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Stochastic Gradient Descent (SGD)

X =K — v V(x5 ) (1)

® { — the function to be minimized

o Vf(xk, £K) - stochastic gradient, i.e., unbiased estimate of Vf(x*):
Ee[VF(x*,£4)] = VF(xY)
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Clipped Stochastic Gradient Descent (clipped-SGD)

xk = xk — 4. clip (Vf(xk,ﬁk), )\) (2)

® clip(x, A) = min{1, ¥/|jx||}x
o clip(VF(xK,£5), \) — biased estimate of V£ (x):
Eet[clip(VF(x¥,£9), \)] # VF(x¥)
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Origin of Clipping

e Gradient clipping was proposed in [Pascanu et al., 2013]. Originally it was
used to handle exploding and vanishing gradients in RNNs.
With clipping

Without clipping

J(w,b)

Figure: from [Goodfellow et al., 2016]
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Few Years Later in NLP..

® Merity et al. [2017] use gradient clipping for LSTM

® Peters et al. [2017] trained their deep bidirectional language model with Adam
+ clipping

® Mosbach et al. [2020] fine-tune BERT using AdamW + clipping
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Few Years Later in NLP..

® Merity et al. [2017] use gradient clipping for LSTM

® Peters et al. [2017] trained their deep bidirectional language model with Adam
+ clipping

® Mosbach et al. [2020] fine-tune BERT using AdamW + clipping

Seems that gradient clipping is an important component in training these models.
But why?
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Heavy-Tailed Noise in Stochastic Gradients

Let us look at the distribution of |[Vf(x,£) — Vf(x)]| in two settings:
® Standard vision task: training ResNet50 on ImageNet dataset
® Standard NLP task: training BERT on Wikipedia4+-Books dataset
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Heavy-Tailed Noise in Stochastic Gradients
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Figure: from [Zhang et al., 2020]
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Definition of Heavy-Tailed Noise in Stochastic Gradients

® Random vector X has light tails if
2

P{[[X — E[X]|| > b} < 2exp (—2[22) Vb > 0. (3)

The above condition is equivalent (up to the numerical factor in o) to

E {exp <”)“F;[X”|2)] < exp(1). (4)

g
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Definition of Heavy-Tailed Noise in Stochastic Gradients

® Random vector X has light tails if

2

P{[[X — E[X]|| > b} < 2exp (—2[22) Vb > 0. (3)

The above condition is equivalent (up to the numerical factor in o) to

E {exp <”)“F;[X”|2)] < exp(1). (4)

g

® QOtherwise we say that X has heavy tails. However, in this talk, we will
assume that it has bounded variance:

E [IIX - E[X]|PP] <0 (5)
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Problem and Assumptions

min {f(x) = Ee¢ [f(x, )]} (6)

x€R"

e f:R" — R" is convex and L-smooth, i.e., Vx,y € R"

f(X)Zf(y)+<Vf(y)’X_y>’ (7)
IVE(x) = VE)I < Lllx =y (8)
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Problem and Assumptions

min {f(x) = Ee¢ [f(x, )]} (6)

x€R"

e f:R" — R" is convex and L-smooth, i.e., Vx,y € R"

f(X)Zf(y)+<Vf(y)’X_y>’ (7)
IVE(x) = VE)I < Lllx =y (8)

® Stochastic gradient Vf(x, &) with bounded variance is available, i.e., Vx € R"

Ee[VF(x,O)] = VF(x). Ee[|[VF(x.&)~VFIP] <% (9)
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In-Expectation Guarantees vs High-Probability Guarantees

® In-expectation guarantees: E[||x — x*[|?] < ¢, E[f(x) — f(x*)] <,
E[IVF()IP] < e

® Typically, depend only on some moments of stochastic gradient, e.g., variance
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In-Expectation Guarantees vs High-Probability Guarantees

® In-expectation guarantees: E[||x — x*||?] < ¢, E[f(x) — f(x*)] <,
E[[VF(x)|P] <«
® Typically, depend only on some moments of stochastic gradient, e.g., variance
® High-probability guarantees: P{||x — x*||> <¢e} > 1 -3,
P{f(x) — f(x*) <e} > 1- B, P{|VF(x)|?<e} >1-7

® Sensitive to the distribution of the stochastic gradient noise
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In-Expectation Guarantees are Less Sensitive to Distribution

Consider SGD with constant stepsize
X =k V(K €)

applied to a toy stochastic quadratic problem:

min {7() = Eelf (1}, F(x,€) = JlIxlP + (6.,

where E[¢] = 0 and E[||¢]]?] = o2
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In-Expectation Guarantees are Less Sensitive to Distribution

