Methods with Clipping for Stochastic Optimization and Variational Inequalities with Heavy-Tailed Noise

Eduard Gorbunov
Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE

All-Russian Optimization Seminar

September 9, 2022
Outline

1. Clipping and Heavy-Tailed Noise
2. Minimization Problems
3. Variational Inequalities
The Talk is Based on Three Papers

Stochastic Gradient Descent (SGD)

\[x^{k+1} = x^k - \gamma \cdot \nabla f(x^k, \xi^k) \quad (1) \]

- \(f \) – the function to be minimized
- \(\nabla f(x^k, \xi^k) \) – stochastic gradient, i.e., unbiased estimate of \(\nabla f(x^k) \):
 \[\mathbb{E}_{\xi^k} [\nabla f(x^k, \xi^k)] = \nabla f(x^k) \]
Clipped Stochastic Gradient Descent (clipped-SGD)

\[x^{k+1} = x^k - \gamma \cdot \text{clip}(\nabla f(x^k, \xi^k), \lambda) \quad (2) \]

- \text{clip}(x, \lambda) = \min\{1, \lambda / \|x\|\}x
- \text{clip}(\nabla f(x^k, \xi^k), \lambda) - \text{biased estimate of } \nabla f(x^k):
 \[\mathbb{E}_{\xi^k}[\text{clip}(\nabla f(x^k, \xi^k), \lambda)] \neq \nabla f(x^k) \]
Origin of Clipping

- Gradient clipping was proposed in [Pascanu et al., 2013]. Originally it was used to handle exploding and vanishing gradients in RNNs.

![Without clipping](image1.png) ![With clipping](image2.png)

Figure: from [Goodfellow et al., 2016]
Few Years Later in NLP..

• Merity et al. [2017] use gradient clipping for LSTM
• Peters et al. [2017] trained their deep bidirectional language model with Adam + clipping
• Mosbach et al. [2020] fine-tune BERT using AdamW + clipping
Few Years Later in NLP..

- Merity et al. [2017] use gradient clipping for LSTM
- Peters et al. [2017] trained their deep bidirectional language model with Adam + clipping
- Mosbach et al. [2020] fine-tune BERT using AdamW + clipping

Seems that gradient clipping is an important component in training these models. But why?
Let us look at the distribution of $\|\nabla f(x, \xi) - \nabla f(x)\|$ in two settings:

- Standard vision task: training ResNet50 on ImageNet dataset
- Standard NLP task: training BERT on Wikipedia+Books dataset
Heavy-Tailed Noise in Stochastic Gradients

Figure: from [Zhang et al., 2020]
Definition of Heavy-Tailed Noise in Stochastic Gradients

• Random vector X has light tails if

$$
P\{\|X - \mathbb{E}[X]\| \geq b\} \leq 2 \exp\left(-\frac{b^2}{2\sigma^2}\right) \quad \forall b > 0. \quad (3)$$

The above condition is equivalent (up to the numerical factor in σ) to

$$
\mathbb{E}\left[\exp\left(\frac{\|X - \mathbb{E}[X]\|^2}{\sigma^2}\right)\right] \leq \exp(1). \quad (4)
$$
Definition of Heavy-Tailed Noise in Stochastic Gradients

- Random vector X has light tails if

$$
P\{\|X - \mathbb{E}[X]\| \geq b\} \leq 2 \exp\left(-\frac{b^2}{2\sigma^2}\right) \quad \forall b > 0. \quad (3)$$

The above condition is equivalent (up to the numerical factor in σ) to

$$
\mathbb{E}\left[\exp\left(\frac{\|X - \mathbb{E}[X]\|^2}{\sigma^2}\right)\right] \leq \exp(1). \quad (4)
$$

- Otherwise we say that X has heavy tails. However, in this talk, we will assume that it has bounded variance:

$$
\mathbb{E}\left[\|X - \mathbb{E}[X]\|^2\right] \leq \sigma^2 \quad (5)
$$
Problem and Assumptions

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) = \mathbb{E}_\xi [f(x, \xi)] \right\}$$ (6)

- \(f : \mathbb{R}^n \to \mathbb{R}^n \) is convex and \(L \)-smooth, i.e., \(\forall x, y \in \mathbb{R}^n \)

\[
\begin{align*}
\n f(x) & \geq f(y) + \langle \nabla f(y), x - y \rangle, \\
\| \nabla f(x) - \nabla f(y) \| & \leq L \| x - y \|.
\end{align*}
\] (7)

\[
\begin{align*}
\| \nabla f(x) - \nabla f(y) \| & \leq L \| x - y \|.
\end{align*}
\] (8)
Problem and Assumptions

\[
\min_{x \in \mathbb{R}^n} \{ f(x) = \mathbb{E}_\xi [f(x, \xi)] \} \tag{6}
\]

- \(f : \mathbb{R}^n \to \mathbb{R}^n \) is convex and \(L \)-smooth, i.e., \(\forall x, y \in \mathbb{R}^n \)
 \[
 f(x) \geq f(y) + \langle \nabla f(y), x - y \rangle, \tag{7}
 \]
 \[
 \| \nabla f(x) - \nabla f(y) \| \leq L \| x - y \|. \tag{8}
 \]

- Stochastic gradient \(\nabla f(x, \xi) \) with bounded variance is available, i.e., \(\forall x \in \mathbb{R}^n \)
 \[
 \mathbb{E}_\xi [\nabla f(x, \xi)] = \nabla f(x), \quad \mathbb{E}_\xi [\| \nabla f(x, \xi) - \nabla f(x) \|^2] \leq \sigma^2. \tag{9}
 \]
In-Expectation Guarantees vs High-Probability Guarantees

- In-expectation guarantees: $\mathbb{E}[\|x - x^*\|^2] \leq \varepsilon$, $\mathbb{E}[f(x) - f(x^*)] \leq \varepsilon$, $\mathbb{E}[\|\nabla f(x)\|^2] \leq \varepsilon$
 - Typically, depend only on some moments of stochastic gradient, e.g., variance
In-Expectation Guarantees vs High-Probability Guarantees

• In-expectation guarantees: $\mathbb{E}[\|x - x^*\|^2] \leq \varepsilon$, $\mathbb{E}[f(x) - f(x^*)] \leq \varepsilon$, $\mathbb{E}[\|\nabla f(x)\|^2] \leq \varepsilon$
 • Typically, depend only on some moments of stochastic gradient, e.g., variance

• High-probability guarantees: $\mathbb{P}\{\|x - x^*\|^2 \leq \varepsilon\} \geq 1 - \beta$, $\mathbb{P}\{f(x) - f(x^*) \leq \varepsilon\} \geq 1 - \beta$, $\mathbb{P}\{\|\nabla f(x)\|^2 \leq \varepsilon\} \geq 1 - \beta$
 • Sensitive to the distribution of the stochastic gradient noise
In-Expectation Guarantees are Less Sensitive to Distribution

