Methods with Clipping for Stochastic Optimization and Variational Inequalities with Heavy-Tailed Noise

Eduard Gorbunov

Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE

All-Russian Optimization Seminar

September 9, 2022

Outline

Clipping and Heavy-Tailed Noise

Clipping and Heavy-Tailed Noise

Minimization Problems

Variational Inequalities

The Talk is Based on Three Papers

Minimization Problems

- Gorbunov, E., Danilova, M., & Gasnikov, A. (2020). Stochastic optimization with heavy-tailed noise via accelerated gradient clipping. NeurIPS 2020
- Gorbunov, E., Danilova, M., Shibaev, I., Dvurechensky, P., & Gasnikov, A. (2021). Near-optimal high probability complexity bounds for non-smooth stochastic optimization with heavy-tailed noise. arXiv:2106.05958
- Gorbunov, E., Danilova, M., Dobre, D., Dvurechensky, P., Gasnikov, A., & Gidel, G. (2022). Clipped Stochastic Methods for Variational Inequalities with Heavy-Tailed Noise. arXiv:2206.01095

$$x^{k+1} = x^k - \gamma \cdot \nabla f(x^k, \xi^k) \tag{1}$$

- f the function to be minimized
- $\nabla f(x^k, \xi^k)$ stochastic gradient, i.e., unbiased estimate of $\nabla f(x^k)$: $\mathbb{E}_{\xi^k}[\nabla f(x^k,\xi^k)] = \nabla f(x^k)$

Clipping and Heavy-Tailed Noise

0000000

$$x^{k+1} = x^k - \gamma \cdot \text{clip}\left(\nabla f(x^k, \xi^k), \lambda\right) \tag{2}$$

- $\operatorname{clip}(x,\lambda) = \min\{1, \frac{\lambda}{\|x\|}\}x$
- clip($\nabla f(x^k, \xi^k), \lambda$) biased estimate of $\nabla f(x^k)$: $\mathbb{E}_{\xi^k}[\text{clip}(\nabla f(x^k, \xi^k), \lambda)] \neq \nabla f(x^k)$

Origin of Clipping

 Gradient clipping was proposed in [Pascanu et al., 2013]. Originally it was used to handle exploding and vanishing gradients in RNNs.

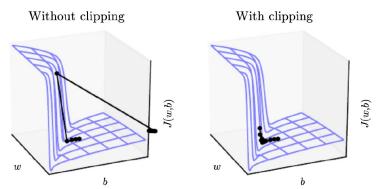


Figure: from [Goodfellow et al., 2016]

Few Years Later in NLP...

- Merity et al. [2017] use gradient clipping for LSTM
- Peters et al. [2017] trained their deep bidirectional language model with Adam + clipping
- Mosbach et al. [2020] fine-tune BERT using AdamW + clipping

Few Years Later in NLP...

- Merity et al. [2017] use gradient clipping for LSTM
- Peters et al. [2017] trained their deep bidirectional language model with Adam + clipping
- Mosbach et al. [2020] fine-tune BERT using AdamW + clipping

Seems that gradient clipping is an important component in training these models. But why?

Heavy-Tailed Noise in Stochastic Gradients

Let us look at the distribution of $\|\nabla f(x,\xi) - \nabla f(x)\|$ in two settings:

- Standard vision task: training ResNet50 on ImageNet dataset
- Standard NLP task: training BERT on Wikipedia+Books dataset

Clipping and Heavy-Tailed Noise

0000000

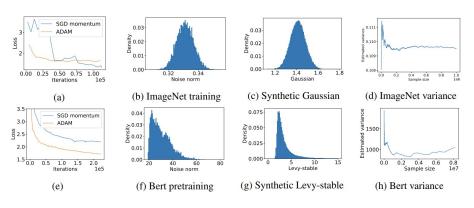


Figure: from [Zhang et al., 2020]

Clipping and Heavy-Tailed Noise

Random vector X has light tails if

$$\mathbb{P}\{\|X - \mathbb{E}[X]\| \ge b\} \le 2 \exp\left(-\frac{b^2}{2\sigma^2}\right) \quad \forall b > 0.$$
 (3)

The above condition is equivalent (up to the numerical factor in σ) to

$$\mathbb{E}\left[\exp\left(\frac{\|X - \mathbb{E}[X]\|^2}{\sigma^2}\right)\right] \le \exp(1). \tag{4}$$

Definition of Heavy-Tailed Noise in Stochastic Gradients

Random vector X has light tails if

Clipping and Heavy-Tailed Noise

$$\mathbb{P}\{\|X - \mathbb{E}[X]\| \ge b\} \le 2 \exp\left(-\frac{b^2}{2\sigma^2}\right) \quad \forall b > 0.$$
 (3)