Consider SGD with constant stepsize
X =k V(K €)

applied to a toy stochastic quadratic problem:

min {7() = Eelf (1}, F(x,€) = JlIxlP + (6.,

where E[¢] = 0 and E[||¢]|?] = 0%. We consider three scenarios:
® ¢ has Gaussian distribution
® ¢ has Weibull distribution (non-sub-Gaussian)
® ¢ has Burr Type XII distribution (non-sub-Gaussian)
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In-Expectation Guarantees are Less Sensitive to Distribution

For all of three cases, state-of-the-art theory on SGD [Ghadimi and Lan, 2013] says

E[f(<) = F(x")] < (1 =" (F®) = F(x) + - (10)
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In-Expectation Guarantees are Less Sensitive to Distribution

For all of three cases, state-of-the-art theory on SGD [Ghadimi and Lan, 2013] says
k k 702
E [() — ()] < (1 - ) () — () + 22 (10)

However, the behavior in practice does depend on the distribution:

Gaussian tails, fix°) — fix") = 2.87 Weibull tails, fix®) — fix*) = 2.87 Burr Type Xl tails, fx°) — fix*) = 2.87
o o o
0 4 sGD 10 4 sGp 10 4 sGb
—8— clipped-SGD —&— clipped-5GD —8— clipped-SGD
,‘:«1071
|
zlz
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-
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Number of iterations Number of iterations Number of iterations

Figure: from [Gorbunov et al., 2020]
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High-Probability Results under Light-Tails Assumption

Light-tails assumption (classical one):

e o (1770200 w(x)||2>] B—

o2
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High-Probability Results under Light-Tails Assumption

Light-tails assumption (classical one):

e [l (1770 —Vf(x)nz)] B— )

o2

Under this assumption (+ convexity and L-smoothness of f)
® Devolder et al. [2011] proved that SGD finds X such that f(X) — f(x*) <e
with probability at least 1 — 3 using

2 _2p2
@ (max {Lfo, % In? (;) }) oracle calls
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High-Probability Results under Light-Tails Assumption

Light-tails assumption (classical one):

e [l (1770 —Vf(x)nz)] ~ oo(1). )

o2

Under this assumption (+ convexity and L-smoothness of f)
® Devolder et al. [2011] proved that SGD finds X such that f(X) — f(x*) <e
with probability at least 1 — 3 using

2 _2p2
@ (max {Lfo, % In? (;) }) oracle calls

® Ghadimi and Lan [2012] proved that AC-SA (an accelerated version of SGD)
finds % such that f(X) — f(x*) < e with probability at least 1 — 3 using

2 2p2
@ (max {\/ %, 0650 In? (;) }) oracle calls
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High-Probability Results under Heavy-Tails Assumption

® Nazin et al. [2019] proposed Robust Stochastic Mirror Descent (RSMD), which
reminds clipped-SGD, and proved the following complexity bound:

LD? o2D2 1
0 (mox {72 |0 (5))

v The first work in the area (in my opinion, it is breakthrough)

X D — diameter of the domain; the proof relies on D < +c0
X No acceleration
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High-Probability Results under Heavy-Tails Assumption

® Davis et al. [2021] proposed proxBoost based on robust distance estimation

and Proximal Point method. They proved the following complexity bound (in
the strongly convex case):

(o (52) 2 )

v Accelerated results

v Valid for any convex closed domain (bounded/unbounded)
X Requires to solve an auxiliary problem at each iteration
X Extra logarithm of the condition number

Eduard Gorbunov
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Key Challenge in the Analysis of clipped-SGD

Xkt = xk _~ . clip (Vf(xk7 ", )\)

VF(xk,€")

o VF(xk ¢ =L Z: F(x*,€K), where &F,... &K, arei.id. samples
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Key Challenge in the Analysis of clipped-SGD

Xkt = xk _~ . clip (Vf(xk7 ", )\)

VF(xk,€")

o VF(xk ¢ =L Z: F(x*,€K), where &F,... &K, arei.id. samples

® Key challenge: E [Vf(x LK) | xK| £ VF(xK)
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Analysis of c1lipped-SGD: Key ldea

® We start the proof classically:

I =X = X = X )P = 2y (K = X V(K €9)) V(<KL €)1

IN
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Analysis of c1lipped-SGD: Key ldea

® We start the proof classically:

I =X = X = X )P = 2y (K = X V(K €9)) V(<KL €)1
<

® Using convexity and smoothness of f and simple rearrangements, we
eventually get for A, = f(x*) — f(x*), Rx = ||x* — x*|,
= VF(x*, &) = VF(x¥)

29(1 — 29L) = 1
T;Ak < 5 (RE=RR)

0y N=1 2N 1
+N’ kz_ow_x 0) +—ZH9 12

How to upper bound the sums in red?
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Bernstein Inequality for Martingale Differences