Consider SGD with constant stepsize

$$x^{k+1} = x^k - \gamma \cdot \nabla f(x^k, \xi^k)$$

applied to a toy stochastic quadratic problem:

$$\min_{x \in \mathbb{R}^n} \{ f(x) = \mathbb{E}_\xi[f(x, \xi)] \}, \quad f(x, \xi) = \frac{1}{2} \|x\|^2 + \langle \xi, x \rangle,$$

where $\mathbb{E}[\xi] = 0$ and $\mathbb{E}[\|\xi\|^2] = \sigma^2.$
In-Expectation Guarantees are Less Sensitive to Distribution

Consider SGD with constant stepsize

\[x^{k+1} = x^k - \gamma \cdot \nabla f(x^k, \xi^k) \]

applied to a toy stochastic quadratic problem:

\[
\min_{x \in \mathbb{R}^n} \{ f(x) = \mathbb{E}_\xi[f(x, \xi)] \}, \quad f(x, \xi) = \frac{1}{2} \|x\|^2 + \langle \xi, x \rangle,
\]

where \(\mathbb{E}[\xi] = 0 \) and \(\mathbb{E}[\|\xi\|^2] = \sigma^2 \). We consider three scenarios:

- \(\xi \) has Gaussian distribution
- \(\xi \) has Weibull distribution (non-sub-Gaussian)
- \(\xi \) has Burr Type XII distribution (non-sub-Gaussian)
In-Expectation Guarantees are Less Sensitive to Distribution

For all of three cases, state-of-the-art theory on SGD [Ghadimi and Lan, 2013] says

\[\mathbb{E} [f(x^k) - f(x^*)] \leq (1 - \gamma)^k (f(x^0) - f(x^*)) + \frac{\gamma \sigma^2}{2}. \]

(10)
In-Expectation Guarantees are Less Sensitive to Distribution

For all of three cases, state-of-the-art theory on SGD [Ghadimi and Lan, 2013] says

$$\mathbb{E} [f(x^k) - f(x^*)] \leq (1 - \gamma)^k (f(x^0) - f(x^*)) + \frac{\gamma \sigma^2}{2}. \quad (10)$$

However, the behavior in practice does depend on the distribution:

Figure: from [Gorbunov et al., 2020]
High-Probability Results under Light-Tails Assumption

Light-tails assumption (classical one):

$$\mathbb{E} \left[\exp \left(\frac{\| \nabla f(x, \xi) - \nabla f(x) \|^2}{\sigma^2} \right) \right] \leq \exp(1).$$ (11)
High-Probability Results under Light-Tails Assumption

Light-tails assumption (classical one):

\[
E \left[\exp \left(\frac{\| \nabla f(x, \xi) - \nabla f(x) \|^2}{\sigma^2} \right) \right] \leq \exp(1). \tag{11}
\]

Under this assumption (+ convexity and L-smoothness of f)

- Devolder et al. [2011] proved that SGD finds \(\hat{x} \) such that \(f(\hat{x}) - f(x^*) \leq \epsilon \) with probability at least \(1 - \beta \) using

\[
O \left(\max \left\{ \frac{LR_0^2}{\epsilon}, \frac{\sigma^2 R_0^2}{\epsilon^2} \ln^2 \left(\frac{1}{\beta} \right) \right\} \right) \text{ oracle calls}
\]
High-Probability Results under Light-Tails Assumption

Light-tails assumption (classical one):

$$
\mathbb{E} \left[\exp \left(\frac{\|\nabla f(x, \xi) - \nabla f(x)\|^2}{\sigma^2} \right) \right] \leq \exp(1).
$$

Under this assumption (+ convexity and \(L\)-smoothness of \(f\))

- Devolder et al. [2011] proved that SGD finds \(\hat{x}\) such that \(f(\hat{x}) - f(x^*) \leq \varepsilon\) with probability at least \(1 - \beta\) using

 \[O \left(\max \left\{ \frac{LR_0^2}{\varepsilon}, \frac{\sigma^2 R_0^2}{\varepsilon^2} \ln^2 \left(\frac{1}{\beta} \right) \right\} \right) \text{ oracle calls}\]

- Ghadimi and Lan [2012] proved that AC-SA (an accelerated version of SGD) finds \(\hat{x}\) such that \(f(\hat{x}) - f(x^*) \leq \varepsilon\) with probability at least \(1 - \beta\) using

 \[O \left(\max \left\{ \sqrt{\frac{LR_0^2}{\varepsilon}}, \frac{\sigma^2 R_0^2}{\varepsilon^2} \ln^2 \left(\frac{1}{\beta} \right) \right\} \right) \text{ oracle calls}\]
High-Probability Results under Heavy-Tails Assumption

- Nazin et al. [2019] proposed Robust Stochastic Mirror Descent (RSMD), which reminds clipped-SGD, and proved the following complexity bound:

\[
\mathcal{O} \left(\max \left\{ \frac{LD^2}{\varepsilon}, \frac{\sigma^2 D^2}{\varepsilon^2} \right\} \ln \left(\frac{1}{\beta} \right) \right)
\]

✓ The first work in the area (in my opinion, it is breakthrough)
✗ \(D\) – diameter of the domain; the proof relies on \(D < +\infty\)
✗ No acceleration
Davis et al. [2021] proposed proxBoost based on robust distance estimation and Proximal Point method. They proved the following complexity bound (in the strongly convex case):

$$\mathcal{O} \left(\max \left\{ \sqrt{\frac{L}{\mu}} \ln \left(\frac{LR_0^2 \ln \frac{L}{\mu}}{\varepsilon} \right), \frac{\sigma^2 \ln \frac{L}{\mu}}{\mu \varepsilon} \right\} \ln \left(\frac{L}{\mu} \right) \ln \left(\frac{\ln \frac{L}{\mu}}{\beta} \right) \right)$$

- Accelerated results
- Valid for any convex closed domain (bounded/unbounded)
- Requires to solve an auxiliary problem at each iteration
- Extra logarithm of the condition number
Key Challenge in the Analysis of clipped-SGD

\[x^{k+1} = x^k - \gamma \cdot \text{clip} \left(\nabla f(x^k, \xi^k), \lambda \right) \]

\[\nabla f(x^k, \xi^k) = \frac{1}{m_k} \sum_{i=1}^{m_k} \nabla f(x^k, \xi^k_i), \text{ where } \xi^k_1, \ldots, \xi^k_{m_k} \text{ are i.i.d. samples} \]
Key Challenge in the Analysis of clipped-SGD

\[x^{k+1} = x^k - \gamma \cdot \text{clip} \left(\nabla f(x^k, \xi^k), \lambda \right) \]

\[\tilde{\nabla} f(x^k, \xi^k) \]

- \[\nabla f(x^k, \xi^k) = \frac{1}{m_k} \sum_{i=1}^{m_k} \nabla f(x^k, \xi^i_k) \], where \(\xi^1_k, \ldots, \xi^{m_k}_k \) are i.i.d. samples

- Key challenge: \(\mathbb{E} \left[\tilde{\nabla} f(x^k, \xi^k) \mid x^k \right] \neq \nabla f(x^k) \)
Analysis of clipped-SGD: Key Idea