The above condition is equivalent (up to the numerical factor in σ) to

$$\mathbb{E}\left[\exp\left(\frac{\|X - \mathbb{E}[X]\|^2}{\sigma^2}\right)\right] \le \exp(1). \tag{4}$$

 Otherwise we say that X has heavy tails. However, in this talk, we will assume that it has bounded variance:

$$\mathbb{E}\left[\|X - \mathbb{E}[X]\|^2\right] \le \sigma^2 \tag{5}$$

Problem and Assumptions

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ f(\mathbf{x}) = \mathbb{E}_{\xi} \left[f(\mathbf{x}, \xi) \right] \right\} \tag{6}$$

Variational Inequalities

• $f: \mathbb{R}^n \to \mathbb{R}^n$ is convex and L-smooth, i.e., $\forall x, y \in \mathbb{R}^n$

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle,$$
 (7)

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|. \tag{8}$$

Problem and Assumptions

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ f(\mathbf{x}) = \mathbb{E}_{\xi} \left[f(\mathbf{x}, \xi) \right] \right\} \tag{6}$$

Variational Inequalities

• $f: \mathbb{R}^n \to \mathbb{R}^n$ is convex and L-smooth, i.e., $\forall x, y \in \mathbb{R}^n$

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle,$$
 (7)

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|. \tag{8}$$

• Stochastic gradient $\nabla f(x,\xi)$ with bounded variance is available, i.e., $\forall x \in \mathbb{R}^n$

$$\mathbb{E}_{\xi}\left[\nabla f(x,\xi)\right] = \nabla f(x), \quad \mathbb{E}_{\xi}\left[\|\nabla f(x,\xi) - \nabla f(x)\|^{2}\right] \le \sigma^{2}. \tag{9}$$

In-Expectation Guarantees vs High-Probability Guarantees

- In-expectation guarantees: $\mathbb{E}[\|x-x^*\|^2] \leq \varepsilon$, $\mathbb{E}[f(x)-f(x^*)] \leq \varepsilon$, $\mathbb{E}[\|\nabla f(x)\|^2] \leq \varepsilon$
 - Typically, depend only on some moments of stochastic gradient, e.g., variance

In-Expectation Guarantees vs High-Probability Guarantees

- In-expectation guarantees: $\mathbb{E}[\|x-x^*\|^2] \leq \varepsilon$, $\mathbb{E}[f(x)-f(x^*)] \leq \varepsilon$, $\mathbb{E}[\|\nabla f(x)\|^2] < \varepsilon$
 - Typically, depend only on some moments of stochastic gradient, e.g., variance
- High-probability guarantees: $\mathbb{P}\{\|x-x^*\|^2 < \varepsilon\} > 1-\beta$, $\mathbb{P}\{f(x) - f(x^*) < \varepsilon\} > 1 - \beta, \, \mathbb{P}\{\|\nabla f(x)\|^2 < \varepsilon\} > 1 - \beta$
 - Sensitive to the distribution of the stochastic gradient noise

In-Expectation Guarantees are Less Sensitive to Distribution

Consider SGD with constant stepsize

$$x^{k+1} = x^k - \gamma \cdot \nabla f(x^k, \xi^k)$$

applied to a toy stochastic quadratic problem:

$$\min_{x\in\mathbb{R}^n}\left\{f(x)=\mathbb{E}_{\xi}[f(x,\xi)]\right\},\quad f(x,\xi)=\frac{1}{2}\|x\|^2+\langle\xi,x\rangle,$$

where $\mathbb{E}[\xi] = 0$ and $\mathbb{E}[\|\xi\|^2] = \sigma^2$.

In-Expectation Guarantees are Less Sensitive to Distribution

Consider SGD with constant stepsize

$$x^{k+1} = x^k - \gamma \cdot \nabla f(x^k, \xi^k)$$

applied to a toy stochastic quadratic problem:

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) = \mathbb{E}_{\xi}[f(x,\xi)] \right\}, \quad f(x,\xi) = \frac{1}{2} ||x||^2 + \langle \xi, x \rangle,$$

where $\mathbb{E}[\xi] = 0$ and $\mathbb{E}[\|\xi\|^2] = \sigma^2$. We consider three scenarios:

- ξ has Gaussian distribution
- ξ has Weibull distribution (non-sub-Gaussian)
- ξ has Burr Type XII distribution (non-sub-Gaussian)

In-Expectation Guarantees are Less Sensitive to Distribution

For all of three cases, state-of-the-art theory on SGD [Ghadimi and Lan, 2013] says

$$\mathbb{E}\left[f(x^{k}) - f(x^{*})\right] \le (1 - \gamma)^{k} \left(f(x^{0}) - f(x^{*})\right) + \frac{\gamma \sigma^{2}}{2}.$$
 (10)