Lemma 1 [Bennett, 1962, Dzhaparidze and Van Zanten, 2001,
Freedman et al., 1975]

Let the sequence of random variables {X;};>1 form a martingale difference
sequence, i.e. E[X; | Xj_1,...,X1] =0 for all i > 1. Assume that conditional

: def .
variances 0?2 = E [X? | Xi_1, ..., X1] exist and are bounded and assume also that
there exists deterministic constant ¢ > 0 such that |X;| < ¢ almost surely for all
i>1.
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Bernstein Inequality for Martingale Differences

Lemma 1 [Bennett, 1962, Dzhaparidze and Van Zanten, 2001,
Freedman et al., 1975]

Let the sequence of random variables {X;};>1 form a martingale difference
sequence, i.e. E[X; | Xj_1,...,X1] =0 for all i > 1. Assume that conditional

: def .
variances 0?2 = E [X? | Xi_1, ..., X1] exist and are bounded and assume also that
there exists deterministic constant ¢ > 0 such that |X;| < ¢ almost surely for all
i>1. Thenforallb>0,G>0and N >1

N N
b2
2
i=1 i=1
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Bernstein Inequality for Martingale Differences

Lemma 1 [Bennett, 1962, Dzhaparidze and Van Zanten, 2001,
Freedman et al., 1975]

Let the sequence of random variables {X;};>1 form a martingale difference
sequence, i.e. E[X; | Xj_1,...,X1] =0 for all i > 1. Assume that conditional

: def .
variances 0?2 = E [X? | Xi_1, ..., X1] exist and are bounded and assume also that
there exists deterministic constant ¢ > 0 such that |X;| < ¢ almost surely for all
i>1. Thenforallb>0,G>0and N >1

N N
b2
2
i=1 i=1

N-1 N-1
To bound 2 37 (x* — x*, 6) + % > ||6k||? we need to
k=0 k=0

® upper bound bias, variance, and distortion of 6,
® have upper bounds for ||x* — x*|| and ||0|| that hold with large probability
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Magnitude, Bias, Variance, Distortion

Let X be a random vector in R” and X = clip(X,\). Then,

H)? - E[X]H <2A (12)

Moreover, if for some o > 0 we have E[X] = x € R", E[||X — x||*] < 02, and
x < A/2, then

o] < 2 =
]E{Hi—xm < 1802, (14)
IE“))?—E[)?]H? < 1802 (15)
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Bound on the Distance to the Solution

Inequality
N—1
29(1 —29L) 2
T Z Ak < N (RO RN)
k=0
N-1 N-1
RS LY
I IR LY
k=0
implies
N—1 N-1
RY < RE+27) (x" —x .00 +292 ) ll6xl?.
k=0 k=0
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Bound on the Distance to the Solution

Inequality
N—1
29(1 —29L) 2
T Z Ak < N (RO RN)
k=0
N-1 N-1
RS LY
I IR LY
k=0
implies
N—1 N-1
RY < RE+27) (x" —x .00 +292 ) ll6xl?.
k=0 k=0

Key idea: prove Ry < CRy with high probability for some numerical constant C
using the induction!
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High-Probability Convergence of clipped-SGD

It is sufficient to make all assumptions on a ball around the solution!
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High-Probability Convergence of clipped-SGD

It is sufficient to make all assumptions on a ball around the solution!

Theorem 1

Let f be convex and L-smooth on B7g,(x*) = {x € R" | ||x — x*|| < 7Ry} and (9)
holds on B7g,(x*).

Eduard Gorbunov Clipping, Heavy Tails, High Prob. Analysis September 9, 2022
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High-Probability Convergence of clipped-SGD

It is sufficient to make all assumptions on a ball around the solution!

Theorem 1
Let f be convex and L-smooth on B7g,(x*) = {x € R" | ||x — x*|| < 7Ry} and (9)
holds on Byg,(x*). Then, for all 8 € (0,1), ¢ > 0 such that In(LR3/c8) > 2 there
exists a choice of « such that clipped-SGD with clipping level A\ ~ 1/y and
batchsize m, = 1 finds X" satisfying f(x"V) — f(x*) < ¢ with probability at least
1 — B using

Eduard Gorbunov Clipping, Heavy Tails, High Prob. Analysis September 9, 2022
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High-Probability Convergence of clipped-SGD

It is sufficient to make all assumptions on a ball around the solution!

Theorem 1

Let f be convex and L-smooth on B7g,(x*) = {x € R" | ||x — x*|| < 7Ry} and (9)
holds on Byg,(x*). Then, for all 8 € (0,1), ¢ > 0 such that In(LR3/c8) > 2 there
exists a choice of « such that clipped-SGD with clipping level A\ ~ 1/y and
batchsize m, = 1 finds X" satisfying f(x"V) — f(x*) < ¢ with probability at least
1 — B using

LRZ 2R2 LRZ 2R2
O <max {0, 70 In ( 0, 7 ) }) iterations/oracle calls.
5

g2 B €8
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High-Probability Convergence of clipped-SGD

It is sufficient to make all assumptions on a ball around the solution!