• We start the proof classically:

\[
\|x^{k+1} - x^*\|^2 = \|x^k - x^*\|^2 - 2\gamma \langle x^k - x^*, \nabla f(x^k, \xi^k) \rangle + \gamma^2 \|\nabla f(x^k, \xi^k)\|^2 \\
\leq \ldots
\]
Analysis of clipped-SGD: Key Idea

• We start the proof classically:

\[
\|x^{k+1} - x^*\|^2 = \|x^k - x^*\|^2 - 2\gamma \langle x^k - x^*, \tilde{\nabla} f(x^k, \xi^k) \rangle + \gamma^2 \|\tilde{\nabla} f(x^k, \xi^k)\|^2 \\
\leq \ldots
\]

• Using convexity and smoothness of \(f \) and simple rearrangements, we eventually get for \(\Delta_k = f(x^k) - f(x^*) \), \(R_k = \|x^k - x^*\| \), \(\theta_k = \tilde{\nabla} f(x^k, \xi^k) - \nabla f(x^k) \)

\[
\frac{2\gamma(1 - 2\gamma L)}{N} \sum_{k=0}^{N-1} \Delta_k \leq \frac{1}{N} (R_0^2 - R_N^2) \\
+ \frac{2\gamma}{N} \sum_{k=0}^{N-1} \langle x^* - x^k, \theta_k \rangle + \frac{2\gamma^2}{N} \sum_{k=0}^{N-1} \|\theta_k\|^2
\]

How to upper bound the sums in red?
Bernstein Inequality for Martingale Differences

Lemma 1 [Bennett, 1962, Dzhaparidze and Van Zanten, 2001, Freedman et al., 1975]

Let the sequence of random variables \(\{X_i\}_{i \geq 1} \) form a martingale difference sequence, i.e. \(\mathbb{E}[X_i | X_{i-1}, \ldots, X_1] = 0 \) for all \(i \geq 1 \). Assume that conditional variances \(\sigma_i^2 \overset{\text{def}}{=} \mathbb{E}[X_i^2 | X_{i-1}, \ldots, X_1] \) exist and are bounded and assume also that there exists deterministic constant \(c > 0 \) such that \(|X_i| \leq c \) almost surely for all \(i \geq 1 \).
Bernstein Inequality for Martingale Differences

Lemma 1 [Bennett, 1962, Dzhaparidze and Van Zanten, 2001, Freedman et al., 1975]

Let the sequence of random variables \(\{X_i\}_{i \geq 1} \) form a martingale difference sequence, i.e. \(\mathbb{E}[X_i \mid X_{i-1}, \ldots, X_1] = 0 \) for all \(i \geq 1 \). Assume that conditional variances \(\sigma_i^2 \overset{\text{def}}{=} \mathbb{E}[X_i^2 \mid X_{i-1}, \ldots, X_1] \) exist and are bounded and assume also that there exists deterministic constant \(c > 0 \) such that \(|X_i| \leq c \) almost surely for all \(i \geq 1 \). Then for all \(b > 0, G > 0 \) and \(N \geq 1 \)

\[
\mathbb{P} \left\{ \left| \sum_{i=1}^{N} X_i \right| > b \text{ and } \sum_{i=1}^{N} \sigma_i^2 \leq G \right\} \leq 2 \exp \left(-\frac{b^2}{2G + 2cb/3} \right).
\]
Lemma 1 [Bennett, 1962, Dzhaparidze and Van Zanten, 2001, Freedman et al., 1975]

Let the sequence of random variables \(\{X_i\}_{i \geq 1} \) form a martingale difference sequence, i.e. \(\mathbb{E} [X_i \mid X_{i-1}, \ldots, X_1] = 0 \) for all \(i \geq 1 \). Assume that conditional variances \(\sigma_i^2 \equiv \mathbb{E} [X_i^2 \mid X_{i-1}, \ldots, X_1] \) exist and are bounded and assume also that there exists deterministic constant \(c > 0 \) such that \(|X_i| \leq c \) almost surely for all \(i \geq 1 \). Then for all \(b > 0, \ G > 0 \) and \(N \geq 1 \)

\[
\mathbb{P} \left\{ \left| \sum_{i=1}^{N} X_i \right| > b \ \text{and} \ \sum_{i=1}^{N} \sigma_i^2 \leq G \right\} \leq 2 \exp \left(-\frac{b^2}{2G + \frac{2cb}{3}} \right).
\]

To bound \(\frac{2\gamma}{N} \sum_{k=0}^{N-1} \langle x^* - x^k, \theta_k \rangle + \frac{2\gamma^2}{N} \sum_{k=0}^{N-1} \|\theta_k\|^2 \) we need to

- upper bound bias, variance, and distortion of \(\theta_k \)
- have upper bounds for \(\|x^k - x^*\| \) and \(\|\theta_k\| \) that hold with large probability
Lemma 2

Let X be a random vector in \mathbb{R}^n and $\tilde{X} = \text{clip}(X, \lambda)$. Then,

$$\|\tilde{X} - \mathbb{E}[\tilde{X}]\| \leq 2\lambda. \quad (12)$$

Moreover, if for some $\sigma \geq 0$ we have $\mathbb{E}[X] = x \in \mathbb{R}^n$, $\mathbb{E}[\|X - x\|^2] \leq \sigma^2$, and $x \leq \lambda/2$, then

$$\|\mathbb{E}[\tilde{X}] - x\| \leq \frac{4\sigma^2}{\lambda},$$

$$\mathbb{E}\left[\|\tilde{X} - x\|^2\right] \leq 18\sigma^2,$$ \quad (14)

$$\mathbb{E}\left[\|\tilde{X} - \mathbb{E}[\tilde{X}]\|^2\right] \leq 18\sigma^2.$$ \quad (15)
Bound on the Distance to the Solution

Inequality

\[
\frac{2\gamma(1 - 2\gamma L)}{N} \sum_{k=0}^{N-1} \Delta_k \leq \frac{1}{N} (R_0^2 - R_N^2) \\
+ \frac{2\gamma}{N} \sum_{k=0}^{N-1} \langle x^* - x^k, \theta_k \rangle + \frac{2\gamma^2}{N} \sum_{k=0}^{N-1} \|\theta_k\|^2
\]

implies

\[
R_N^2 \leq R_0^2 + 2\gamma \sum_{k=0}^{N-1} \langle x^* - x^k, \theta_k \rangle + 2\gamma^2 \sum_{k=0}^{N-1} \|\theta_k\|^2.
\]
Bound on the Distance to the Solution

Inequality

\[
\frac{2\gamma(1 - 2\gamma L)}{N} \sum_{k=0}^{N-1} \Delta_k \leq \frac{1}{N} \left(R_0^2 - R_N^2 \right) \\
+ \frac{2\gamma}{N} \sum_{k=0}^{N-1} \langle x^* - x^k, \theta_k \rangle + \frac{2\gamma^2}{N} \sum_{k=0}^{N-1} \| \theta_k \|^2
\]

implies

\[
R_N^2 \leq R_0^2 + 2\gamma \sum_{k=0}^{N-1} \langle x^* - x^k, \theta_k \rangle + 2\gamma^2 \sum_{k=0}^{N-1} \| \theta_k \|^2.
\]

Key idea: prove \(R_N \leq CR_0 \) with high probability for some numerical constant \(C \) using the induction!
High-Probability Convergence of clipped-SGD

It is sufficient to make all assumptions on a ball around the solution!
High-Probability Convergence of clipped-SGD

It is sufficient to make all assumptions on a ball around the solution!

