  $\sigma_*^2 =$  variance of the stochastic gradients in the solution;  $\zeta_*^2 =$  average of  $\|\nabla f_i(x^*)\|^2, \sigma^2 =$  average of the uniform bounds for the variances of stochastic gradients of workers. EC-GDstar, EC-LSVRGstar and

| Probl. | Method                   | Citation | Rate (constants ignored)                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|--------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Σ      | EC-SGDsr                 | new      | $\widetilde{\mathcal{O}}\left(\frac{\underline{\mathcal{L}}}{\mu} + \frac{L + \sqrt{\delta L \mathcal{L}}}{\delta \mu} + \frac{\sigma_*^2}{n \mu \varepsilon} + \frac{\sqrt{L(\sigma_*^2 + \zeta_*^2/\delta)}}{\mu \sqrt{\delta \varepsilon}}\right)$                                                                                                                                                                              |
| Е      | EC-SGD                   | [4]      | $\widetilde{\mathcal{O}}\left(rac{\kappa}{\delta}+rac{\sigma_*^2}{n\muarepsilon}+rac{\sqrt{L(\sigma_*^2+\zeta_*^2/\delta)}}{\delta\mu\sqrt{arepsilon}} ight)$                                                                                                                                                                                                                                                                   |
| Σ      | EC-GDstar                | new      | $\mathcal{O}\left(\frac{\kappa}{\delta}\log \frac{1}{\varepsilon}\right)$                                                                                                                                                                                                                                                                                                                                                          |
| Е      | EC-SGD-DIANA             | new      | Opt. I: $\widetilde{\mathcal{O}}\left(\omega + \frac{\kappa}{\delta} + \frac{\sigma^2}{n\mu\varepsilon} + \frac{\sqrt{L\sigma^2}}{\delta\mu\sqrt{\varepsilon}}\right)$<br>Opt. II: $\widetilde{\mathcal{O}}\left(\frac{1+\omega}{\delta} + \frac{\kappa}{\delta} + \frac{\sigma^2}{n\mu\varepsilon} + \frac{\sqrt{L\sigma^2}}{\mu\sqrt{\delta\varepsilon}}\right)$                                                                 |
| Σ      | EC-SGDsr-DIANA           | new      | Opt. I: $\widetilde{O}\left(\omega + \frac{\mathcal{L}}{\mu} + \frac{\sqrt{L\mathcal{L}}}{\delta\mu} + \frac{\sigma_*^2}{n\mu\varepsilon} + \frac{\sqrt{L\sigma_*^2}}{\delta\mu\sqrt{\varepsilon}}\right)$<br>Opt. II: $\widetilde{O}\left(\frac{1+\omega}{\delta} + \frac{\mathcal{L}}{\mu} + \frac{\sqrt{L\mu}}{\delta\mu} + \frac{\sigma_*^2}{n\mu\varepsilon} + \frac{\sqrt{L\sigma_*^2}}{\mu\sqrt{\delta\varepsilon}}\right)$ |
| E      | EC-GD-DIANA <sup>†</sup> | new      | $\mathcal{O}\left(\left(\omega+\frac{\kappa}{\delta}\right)\log\frac{1}{\varepsilon}\right)$                                                                                                                                                                                                                                                                                                                                       |
| Σ      | EC-LSVRG                 | new      | $\widetilde{\mathcal{O}}\left(m+rac{\kappa}{\delta}+rac{\sqrt{L\zeta_*^2}}{\delta\mu\sqrt{arepsilon}} ight)$                                                                                                                                                                                                                                                                                                                     |
| Σ      | EC-LSVRGstar             | new      | $\mathcal{O}\left(\left(m + \frac{\kappa}{\delta}\right)\log \frac{1}{\varepsilon}\right)$                                                                                                                                                                                                                                                                                                                                         |
| Σ      | EC-LSVRG-DIANA           | new      | $\mathcal{O}\left(\left(\omega+m+rac{\kappa}{\delta} ight)\lograc{1}{arepsilon} ight)$                                                                                                                                                                                                                                                                                                                                           |

See more examples of methods (with delayed updates and without error feedback) fitting our framework together with the rates in weakly convex case in our paper.

### 6. Numerical Experiments

We conducted several numerical experiments on logistic regression problem with *L*<sub>2</sub>-regularization:



### References

[1] Mishchenko, Konstantin, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. "Distributed learning with compressed gradient differences." arXiv preprint arXiv:1901.09269 (2019).

[2] Horváth, Samuel, Dmitry Kovalev, Konstantin Mishchenko, Sebastian Stich, and Peter Richtárik. "Stochastic distributed learning with gradient quantization and variance reduction." arXiv preprint arXiv:1904.05115 (2019).

[3] Beznosikov, Aleksandr, Samuel Horváth, Peter Richtárik, and Mher Safaryan. "On biased compression for distributed learning." arXiv preprint arXiv:2002.12410 (2020).

[4] Stich, Sebastian U. and Sai Praneeth Karimireddy. "The error-feedback framework: Better rates for SGD with delayed gradients and compressed communication." arXiv preprint arXiv:1909.05350 (2019).