Theorem 1

Let f be convex and L-smooth on B7g,(x*) = {x € R" | ||x — x*|| < 7Ry} and (9)
holds on Byg,(x*). Then, for all 8 € (0,1), ¢ > 0 such that In(LR3/c8) > 2 there
exists a choice of « such that clipped-SGD with clipping level A\ ~ 1/y and
batchsize m, = 1 finds X" satisfying f(x"V) — f(x*) < ¢ with probability at least
1 — B using

LRZ 2R2 LRZ 2R2
O <max {0, 70 In ( 0, 7 ) }) iterations/oracle calls.
5

g2 B €8

® Same result (up to the difference in logarithmic factors) as for SGD in the
light-tailed case
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High-Probability Convergence of clipped-SGD

It is sufficient to make all assumptions on a ball around the solution!

Theorem 1
Let f be convex and L-smooth on B7g,(x*) = {x € R" | ||x — x*|| < 7Ry} and (9)
holds on Byg,(x*). Then, for all 8 € (0,1), ¢ > 0 such that In(LR3/c8) > 2 there
exists a choice of « such that clipped-SGD with clipping level A\ ~ 1/y and
batchsize m, = 1 finds X" satisfying f(x"V) — f(x*) < ¢ with probability at least
1 — B using

LRZ 2R2 LRZ 2R2
O <max {50’ 0520 In (550 4+ 05250 ) }) iterations/oracle calls.

® Same result (up to the difference in logarithmic factors) as for SGD in the
light-tailed case

® Same result (up to the difference in logarithmic factors) as for RSMD in the
heavy-tailed case, but for unconstrained case
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Accelerated clipped-SGD: clipped-SSTM

® Stochastic Similar Triangles Method was proposed by Gasnikov and Nesterov
[2016]
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Accelerated clipped-SGD: clipped-SSTM

® Stochastic Similar Triangles Method was proposed by Gasnikov and Nesterov
[2016]

® \We combine it with a gradient clipping:

k+2 B
Okt1 = ——, Aky1 = Akt apq1, Mg =
2al Aft1
Skt Acy* + ap12"
Akt1

k+1 _ _k < k+1 gk
=7~ VEX*TEN)
—————

clip(VF(xk+1, 65 Ney1)

k k+1

k+1 _ Ay + 127

Akl
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Accelerated clipped-SGD: clipped-SSTM

® Stochastic Similar Triangles Method was proposed by Gasnikov and Nesterov
[2016]

® \We combine it with a gradient clipping:

k+2 B
Okt1 = ——, Aky1 = Akt apq1, Mg =
2al Aft1
Skt Acy* + ap12"
Akt1

k+1 _ _k < k+1 gk
=7~ VEX*TEN)
—————

clip(VF(xk+1, 65 Ney1)

k k+1

k+1 _ Ay + 127

Akl

® Why factor a is needed?
® Why Ai1 is chosen this way?
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clipped-SSTM: Intuition Behind the Proof

® The key idea is the same: prove that Ry < CRp with high probability using
the induction
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clipped-SSTM: Intuition Behind the Proof

® The key idea is the same: prove that Ry < CRp with high probability using
the induction

® The method is accelerated — it is more sensitive to the quality of estimate
VF(x*,€¥)
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clipped-SSTM: Intuition Behind the Proof

® The key idea is the same: prove that Ry < CRp with high probability using
the induction
® The method is accelerated — it is more sensitive to the quality of estimate
%f(xkntl’ gk)
® For deterministic SSTM (i.e., STM) one can prove | VFf(x*™)|| = O(Yaysa)

® This hints to choose Aki1 ~ Yax, (in the hope that ||[VF(x*™)|| = O(Yau.s)
in the stochastic case with high probability)
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clipped-SSTM: Intuition Behind the Proof

® The key idea is the same: prove that Ry < CRp with high probability using
the induction

® The method is accelerated — it is more sensitive to the quality of estimate
V(x, g4
® For deterministic SSTM (i.e., STM) one can prove | VFf(x*™)|| = O(Yaysa)
® This hints to choose Aki1 ~ Yax, (in the hope that ||[VF(x*™)|| = O(Yau.s)
in the stochastic case with high probability)
® Parameter a allows to choose smaller stepsizes and, as the result, batchsizes
myg = 1

Eduard Gorbunov Clipping, Heavy Tails, High Prob. Analysis September 9, 2022



Minimization Problems
000000000000000e00000000

High-Probability Convergence of clipped-SSTM

It is sufficient to make all assumptions on a ball around the solution!
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High-Probability Convergence of clipped-SSTM

It is sufficient to make all assumptions on a ball around the solution!