Theorem 1

Let f be convex and L-smooth on $B_{7R_0}(x^*) = \{ x \in \mathbb{R}^n \mid \| x - x^* \| \leq 7R_0 \}$ and (9) holds on $B_{7R_0}(x^*)$.
High-Probability Convergence of clipped-SGD

It is sufficient to make all assumptions on a ball around the solution!

Theorem 1

Let f be convex and L-smooth on $B_{7R_0}(x^*) = \{x \in \mathbb{R}^n \mid \|x - x^*\| \leq 7R_0\}$ and (9) holds on $B_{7R_0}(x^*)$. Then, for all $\beta \in (0, 1)$, $\varepsilon \geq 0$ such that $\ln \left(LR_0^2 / \varepsilon \beta \right) \geq 2$ there exists a choice of γ such that clipped-SGD with clipping level $\lambda \sim 1/\gamma$ and batchsize $m_k = 1$ finds \bar{x}^N satisfying $f(\bar{x}^N) - f(x^*) \leq \varepsilon$ with probability at least $1 - \beta$ using
High-Probability Convergence of clipped-SGD

It is sufficient to make all assumptions on a ball around the solution!

Theorem 1

Let f be convex and L-smooth on $B_{7R_0}(x^*) = \{x \in \mathbb{R}^n \mid \|x - x^*\| \leq 7R_0\}$ and (9) holds on $B_{7R_0}(x^*)$. Then, for all $\beta \in (0, 1)$, $\varepsilon \geq 0$ such that $\ln(LR_0^2/\varepsilon \beta) \geq 2$ there exists a choice of γ such that clipped-SGD with clipping level $\lambda \sim 1/\gamma$ and batchsize $m_k = 1$ finds \bar{x}^N satisfying $f(\bar{x}^N) - f(x^*) \leq \varepsilon$ with probability at least $1 - \beta$ using

$$O \left(\max \left\{ \frac{LR_0^2}{\varepsilon}, \frac{\sigma^2R_0^2}{\varepsilon^2} \ln \left(\frac{LR_0^2}{\varepsilon \beta} + \frac{\sigma^2R_0^2}{\varepsilon^2 \beta} \right) \right\} \right)$$ iterations/oracle calls.
High-Probability Convergence of clipped-SGD

It is sufficient to make all assumptions on a ball around the solution!

Theorem 1

Let f be convex and L-smooth on $B_{7R_0}(x^*) = \{x \in \mathbb{R}^n \mid \|x - x^*\| \leq 7R_0\}$ and (9) holds on $B_{7R_0}(x^*)$. Then, for all $\beta \in (0, 1)$, $\varepsilon \geq 0$ such that $\ln(LR_0^2/\varepsilon \beta) \geq 2$ there exists a choice of γ such that clipped-SGD with clipping level $\lambda \sim 1/\gamma$ and batchsize $m_k = 1$ finds \bar{x}^N satisfying $f(\bar{x}^N) - f(x^*) \leq \varepsilon$ with probability at least $1 - \beta$ using

$$O \left(\max \left\{ \frac{LR_0^2}{\varepsilon}, \frac{\sigma^2 R_0^2}{\varepsilon^2} \ln \left(\frac{LR_0^2}{\varepsilon \beta} + \frac{\sigma^2 R_0^2}{\varepsilon^2 \beta} \right) \right\} \right)$$ iterations/oracle calls.

- Same result (up to the difference in logarithmic factors) as for SGD in the light-tailed case
High-Probability Convergence of \textit{clipped-SGD}

It is sufficient to make all assumptions on a ball around the solution!

\begin{theorem}
Let f be convex and L-smooth on $B_{7R_0}(x^*) = \{ x \in \mathbb{R}^n \mid \|x - x^*\| \leq 7R_0 \}$ and (9) holds on $B_{7R_0}(x^*)$. Then, for all $\beta \in (0,1)$, $\varepsilon \geq 0$ such that $\ln(LR_0^2/\varepsilon \beta) \geq 2$ there exists a choice of γ such that \textit{clipped-SGD} with clipping level $\lambda \sim 1/\gamma$ and batchsize $m_k = 1$ finds \bar{x}^N satisfying $f(\bar{x}^N) - f(x^*) \leq \varepsilon$ with probability at least $1 - \beta$ using

$$O \left(\max \left\{ \frac{LR_0^2}{\varepsilon}, \frac{\sigma^2 R_0^2}{\varepsilon^2} \ln \left(\frac{LR_0^2}{\varepsilon \beta} + \frac{\sigma^2 R_0^2}{\varepsilon^2 \beta} \right) \right\} \right) \text{ iterations/oracle calls.}$$

\end{theorem}

- Same result (up to the difference in logarithmic factors) as for \textit{SGD} in the light-tailed case
- Same result (up to the difference in logarithmic factors) as for \textit{RSMD} in the heavy-tailed case, but for unconstrained case
Accelerated clipped-SGD: clipped-SSTM

- Stochastic Similar Triangles Method was proposed by Gasnikov and Nesterov [2016]
Accelerated clipped-SGD: clipped-SSTM

- Stochastic Similar Triangles Method was proposed by Gasnikov and Nesterov [2016]
- We combine it with a gradient clipping:

\[
\begin{align*}
\alpha_{k+1} &= \frac{k + 2}{2aL}, \\
A_{k+1} &= A_k + \alpha_{k+1}, \\
\lambda_{k+1} &= \frac{B}{\alpha_{k+1}} \\
\end{align*}
\]

\[
\begin{align*}
x^{k+1} &= \frac{A_k y^k + \alpha_{k+1} z^k}{A_{k+1}} \\
z^{k+1} &= z^k - \alpha_{k+1} \left\{ \nabla f(x^{k+1}, \xi^k) \text{ clip}(\nabla f(x^{k+1}, \xi^k), \lambda_{k+1}) \right\} \\
y^{k+1} &= \frac{A y^k + \alpha_{k+1} z^{k+1}}{A_{k+1}}
\end{align*}
\]
Accelerated clipped-SGD: clipped-SSTM

- Stochastic Similar Triangles Method was proposed by Gasnikov and Nesterov [2016]
- We combine it with a gradient clipping:

\[\alpha_{k+1} = \frac{k + 2}{2aL}, \quad A_{k+1} = A_k + \alpha_{k+1}, \quad \lambda_{k+1} = \frac{B}{\alpha_{k+1}} \]

\[x^{k+1} = \frac{A_k y^k + \alpha_{k+1} z^k}{A_{k+1}} \]

\[z^{k+1} = z^k - \alpha_{k+1} \left(\nabla f(x^{k+1}, \xi^k) \right) \]

\[y^{k+1} = \frac{A y^k + \alpha_{k+1} z^{k+1}}{A_{k+1}} \]

- Why factor \(a \) is needed?
- Why \(\lambda_{k+1} \) is chosen this way?
clipped-SSTM: Intuition Behind the Proof

- The key idea is the same: prove that $R_N \leq CR_0$ with high probability using the induction
clipped-SSTM: Intuition Behind the Proof

- The key idea is the same: prove that $R_N \leq CR_0$ with high probability using the induction
- The method is accelerated – it is more sensitive to the quality of estimate $\tilde{\nabla}f(x^{k+1}, \xi^k)$
clipped-SSTM: Intuition Behind the Proof

• The key idea is the same: prove that $R_N \leq CR_0$ with high probability using the induction.