In-Expectation Guarantees are Less Sensitive to Distribution

For all of three cases, state-of-the-art theory on SGD [Ghadimi and Lan, 2013] says

$$\mathbb{E}\left[f(x^k) - f(x^*)\right] \le (1 - \gamma)^k \left(f(x^0) - f(x^*)\right) + \frac{\gamma \sigma^2}{2}.$$
 (10)

However, the behavior in practice does depend on the distribution:

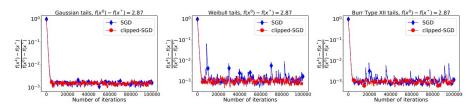


Figure: from [Gorbunov et al., 2020]

High-Probability Results under Light-Tails Assumption

Light-tails assumption (classical one):

Clipping and Heavy-Tailed Noise

$$\mathbb{E}\left[\exp\left(\frac{\|\nabla f(x,\xi) - \nabla f(x)\|^2}{\sigma^2}\right)\right] \le \exp(1). \tag{11}$$

Variational Inequalities

High-Probability Results under Light-Tails Assumption

Light-tails assumption (classical one):

$$\mathbb{E}\left[\exp\left(\frac{\|\nabla f(x,\xi) - \nabla f(x)\|^2}{\sigma^2}\right)\right] \le \exp(1). \tag{11}$$

Variational Inequalities

Under this assumption (+ convexity and L-smoothness of f)

• Devolder et al. [2011] proved that SGD finds \hat{x} such that $f(\hat{x}) - f(x^*) < \varepsilon$ with probability at least $1 - \beta$ using

$$\mathcal{O}\left(\max\left\{\frac{LR_0^2}{\varepsilon}, \frac{\sigma^2R_0^2}{\varepsilon^2}\ln^2\left(\frac{1}{\beta}\right)\right\}\right) \quad \text{oracle calls}$$

High-Probability Results under Light-Tails Assumption

Light-tails assumption (classical one):

$$\mathbb{E}\left[\exp\left(\frac{\|\nabla f(x,\xi) - \nabla f(x)\|^2}{\sigma^2}\right)\right] \le \exp(1). \tag{11}$$

Variational Inequalities

Under this assumption (+ convexity and L-smoothness of f)

• Devolder et al. [2011] proved that SGD finds \hat{x} such that $f(\hat{x}) - f(x^*) < \varepsilon$ with probability at least $1 - \beta$ using

$$\mathcal{O}\left(\max\left\{\frac{LR_0^2}{\varepsilon}, \frac{\sigma^2R_0^2}{\varepsilon^2}\ln^2\left(\frac{1}{\beta}\right)\right\}\right) \quad \text{oracle calls}$$

 Ghadimi and Lan [2012] proved that AC-SA (an accelerated version of SGD) finds \hat{x} such that $f(\hat{x}) - f(x^*) \leq \varepsilon$ with probability at least $1 - \beta$ using

$$\mathcal{O}\left(\max\left\{\sqrt{\frac{LR_0^2}{\varepsilon}}, \frac{\sigma^2R_0^2}{\varepsilon^2}\ln^2\left(\frac{1}{\beta}\right)\right\}\right) \quad \text{oracle calls}$$

High-Probability Results under Heavy-Tails Assumption

 Nazin et al. [2019] proposed Robust Stochastic Mirror Descent (RSMD), which reminds clipped-SGD, and proved the following complexity bound:

$$\mathcal{O}\left(\max\left\{\frac{LD^2}{\varepsilon}, \frac{\sigma^2D^2}{\varepsilon^2}\right\} \ln\left(\frac{1}{\beta}\right)\right)$$

- ✓ The first work in the area (in my opinion, it is breakthrough)
- D diameter of the domain; the proof relies on $D < +\infty$
- X No acceleration

Clipping and Heavy-Tailed Noise

High-Probability Results under Heavy-Tails Assumption

 Davis et al. [2021] proposed proxBoost based on robust distance estimation and Proximal Point method. They proved the following complexity bound (in the strongly convex case):

$$\mathcal{O}\left(\max\left\{\sqrt{\frac{L}{\mu}}\ln\left(\frac{LR_0^2\ln\frac{L}{\mu}}{\varepsilon}\right),\frac{\sigma^2\ln\frac{L}{\mu}}{\mu\varepsilon}\right\}\ln\left(\frac{L}{\mu}\right)\ln\left(\frac{\ln\frac{L}{\mu}}{\beta}\right)\right)$$

- ✓ Accelerated results
- Valid for any convex closed domain (bounded/unbounded)
- X Requires to solve an auxiliary problem at each iteration
- Extra logarithm of the condition number