Theorem 2

Let f be convex and L-smooth on Bsg,(x*) and (9) holds on Bsg,(x*).
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High-Probability Convergence of clipped-SSTM

It is sufficient to make all assumptions on a ball around the solution!

Theorem 2

Let f be convex and L-smooth on Bsg,(x*) and (9) holds on Bsg,(x*). Then, for
all B € (0,1), € > 0 such that In(vVLRe/\/z5) > 2 there exists a choice of a such
that clipped-SSTM with clipping level A ~ 1/a,., and batchsize my = 1 finds y"
satisfying f(yN) — f(x*) < € with probability at least 1 — 3 using
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High-Probability Convergence of clipped-SSTM

It is sufficient to make all assumptions on a ball around the solution!

Let f be convex and L-smooth on Bsg,(x*) and (9) holds on Bsg,(x*). Then, for
all B € (0,1), € > 0 such that In(vVLRe/\/z5) > 2 there exists a choice of a such
that clipped-SSTM with clipping level A ~ 1/a,., and batchsize my = 1 finds y"
satisfying f(yN) — f(x*) < € with probability at least 1 — 3 using

LR2 LR2 2R2 2R2
O | max {4/ ?0 In Ug—ﬁg , 0620 In <05250) iterations/oracle calls.
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High-Probability Convergence of clipped-SSTM

It is sufficient to make all assumptions on a ball around the solution!

Let f be convex and L-smooth on Bsg,(x*) and (9) holds on Bsg,(x*). Then, for
all B € (0,1), € > 0 such that In(vVLRe/\/z5) > 2 there exists a choice of a such
that clipped-SSTM with clipping level A ~ 1/a,., and batchsize my = 1 finds y"
satisfying f(yN) — f(x*) < € with probability at least 1 — 3 using

LR2 LR2 2R2 2R2
O | max {4/ ?0 In Ug—ﬁg , 0620 In <05250) iterations/oracle calls.

® Same result (up to the difference in logarithmic factors) as for AC-SA in the
light-tailed case
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High-Probability Convergence of clipped-SSTM

It is sufficient to make all assumptions on a ball around the solution!

Let f be convex and L-smooth on Bsg,(x*) and (9) holds on Bsg,(x*). Then, for
all B € (0,1), € > 0 such that In(vVLRe/\/z5) > 2 there exists a choice of a such
that clipped-SSTM with clipping level A ~ 1/a,., and batchsize my = 1 finds y"
satisfying f(yN) — f(x*) < € with probability at least 1 — 3 using

LR2 LR2 2R2 2R2
O | max {4/ ?0 In Ug—ﬁg , 0620 In <05250) iterations/oracle calls.

® Same result (up to the difference in logarithmic factors) as for AC-SA in the
light-tailed case

® Better result than for clipped-SGD
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Theoretical Extensions

In [Gorbunov et al., 2020, 2021] we also have
® Results for the strongly convex objectives

® Results for the functions with Holder continuous gradient
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Numerical Experiments: Setup

We tested the performance of the methods on the following problems?:

® BERT (= 0.6M parameters) fine-tuning on CoLA dataset. We use pretrained
BERT and freeze all layers except the last two linear ones. This dataset
contains 8551 sentences, and the task is binary classification — to determine if
sentence is grammatically correct.

® ResNet-18 (= 11.7M parameters) training on ImageNet-100 (first 100
classes of ImageNet). It has 134395 images.

1The code is available at https://github.com/ClippedStochasticMethods/clipped-SSTM
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Numerical Experiments: Noise Distribution

ResNet-18 + ImageNet-100, batch count=~60k Bert + CoLA, batch count=~96k

4 6 8
noise norm

10 12 14 16 18 20
noise norm

Figure: Noise distribution of the stochastic gradients for ResNet-18 on ImageNet-100
and BERT fine-tuning on the CoLA dataset before the training. Red lines: probability
density functions of normal distributions with means and variances empirically estimated
by the samples. Batch count is the total number of samples used to build a histogram.
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Evolution of the Noise Distribution, Image Classification
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Figure: Evolution of the noise distribution for ResNet-18 + ImageNet-100 task.
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Noise Distribution, Text Classification

Adam, iteration 500
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Figure: Evolution of the noise distribution for BERT + CoLA task.
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Evolution of the Noise Distribution, Text Classification

Bert + CoLA, batch count=~96k

Bert + CoLA, batch count=~96k

density

4 6
noise norm

4 6
noise norm

Figure: Evolution of the noise distribution for BERT + CoLA task, from iteration O (before

the training) to iteration 500.
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Numerical Results,
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Validation accuracy, ResNet-18