• The method is accelerated – it is more sensitive to the quality of estimate $\tilde{\nabla}f(x^{k+1},\xi^k)$.
 - For deterministic SSTM (i.e., STM) one can prove $\|\nabla f(x^{k+1})\| = O(1/\alpha_{k+1})$.
 - This hints to choose $\lambda_{k+1} \sim 1/\alpha_{k+1}$ (in the hope that $\|\nabla f(x^{k+1})\| = O(1/\alpha_{k+1})$ in the stochastic case with high probability).
clipped-SSTM: Intuition Behind the Proof

- The key idea is the same: prove that $R_N \leq CR_0$ with high probability using the induction
- The method is accelerated – it is more sensitive to the quality of estimate $\nabla f(x^{k+1}, \xi^k)$
 - For deterministic SSTM (i.e., STM) one can prove $\|\nabla f(x^{k+1})\| = O(1/\alpha_{k+1})$
 - This hints to choose $\lambda_{k+1} \sim 1/\alpha_{k+1}$ (in the hope that $\|\nabla f(x^{k+1})\| = O(1/\alpha_{k+1})$
 in the stochastic case with high probability)
 - Parameter a allows to choose smaller stepsizes and, as the result, batchsizes $m_k = 1$
High-Probability Convergence of clipped-SSTM

It is sufficient to make all assumptions on a ball around the solution!
High-Probability Convergence of clipped-SSTM

It is sufficient to make all assumptions on a ball around the solution!

Theorem 2

Let f be convex and L-smooth on $B_{3R_0}(x^*)$ and (9) holds on $B_{3R_0}(x^*)$.
High-Probability Convergence of clipped-SSTM

It is sufficient to make all assumptions on a ball around the solution!

Theorem 2

Let f be convex and L-smooth on $B_{3R_0}(x^*)$ and (9) holds on $B_{3R_0}(x^*)$. Then, for all $\beta \in (0, 1)$, $\varepsilon \geq 0$ such that $\ln(\sqrt{L}R_0/\sqrt{\varepsilon \beta}) \geq 2$ there exists a choice of a such that clipped-SSTM with clipping level $\lambda \sim 1/\alpha_{k+1}$ and batchsize $m_k = 1$ finds y^N satisfying $f(y^N) - f(x^*) \leq \varepsilon$ with probability at least $1 - \beta$ using
High-Probability Convergence of clipped-SSTM

It is sufficient to make all assumptions on a ball around the solution!

Theorem 2

Let f be convex and L-smooth on $B_{3R_0}(x^*)$ and (9) holds on $B_{3R_0}(x^*)$. Then, for all $\beta \in (0, 1)$, $\varepsilon \geq 0$ such that $\ln(\sqrt{LR_0}/\sqrt{\varepsilon \beta}) \geq 2$ there exists a choice of α_{k+1} and batchsize $m_k = 1$ finds y^N satisfying $f(y^N) - f(x^*) \leq \varepsilon$ with probability at least $1 - \beta$ using

$$O\left(\max\left\{\frac{\sqrt{LR_0^2}}{\varepsilon} \ln \left(\frac{\sqrt{LR_0^2}}{\varepsilon \beta^2}\right), \frac{\sigma^2 R_0^2}{\varepsilon^2} \ln \left(\frac{\sigma^2 R_0^2}{\varepsilon^2 \beta}\right)\right\}\right)$$

iterations/oracle calls.
High-Probability Convergence of clipped-SSTM

It is sufficient to make all assumptions on a ball around the solution!

Theorem 2

Let f be convex and L-smooth on $B_{3R_0}(x^*)$ and (9) holds on $B_{3R_0}(x^*)$. Then, for all $\beta \in (0, 1)$, $\varepsilon \geq 0$ such that $\ln(\sqrt{LR_0}/\sqrt{\varepsilon \beta}) \geq 2$ there exists a choice of α such that clipped-SSTM with clipping level $\lambda \sim 1/\alpha_{k+1}$ and batchsize $m_k = 1$ finds y^N satisfying $f(y^N) - f(x^*) \leq \varepsilon$ with probability at least $1 - \beta$ using

$$O \left(\max \left\{ \sqrt{\frac{LR_0^2}{\varepsilon}} \ln \left(\sqrt{\frac{LR_0^2}{\varepsilon \beta^2}} \right), \frac{\sigma^2 R_0^2}{\varepsilon^2} \ln \left(\frac{\sigma^2 R_0^2}{\varepsilon^2 \beta} \right) \right\} \right)$$ iterations/oracle calls.

- Same result (up to the difference in logarithmic factors) as for AC-SA in the light-tailed case
It is sufficient to make all assumptions on a ball around the solution!

Theorem 2

Let f be convex and L-smooth on $B_{3R_0}(x^*)$ and (9) holds on $B_{3R_0}(x^*)$. Then, for all $\beta \in (0, 1)$, $\varepsilon \geq 0$ such that $\ln(\sqrt{LR_0}/\sqrt{\varepsilon \beta}) \geq 2$ there exists a choice of α such that clipped-SSTM with clipping level $\lambda \sim 1/\alpha_{k+1}$ and batchsize $m_k = 1$ finds y^N satisfying $f(y^N) - f(x^*) \leq \varepsilon$ with probability at least $1 - \beta$ using

$$O \left(\max \left\{ \frac{LR_0^2}{\varepsilon} \ln \left(\frac{LR_0^2}{\varepsilon \beta^2} \right), \frac{\sigma^2 R_0^2}{\varepsilon^2} \ln \left(\frac{\sigma^2 R_0^2}{\varepsilon^2 \beta} \right) \right\} \right)$$ iterations/oracle calls.

- Same result (up to the difference in logarithmic factors) as for AC-SA in the light-tailed case
- Better result than for clipped-SGD
Theoretical Extensions

In [Gorbunov et al., 2020, 2021] we also have

- Results for the strongly convex objectives
- Results for the functions with Hölder continuous gradient
Numerical Experiments: Setup

We tested the performance of the methods on the following problems:\footnote{The code is available at \url{https://github.com/ClippedStochasticMethods/clipped-SSTM}}:

- **BERT** ($\approx 0.6M$ parameters) fine-tuning on CoLA dataset. We use pretrained BERT and freeze all layers except the last two linear ones. This dataset contains 8551 sentences, and the task is binary classification – to determine if sentence is grammatically correct.

- **ResNet-18** ($\approx 11.7M$ parameters) training on ImageNet-100 (first 100 classes of ImageNet). It has 134395 images.
Figure: Noise distribution of the stochastic gradients for ResNet-18 on ImageNet-100 and BERT fine-tuning on the CoLA dataset before the training. Red lines: probability density functions of normal distributions with means and variances empirically estimated by the samples. Batch count is the total number of samples used to build a histogram.
Evolution of the Noise Distribution, Image Classification

Figure: Evolution of the noise distribution for ResNet-18 + ImageNet-100 task.
Figure: Evolution of the noise distribution for BERT + CoLA task.
Evolution of the Noise Distribution, Text Classification

Figure: Evolution of the noise distribution for BERT + CoLA task, from iteration 0 (before the training) to iteration 500.
Numerical Results, Image Classification

Figure: Train and validation loss + accuracy for different optimizers on ResNet-18 + ImageNet-100 problem. Here, “batch count” denotes the total number of used stochastic gradients. The noise distribution is almost Gaussian even vanilla SGD performs well, i.e., gradient clipping is not required.
Figure: Train and validation loss + accuracy for different optimizers on BERT + CoLA problem. The noise distribution is heavy-tailed, the methods with clipping outperform SGD by a large margin.
Variational Inequality Problem

\[
\text{find } x^* \in Q \subseteq \mathbb{R}^n \text{ such that } \langle F(x^*), x - x^* \rangle \geq 0, \forall x \in Q \quad (\text{VIP-C})
\]
Variational Inequality Problem

find $x^* \in Q \subseteq \mathbb{R}^n$ such that $\langle F(x^*), x - x^* \rangle \geq 0$, $\forall x \in Q$ (VIP-C)

- $F : Q \rightarrow \mathbb{R}^n$ is L-Lipschitz operator: $\forall x, y \in Q$

$$\|F(x) - F(y)\| \leq L\|x - y\|$$ (16)
Variational Inequality Problem

find \(x^* \in Q \subseteq \mathbb{R}^n \) such that \(\langle F(x^*), x - x^* \rangle \geq 0, \forall x \in Q \) \hfill (VIP-C)

- \(F : Q \rightarrow \mathbb{R}^n \) is \(L \)-Lipschitz operator: \(\forall x, y \in Q \)

\[
\| F(x) - F(y) \| \leq L \| x - y \| \quad (16)
\]

- \(F \) is monotone: \(\forall x, y \in Q \)

\[
\langle F(x) - F(y), x - y \rangle \geq 0 \quad (17)
\]
Variational Inequality Problem: Examples

- Min-max problems:

\[
\min_{u \in U} \max_{v \in V} f(u, v) \tag{18}
\]
Min-max problems:

$$\min_{u \in U} \max_{v \in V} f(u, v)$$ \hspace{1cm} (18)$$

If f is convex-concave, then (18) is equivalent to finding $(u^*, v^*) \in U \times V$ such that $\forall (u, v) \in U \times V$

$$\langle \nabla_u f(u^*, v^*), u - u^* \rangle \geq 0, \quad -\langle \nabla_v f(u^*, v^*), v - v^* \rangle \geq 0,$$

These problems appear in various applications such as robust optimization [Ben-Tal et al., 2009] and control [Hast et al., 2013], adversarial training [Goodfellow et al., 2015, Madry et al., 2018] and generative adversarial networks (GANs) [Goodfellow et al., 2014].
Variational Inequality Problem: Examples

- Min-max problems:

\[
\min_{u \in U} \max_{v \in V} f(u, v) \tag{18}
\]

If \(f \) is convex-concave, then \((18) \) is equivalent to finding \((u^*, v^*) \in U \times V\) such that \(\forall (u, v) \in U \times V \)

\[
\langle \nabla_u f(u^*, v^*), u - u^* \rangle \geq 0, \quad -\langle \nabla_v f(u^*, v^*), v - v^* \rangle \geq 0,
\]

which is equivalent to (VIP-C) with \(Q = U \times V, x = (u^T, v^T)^T \), and

\[
F(x) = \begin{pmatrix} \nabla_u f(u, v) \\ -\nabla_v f(u, v) \end{pmatrix}
\]

These problems appear in various applications such as robust optimization [Ben-Tal et al., 2009] and control [Hast et al., 2013], adversarial training [Goodfellow et al., 2015, Madry et al., 2018] and generative adversarial networks (GANs) [Goodfellow et al., 2014].
Variational Inequality Problem: Examples

- Min-max problems:

\[
\min_{u \in U} \max_{v \in V} f(u, v) \tag{18}
\]

If \(f \) is convex-concave, then (18) is equivalent to finding \((u^*, v^*) \in U \times V\) such that \(\forall (u, v) \in U \times V \)

\[
\langle \nabla_u f(u^*, v^*), u - u^* \rangle \geq 0, \quad -\langle \nabla_v f(u^*, v^*), v - v^* \rangle \geq 0,
\]

which is equivalent to (VIP-C) with \(Q = U \times V \), \(x = (u^T, v^T)^T \), and

\[
F(x) = \begin{pmatrix} \nabla_u f(u, v) \\ -\nabla_v f(u, v) \end{pmatrix}
\]

These problems appear in various applications such as robust optimization [Ben-Tal et al., 2009] and control [Hast et al., 2013], adversarial training [Goodfellow et al., 2015, Madry et al., 2018] and generative adversarial networks (GANs) [Goodfellow et al., 2014].
Variational Inequality Problem: Examples

• Minimization problems:

\[\min_{x \in Q} f(x) \tag{19} \]
Variational Inequality Problem: Examples

• Minimization problems:

\[
\min_{x \in Q} f(x) \tag{19}
\]

If \(f \) is convex, then (19) is equivalent to finding a stationary point of \(f \), i.e., it is equivalent to (VIP-C) with

\[
F(x) = \nabla f(x)
\]
Variational Inequality Problem: Unconstrained Case

When $Q = \mathbb{R}^n$ (VIP-C) can be rewritten as

$$\text{find } x^* \in \mathbb{R}^n \text{ such that } F(x^*) = 0$$ \hspace{1cm} (VIP)

In this talk, we focus on (40) rather than (VIP-C)
Gradient Descent-Ascent (GDA) and Extragradient (EG)

- GDA [Krasnosel’skii, 1955, Mann, 1953]:
 \[x^{k+1} = x^k - \gamma F(x^k) \]

 ✓ Very simple
 ✗ Does not converge for some simple problems (like bilinear games)
Gradient Descent-Ascent (GDA) and Extragradient (EG)

- **GDA** [Krasnosel’skii, 1955, Mann, 1953]:
 \[x^{k+1} = x^k - \gamma F(x^k) \]
 - ✓ Very simple
 - ✗ Does not converge for some simple problems (like bilinear games)

- **EG** [Korpelevich, 1976]
 \[x^{k+1} = x^k - \gamma F (x^k - \gamma F(x^k)) \]
 - ✓ Converges for any monotone and \(L \)-Lipschitz operator
 - ✗ Requires two oracle calls per step (although this can be easily fixed)
 - ✗ Converges worse than Alternating GDA for some popular tasks (GANs)
Stochastic VIP

We consider with

\[F(x) = \mathbb{E}_\xi [F_\xi(x)] \]