A

o o
S a

accuracy

o
o

0.4 0.6 0.8

batch count

1.0 1.2
le5

0.4 0.6 0.8

batch count

1.0 12

1e5

Figure: Train and validation loss + accuracy for different optimizers on ResNet-18 +
ImageNet-100 problem. Here, “batch count” denotes the total number of used
stochastic gradients. The noise distribution is almost Gaussian even vanilla SGD performs
well, i.e., gradient clipping is not required.
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Numerical Results, Text Classification

Train loss, BERT Validation loss, BERT Validation accuracy, BERT
0.70 —o— Adam 0.60
—+— clipped-SSTM 75
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2 8056 \ 5
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0.52 n
00 05 10 15 20 25 00 05 10 15 20 25 00 05 10 15 20 25
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Figure: Train and validation loss + accuracy for different optimizers on BERT + CoLA
problem. The noise distribution is heavy-tailed, the methods with clipping outperform
SGD by a large margin.
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Variational Inequality Problem

find x* € Q CR" such that (F(x*),x —x*) >0, Vx € Q (VIP-Q)
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Variational Inequality Problem

find x* € Q CR" such that (F(x*),x —x*) >0, Vx € Q (VIP-Q)

® F:Q — R"is L-Lipschitz operator: Vx,y € Q

IF() = FWII < Llix =yl (16)
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Variational Inequality Problem

find x* € Q CR" such that (F(x*),x —x*) >0, Vx € Q (VIP-Q)

® F:Q — R"is L-Lipschitz operator: Vx,y € Q

IF() = FWII < Llix =yl (16)

® F is monotone: Vx,y € @

(F(x) = F(y),x—y) >0 (17)
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Variational Inequality Problem: Examples

® Min-max problems:

i f 1
iy e () )
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Variational Inequality Problem: Examples

® Min-max problems:

i f 1
iy e () )

If f is convex-concave, then (18) is equivalent to finding (u*,v*) € U x V
such that V(u,v) € U x V

(Vuf(u*,v*),u—u*y >0, —(V,f(u*,v*),v—v*)>0,

Eduard Gorbunov Clipping, Heavy Tails, High Prob. Analysis September 9, 2022
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Variational Inequality Problem: Examples

® Min-max problems:
min max f (u, v) (18)
uclU veV

If f is convex-concave, then (18) is equivalent to finding (u*,v*) € U x V
such that V(u,v) € U x V

(Vuf(u*,v*),u—u*y >0, —(V,f(u*,v*),v—v*)>0,
which is equivalent to (VIP-C) with Q = U x V, x = (uT, vT)T, and

F= ()
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Variational Inequality Problem: Examples

® Min-max problems:

i f 1
iy e () )

If f is convex-concave, then (18) is equivalent to finding (u*,v*) € U x V
such that V(u,v) € U x V

(Vuf(u*,v*),u—u*y >0, —(V,f(u*,v*),v—v*)>0,
which is equivalent to (VIP-C) with Q = U x V, x = (u",v")T, and
_( Vuf(u,v)
Fx) = (va(u, v)
These problems appear in various applications such as robust optimization
[Ben-Tal et al., 2009] and control [Hast et al., 2013], adversarial training

[Goodfellow et al., 2015, Madry et al., 2018] and generative adversarial
networks (GANs) [Goodfellow et al., 2014].
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Variational Inequality Problem: Examples

® Minimization problems:

Lneig f(x) (19)
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Variational Inequality Problem: Examples

® Minimization problems:
inf 19
min f(x) (19)
If f is convex, then (19) is equivalent to finding a stationary point of f, i.e.,
it is equivalent to (VIP-C) with

F(x) = Vf(x)
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Variational Inequality Problem: Unconstrained Case

When Q = R" (VIP-C) can be rewritten as
find x* € R" such that F(x*)=0 (VIP)

In this talk, we focus on (40) rather than (VIP-C)
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Gradient Descent-Ascent (GDA) and Extragradient (EG)

® GDA [Krasnosel'skii, 1955, Mann, 1953]:

XKL = 5k v F(x9)

v Very simple
X Does not converge for some simple problems (like bilinear games)
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Gradient Descent-Ascent (GDA) and Extragradient (EG)

® GDA [Krasnosel'skii, 1955, Mann, 1953]:
XKL = 5k v F(x9)
v Very simple

X Does not converge for some simple problems (like bilinear games)
® EG [Korpelevich, 1976]

XKL = xk —~F (Xk - ’yF(xk))

v Converges for any monotone and L-Lipschitz operator

X Requires two oracle calls per step (although this can be easily fixed)
X Converges worse than Alternating GDA for some popular tasks (GANs)
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Stochastic VIP

We consider with
F(x) = E¢[Fe(x)]