• We have access to \(F_\xi \) such that for all \(x \in \mathbb{R}^n \)

\[\mathbb{E}_\xi [\|F_\xi(x) - F(x)\|^2] \leq \sigma^2 \quad (20) \]
We consider with

\[F(x) = \mathbb{E}_\xi[F_\xi(x)] \]

- We have access to \(F_\xi \) such that for all \(x \in \mathbb{R}^n \)

\[\mathbb{E}_\xi [\|F_\xi(x) - F(x)\|^2] \leq \sigma^2 \tag{20} \]

- For GDA-based methods we assume \(\ell \)-star-cocoercivity: \(\forall x \in \mathbb{R}^n \)

\[\ell \langle F(x), x - x^* \rangle \geq \|F(x)\|^2 \]
Stochastic VIP

We consider with

\[F(x) = \mathbb{E}_\xi [F_\xi(x)] \]

- We have access to \(F_\xi \) such that for all \(x \in \mathbb{R}^n \)

\[\mathbb{E}_\xi \left[\| F_\xi(x) - F(x) \|^2 \right] \leq \sigma^2 \quad (20) \]

- For GDA-based methods we assume \(\ell \)-star-cocoercivity: \(\forall x \in \mathbb{R}^n \)

\[\ell \langle F(x), x - x^* \rangle \geq \| F(x) \|^2 \]

- For EG-based methods we assume monotonicity and \(L \)-Lipschitzness: \(\forall x, y \in \mathbb{R}^n \)

\[\langle F(x) - F(y), x - y \rangle \geq 0, \]
\[\| F(x) - F(y) \| \leq L \| x - y \| \]
Stochastic GDA (SGDA) and Stochastic EG (SEG)

- **SGDA:**
 \[x^{k+1} = x^k - \gamma F_{\xi_k}(x^k) \]

- **SEG:**
 \[x^{k+1} = x^k - \gamma_2 F_{\xi_2} \left(x^k - \gamma_1 F_{\xi_1}(x^k) \right) \]
Stochastic GDA (SGDA) and Stochastic EG (SEG)

- **SGDA:**
 \[x^{k+1} = x^k - \gamma F_{\xi_k}(x^k) \]

- **SEG:**
 \[x^{k+1} = x^k - \gamma_2 F_{\xi_2} \left(x^k - \gamma_1 F_{\xi_1}(x^k) \right) \]

- \(\xi_1^k, \xi_2^k \) are i.i.d. samples
- \(\gamma_2 \leq \gamma_1 \)
Prior Work on High-Probability Convergence

For the case of bounded domain (with diameter D) and under light-tails assumption

$$
\mathbb{E} \left[\exp \left(\frac{\|F_\xi(x) - F(x)\|^2}{\sigma^2} \right) \right] \leq \exp(1),
$$

(21)

Juditsky et al. [2011] proved that projected version of SEG (Mirror-Prox) finds \hat{x} such that $^2\text{Gap}_D(\hat{x}) \leq \varepsilon$ with probability at least $1 - \beta$ using

$$
\mathcal{O} \left(\max \left\{ \frac{LD^2}{\varepsilon}, \frac{\sigma^2D^2}{\varepsilon^2} \ln^2 \left(\frac{1}{\beta} \right) \right\} \right) \text{ oracle calls}
$$
clipped-SGDA and clipped-SEG

- **SGDA:**
 \[x^{k+1} = x^k - \gamma \cdot \text{clip} (F_{\xi_k} (x^k), \lambda_k) \]

- **SEG:**
 \[x^{k+1} = x^k - \gamma_2 \cdot \text{clip} (F_{\xi_2} (\tilde{x}^k), \lambda_2,k), \quad \tilde{x}^k = x^k - \gamma_1 \cdot \text{clip} (F_{\xi_1} (x^k), \lambda_1,k) \]

- \(\xi_1^k, \xi_2^k \) are i.i.d. samples
- \(\gamma_2 \leq \gamma_1 \)
clipped-SGDA and clipped-SEG

- **SGDA:**
 \[x^{k+1} = x^k - \gamma \cdot \text{clip}(F_{\xi_{k}}(x^k), \lambda_k) \]

- **SEG:**
 \[x^{k+1} = x^k - \gamma_2 \cdot \text{clip}(F_{\xi_{k}^2}(\tilde{x}^k), \lambda_{2,k}) \]
 \[\tilde{x}^k = x^k - \gamma_1 \cdot \text{clip}(F_{\xi_{k}^1}(x^k), \lambda_{1,k}) \]

 - \(\xi_{k}^1, \xi_{k}^2 \) are i.i.d. samples
 - \(\gamma_2 \leq \gamma_1 \)

 The key idea behind the proof is exactly the same as in minimization!
High-Probability Convergence of clipped-SEG

It is sufficient to make all assumptions on a ball around the solution!

Theorem 3

Let F be monotone and L-Lipschitz on $B_{4R}(x^*)$ and (20) holds on $B_{4R}(x^*)$, $R \geq R_0$.

• Same result (up to the difference in logarithmic factors) as for Mirror-Prox in the light-tailed case
• Derived for unconstrained case
High-Probability Convergence of clipped-SEG

It is sufficient to make all assumptions on a ball around the solution!

Theorem 3

Let F be monotone and L-Lipschitz on $B_{4R}(x^*)$ and (20) holds on $B_{4R}(x^*)$, $R \geq R_0$. Then, for all $\beta \in (0,1)$, $\varepsilon \geq 0$ such that $\ln(\frac{6LR_0^2}{\varepsilon \beta}) \geq 1$ there exists a choice of $\gamma_1 = \gamma_2 = \gamma$ such that clipped-SEG with clipping level $\lambda \sim \frac{1}{\gamma}$ finds \hat{x} satisfying $\text{Gap}_R(\hat{x}) \leq \varepsilon$ with probability at least $1 - \beta$ using...
High-Probability Convergence of clipped-SEG

It is sufficient to make all assumptions on a ball around the solution!

Theorem 3

Let F be monotone and L-Lipschitz on $B_{4R}(x^*)$ and (20) holds on $B_{4R}(x^*)$, $R \geq R_0$. Then, for all $\beta \in (0, 1)$, $\varepsilon \geq 0$ such that $\ln(\frac{6LR_0^2}{\varepsilon \beta}) \geq 1$ there exists a choice of $\gamma_1 = \gamma_2 = \gamma$ such that clipped-SEG with clipping level $\lambda \sim \frac{1}{\gamma}$ finds \hat{x} satisfying $\text{Gap}_R(\hat{x}) \leq \varepsilon$ with probability at least $1 - \beta$ using

$$O \left(\max \left\{ \frac{LR^2}{\varepsilon} \ln \left(\frac{LR^2}{\varepsilon \beta} \right), \frac{\sigma^2 R^2}{\varepsilon^2} \ln \left(\frac{\sigma^2 R^2}{\varepsilon^2 \beta} \right) \right\} \right)$$

iterations/oracle calls.
High-Probability Convergence of clipped-SEG

It is sufficient to make all assumptions on a ball around the solution!