® We have access to F¢ such that for all x € R"
Ee [[|Fe(x) — F()I1?] < 02 (20)
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Stochastic VIP

We consider with
F(x) = E¢[Fe(x)]

® We have access to F¢ such that for all x € R"
Ee [[|Fe(x) — F()I1?] < 02 (20)

® For GDA-based methods we assume ¢-star-cocoercivity: Vx € R”

UF(x), x = x*) > [|F()|?
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Stochastic VIP

We consider with
F(x) = E¢[Fe(x)]
® We have access to F¢ such that for all x € R"
Ee [[|Fe(x) — F()I1?] < 02 (20)

® For GDA-based methods we assume ¢-star-cocoercivity: Vx € R”

UF(x), x = x*) > [|F()|?

® For EG-based methods we assume monotonicity and L-Lipschitzness:
Vx,y € R”

(F(x) = F(y),x —y) 20,
[F(x) = FWII < Llix =yl
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Stochastic GDA (SGDA) and Stochastic EG (SEG)

® SGDA:
Xkl = xk — '}/ng(Xk)

® SEG:
XK =k — Y2 Fex (Xk - Vng;(Xk)>
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Stochastic GDA (SGDA) and Stochastic EG (SEG)

® SGDA:
Xkl = xk — '}/ng(Xk)

® SEG:
XK =k — Y2 Fex (Xk - Vng;(Xk)>

o ¢k ¢k areiid. samples
® 2<m
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Prior Work on High-Probability Convergence

For the case of bounded domain (with diameter D) and under light-tails

assumption
o o (P oy o

g

Juditsky et al. [2011] proved that projected version of SEG (Mirror-Prox) finds X
such that? Gapp (%) < & with probability at least 1 — 3 using

2 _2p2
O | max ﬂ, oD In? L oracle calls
€ g2 B8

2GaPD(y) = maXx:Hx—x*H§D<F(X)7y - X>
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clipped-SGDA and clipped-SEG

® SGDA:
XK = x* — 5 clip (Fen(x¥), Ak)

® SEG:

kL = xk _ Y2 - clip (Fg;(;('k), /\ka) , Xk = xk — v - clip (ng(xk), )\17/()

o ¢k ¢k areiid. samples
® 12<m

Eduard Gorbunov Clipping, Heavy Tails, High Prob. Analysis September 9, 2022



Variational Inequalities
00000000800000000000

clipped-SGDA and clipped-SEG

® SGDA:
XK = x* — 5 clip (Fen(x¥), Ak)

® SEG:
kL = xk _ Y2 - clip (Fg;(;('k), /\ka) , Xk = xk — v - clip (ng(xk), )\17/()

o ¢k ¢k areiid. samples
® 12<m

The key idea behind the proof is exactly the same as in minimization!
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High-Probability Convergence of clipped-SEG

It is sufficient to make all assumptions on a ball around the solution!

Theorem 3

Let F be monotone and L-Lipschitz on Bsr(x*) and (20) holds on Bsgr(x*),
R> Ry

Eduard Gorbunov Clipping, Heavy Tails, High Prob. Analysis September 9, 2022



and Heavy-Tailed Noise i Variational Inequalities References
O ole ole 000000000 e0000000000

High-Probability Convergence of clipped-SEG

It is sufficient to make all assumptions on a ball around the solution!

Theorem 3

Let F be monotone and L-Lipschitz on Bsr(x*) and (20) holds on Bsgr(x*),

R > Ry. Then, for all 3 € (0,1), € > 0 such that In(6LR5/=3) > 1 there exists a
choice of 73 = 75 = 7 such that clipped-SEG with clipping level A ~ 1/y finds X
satisfying Gapg(X) < e with probability at least 1 — 3 using
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High-Probability Convergence of clipped-SEG

It is sufficient to make all assumptions on a ball around the solution!

Theorem 3

Let F be monotone and L-Lipschitz on Bsr(x*) and (20) holds on Bsgr(x*),

R > Ry. Then, for all 3 € (0,1), € > 0 such that In(6LR5/=3) > 1 there exists a
choice of 73 = 75 = 7 such that clipped-SEG with clipping level A ~ 1/y finds X
satisfying Gapg(X) < e with probability at least 1 — 3 using

O ( ma L In Ly el In I iterations/oracle calls
wd = =R i i .
£ 6/8 ’ 52 526
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High-Probability Convergence of clipped-SEG

It is sufficient to make all assumptions on a ball around the solution!