Theorem 3

Let F be monotone and L-Lipschitz on $B_{4R}(x^*)$ and (20) holds on $B_{4R}(x^*)$, $R \geq R_0$. Then, for all $\beta \in (0,1)$, $\epsilon \geq 0$ such that $\ln(\frac{6L^2R_0^2}{\epsilon \beta}) \geq 1$ there exists a choice of $\gamma_1 = \gamma_2 = \gamma$ such that clipped-SEG with clipping level $\lambda \sim \frac{1}{\gamma}$ finds \hat{x} satisfying $\text{Gap}_R(\hat{x}) \leq \epsilon$ with probability at least $1 - \beta$ using

$$O \left(\max \left\{ \frac{LR^2}{\epsilon} \ln \left(\frac{LR^2}{\epsilon \beta} \right), \frac{\sigma^2 R^2}{\epsilon^2} \ln \left(\frac{\sigma^2 R^2}{\epsilon^2 \beta} \right) \right\} \right)^\gamma$$ iterations/oracle calls.

• Same result (up to the difference in logarithmic factors) as for Mirror-Prox in the light-tailed case
• Derived for unconstrained case
High-Probability Convergence of clipped-SGDA

It is sufficient to make all assumptions on a ball around the solution!

Theorem 4

Let F be ℓ-star-cocoercive on $B_{2R}(x^*)$ and (20) holds on $B_{2R}(x^*)$, $R \geq R_0$.
High-Probability Convergence of clipped-SGDA

It is sufficient to make all assumptions on a ball around the solution!

Theorem 4

Let F be ℓ-star-cocoercive on $B_{2R}(x^*)$ and (20) holds on $B_{2R}(x^*)$, $R \geq R_0$. Then, for all $\beta \in (0,1)$, $\varepsilon \geq 0$ such that $\ln(6LR_0^2/\varepsilon \beta) \geq 1$ there exists a choice of γ such that clipped-SGDA with clipping level $\lambda \sim 1/\gamma$ finds \hat{x} satisfying

$$\frac{1}{K+1} \sum_{k=0}^{K} \|F(x^k)\|^2 \leq \varepsilon \quad \text{with probability at least } 1 - \beta$$

using
High-Probability Convergence of clipped-SGDA

It is sufficient to make all assumptions on a ball around the solution!

Theorem 4

Let F be ℓ-star-cocoercive on $B_{2R}(x^*)$ and (20) holds on $B_{2R}(x^*)$, $R \geq R_0$. Then, for all $\beta \in (0, 1)$, $\epsilon \geq 0$ such that $\ln(6LR_0^2/\epsilon \beta) \geq 1$ there exists a choice of γ such that clipped-SGDA with clipping level $\lambda \sim 1/\gamma$ finds \hat{x} satisfying

$$\frac{1}{K+1} \sum_{k=0}^{K} \|F(x^k)\|^2 \leq \epsilon$$

with probability at least $1 - \beta$ using

$$O \left(\max \left\{ \frac{\ell^2 R^2}{\epsilon} \ln \left(\frac{\ell^2 R^2}{\epsilon \beta} \right), \frac{\ell^2 \sigma^2 R^2}{\epsilon^2} \ln \left(\frac{\ell^2 \sigma^2 R^2}{\epsilon^2 \beta} \right) \right\} \right)$$

iterations/oracle calls.
High-Probability Convergence of clipped-SGDA

It is sufficient to make all assumptions on a ball around the solution!

Theorem 4

Let F be ℓ-star-cocoercive on $B_{2R}(x^*)$ and (20) holds on $B_{2R}(x^*)$, $R \geq R_0$. Then, for all $\beta \in (0, 1)$, $\varepsilon \geq 0$ such that $\ln(\frac{6LR_0^2}{\varepsilon\beta}) \geq 1$ there exists a choice of γ such that clipped-SGDA with clipping level $\lambda \sim \frac{1}{\gamma}$ finds \hat{x} satisfying

$$\frac{1}{K+1} \sum_{k=0}^{K} \|F(x^k)\|^2 \leq \varepsilon \text{ with probability at least } 1 - \beta$$

using

$$O\left(\max \left\{ \frac{\ell^2 R^2}{\varepsilon} \ln \left(\frac{\ell^2 R^2}{\varepsilon\beta} \right), \frac{\ell^2 \sigma^2 R^2}{\varepsilon^2} \ln \left(\frac{\ell^2 \sigma^2 R^2}{\varepsilon^2\beta} \right) \right\} \right) \text{ iterations/oracle calls.}$$

- The first high-probability complexity result for SGDA-based methods
Theoretical Extensions

In [Gorbunov et al., 2022] we also have

- extensions to the quasi-strongly monotone and star-negative comonotone problems for clipped-SEG
- extensions to the (quasi-strongly) monotone + star-cocoercive problems for clipped-SGDA
Numerical Experiments

In the experiments in training GANs, we tested the following methods:

- clipped-SGDA with alternating updates
- Coord-clipped-SGDA – clipped-SGDA with coordinate-wise clipping and alternating updates
- clipped-SEG
- Coord-clipped-SEG
WGAN-GP on CIFAR10 Has Heavy-Tailed Gradients

- ρ_{mR}: relative fraction of mass after $Q_3 + 1.5 \cdot (Q_3 - Q_1)$
 - For normal distribution there is $\approx 0.35\%$ of the mass
 - In this plot: ≈ 12 times more
- ρ_{meR}: relative fraction of mass after $Q_3 + 3 \cdot (Q_3 - Q_1)$
 - For normal distribution there is $\approx 10^{-4}\%$ of the mass
 - In this plot: ≈ 4603 times more
WGAN-GP on CIFAR10 Has Heavy-Tailed Gradients

Eduard Gorbunov

Clipping, Heavy Tails, High Prob. Analysis

September 9, 2022 49 / 59
Clipping Helps for WGAN-GP on CIFAR10

(a) SGDA (67.4)
(b) clipped-SGDA (19.7)
(c) clipped-SEG (25.3)

The graph shows FID (Fréchet Inception Distance) for different optimization methods with and without clipping.

- With Clipping
- Without Clipping

Diverged: False, True

Clipping and Heavy-Tailed Noise
Minimization Problems
Variational Inequalities
References
StyleGAN2 on FFHQ Has Heavy-Tailed Gradients

(a) Initialization

(b) clipped-SGDA
Clipping Helps for StyleGAN2 on FFHQ

(c) SGDA

(d) clipped-SGDA
Clipping Helps for StyleGAN2 on FFHQ

• Still not matching Adam (on this GAN)
• StyleGan2 is full of trick and heuristics
• Has been tuned for Adam!
Conclusion

• Some popular problems have heavy-tailed noise: in NLP it was observed before, for GANs we demonstrated empirically
• Clipping is a simple way to deal with heavy-tailed noise
• High-probability convergence results for methods with clipping are better than known high-probability convergence results for methods without it
• Partial explanation of the success of adaptive methods like Adam on GANs and NLP tasks

References IV

M. Mosbach, M. Andriushchenko, and D. Klakow. On the stability of fine-tuning
bert: Misconceptions, explanations, and strong baselines. *arXiv preprint

robust stochastic optimization based on mirror descent method. *Automation

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent

sequence tagging with bidirectional language models. *arXiv preprint

Why are adaptive methods good for attention models? *Advances in Neural