Theorem 3

Let F be monotone and L-Lipschitz on Bsr(x*) and (20) holds on Bsgr(x*),

R > Ry. Then, for all 3 € (0,1), € > 0 such that In(6LR5/=3) > 1 there exists a
choice of 73 = 75 = 7 such that clipped-SEG with clipping level A ~ 1/y finds X
satisfying Gapg(X) < e with probability at least 1 — 3 using

O ( ma L In Ly el In I iterations/oracle calls
wd = =R i i .
£ 6/8 ’ 52 526

® Same result (up to the difference in logarithmic factors) as for Mirror-Prox
in the light-tailed case

® Derived for unconstrained case

Eduard Gorbunov Clipping, Heavy Tails, High Prob. Analysis September 9, 2022



d Heavy-Tailed Noise Variational Inequalities References
O O 0000000000000 000000

High-Probability Convergence of clipped-SGDA

It is sufficient to make all assumptions on a ball around the solution!

Theorem 4
Let F be ¢-star-cocoercive on Byr(x*) and (20) holds on Bag(x*), R > Ro.
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High-Probability Convergence of clipped-SGDA

It is sufficient to make all assumptions on a ball around the solution!

Theorem 4

Let F be ¢-star-cocoercive on Byg(x*) and (20) holds on Bag(x*), R > Ro. Then,
for all 3 € (0,1), e > 0 such that In(6LRs/-3) > 1 there exists a choice of ¥ such
that clipped-SGDA with clipping level A ~ /5 finds X satisfying

K
71 2 IF(x¥)|? < e with probability at least 1 — 3 using
k=0
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High-Probability Convergence of clipped-SGDA

It is sufficient to make all assumptions on a ball around the solution!

Theorem 4

Let F be ¢-star-cocoercive on Byg(x*) and (20) holds on Bag(x*), R > Ro. Then,
for all 3 € (0,1), e > 0 such that In(6LRs/-3) > 1 there exists a choice of ¥ such
that clipped-SGDA with clipping level A ~ /5 finds X satisfying

K
71 2 IF(x¥)|? < e with probability at least 1 — 3 using
k=0

2R? 2R?\ (?02R? Po?R?
O (max{ In ( ) , In ( )}) iterations/oracle calls.

€ ef g2 e2p
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High-Probability Convergence of clipped-SGDA

It is sufficient to make all assumptions on a ball around the solution!

Theorem 4

Let F be ¢-star-cocoercive on Byg(x*) and (20) holds on Bag(x*), R > Ro. Then,
for all 3 € (0,1), e > 0 such that In(6LRs/-3) > 1 there exists a choice of ¥ such
that clipped-SGDA with clipping level A ~ /5 finds X satisfying

K
71 2 IF(x¥)|? < e with probability at least 1 — 3 using
k=0

2R? 2R?\ (?02R? Po?R?
O (max{ In ( ) , In ( )}) iterations/oracle calls.

€ ef g2 e2p

® The first high-probability complexity result for SGDA-based methods
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Theoretical Extensions

In [Gorbunov et al., 2022] we also have

® extensions to the quasi-strongly monotone and star-negative comonotone
problems for c1ipped-SEG

® extensions to the (quasi-strongly) monotone + star-cocoercive problems for
clipped-SGDA
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Numerical Experiments

In the experiments in training GANs, we tested the following methods
® clipped-SGDA with alternating updates

® Coord-clipped-SGDA — clipped-SGDA with coordinate-wise clipping and
alternating updates

® clipped-SEG
® Coord-clipped-SEG
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WGAN-GP on CIFAR10 Has Heavy-Tailed Gradients

® pmr: relative fraction of mass after Q3 + 1.5 (@3 — Q1)
® For normal distribution there is ~ .35% of the mass
® |n this plot: ~ 12 times more

® pmer: relative fraction of mass after @3 +3 - (Qs — Q1)
® For normal distribution there is &~ 107*% of the mass
® |n this plot: ~ 4603 times more

1.2 u:22.2
0:0.43
1.0 omr: 11.77
0.8 Per: 4603
1%
$ 0.6
a
0.4

0.2 We compute the mass here

0.0

01 03 03+1.5(03-01)
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WGAN-GP on CIFAR10 Has Heavy-Tailed Gradien
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Clipping Helps for WGAN-GP on CIFAR10
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StyleGAN2 on FFHQ Has Heavy-Tailed Gradients
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Clipping Helps for StyleGAN2 on FFHQ

(c) SGDA (d) clipped-SGDA
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Clipping Helps for StyleGAN2 on FFHQ

e Still not matching Adam (on this GAN)
® StyleGan2 is full of trick and heuristics
® Has been tuned for Adam!
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Conclusion

® Some popular problems have heavy-tailed noise: in NLP it was observed
before, for GANs we demonstrated empirically

® Clipping is a simple way to deal with heavy-tailed noise

® High-probability convergence results for methods with clipping are better
than known high-probability convergence results for methods without it

® Partial explanation of the success of adaptive methods like Adam on GANs
and NLP tasks
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