Key Challenge in the Analysis of clipped-SGD

$$x^{k+1} = x^k - \gamma \cdot \underbrace{\operatorname{clip}\left(\nabla f(x^k, \boldsymbol{\xi}^k), \lambda\right)}_{\widetilde{\nabla} f(x^k, \boldsymbol{\xi}^k)}$$

• $\nabla f(x^k, \boldsymbol{\xi}^k) = \frac{1}{m_k} \sum_{i=1}^{m_k} \nabla f(x^k, \xi_i^k)$, where $\xi_1^k, \dots, \xi_{m_k}^k$ are i.i.d. samples

Key Challenge in the Analysis of clipped-SGD

$$x^{k+1} = x^k - \gamma \cdot \underbrace{\operatorname{clip}\left(\nabla f(x^k, \boldsymbol{\xi}^k), \lambda\right)}_{\widetilde{\nabla} f(x^k, \boldsymbol{\xi}^k)}$$

- $\nabla f(x^k, \boldsymbol{\xi}^k) = \frac{1}{m_k} \sum_{i=1}^{m_k} \nabla f(x^k, \xi_i^k)$, where $\xi_1^k, \dots, \xi_{m_k}^k$ are i.i.d. samples
- Key challenge: $\mathbb{E}\left[\widetilde{\nabla}f(x^k, \boldsymbol{\xi}^k) \mid x^k\right] \neq \nabla f(x^k)$

Analysis of clipped-SGD: Key Idea

Minimization Problems

We start the proof classically:

$$||x^{k+1} - x^*||^2 = ||x^k - x^*||^2 - 2\gamma \langle x^k - x^*, \widetilde{\nabla} f(x^k, \xi^k) \rangle + \gamma^2 ||\widetilde{\nabla} f(x^k, \xi^k)||^2$$

$$\leq \dots$$

Analysis of clipped-SGD: Key Idea

• We start the proof classically:

$$||x^{k+1} - x^*||^2 = ||x^k - x^*||^2 - 2\gamma \langle x^k - x^*, \widetilde{\nabla} f(x^k, \xi^k) \rangle + \gamma^2 ||\widetilde{\nabla} f(x^k, \xi^k)||^2$$

$$\leq \dots$$

 Using convexity and smoothness of f and simple rearrangements, we eventually get for $\Delta_k = f(x^k) - f(x^*)$, $R_k = ||x^k - x^*||$, $\theta_{k} = \nabla f(x^{k}, \boldsymbol{\xi}^{k}) - \nabla f(x^{k})$

$$\frac{2\gamma(1 - 2\gamma L)}{N} \sum_{k=0}^{N-1} \Delta_k \leq \frac{1}{N} (R_0^2 - R_N^2) + \frac{2\gamma}{N} \sum_{k=0}^{N-1} \langle x^* - x^k, \theta_k \rangle + \frac{2\gamma^2}{N} \sum_{k=0}^{N-1} \|\theta_k\|^2$$

How to upper bound the sums in red?

Bernstein Inequality for Martingale Differences

Minimization Problems

Lemma 1 [Bennett, 1962, Dzhaparidze and Van Zanten, 2001, Freedman et al., 1975]

Let the sequence of random variables $\{X_i\}_{i\geq 1}$ form a martingale difference sequence, i.e. $\mathbb{E}[X_i \mid X_{i-1}, \dots, X_1] = 0$ for all $i \geq 1$. Assume that conditional variances $\sigma_i^2 \stackrel{\text{def}}{=} \mathbb{E}\left[X_i^2 \mid X_{i-1}, \dots, X_1\right]$ exist and are bounded and assume also that there exists deterministic constant c > 0 such that $|X_i| \le c$ almost surely for all i > 1.

Bernstein Inequality for Martingale Differences

Lemma 1 [Bennett, 1962, Dzhaparidze and Van Zanten, 2001, Freedman et al., 1975]

Let the sequence of random variables $\{X_i\}_{i\geq 1}$ form a martingale difference sequence, i.e. $\mathbb{E}[X_i \mid X_{i-1}, \dots, X_1] = 0$ for all $i \geq 1$. Assume that conditional variances $\sigma_i^2 \stackrel{\text{def}}{=} \mathbb{E}\left[X_i^2 \mid X_{i-1}, \dots, X_1\right]$ exist and are bounded and assume also that there exists deterministic constant c > 0 such that $|X_i| \le c$ almost surely for all $i \ge 1$. Then for all b > 0, G > 0 and $N \ge 1$

$$\mathbb{P}\left\{ \left| \sum_{i=1}^N X_i \right| > b \text{ and } \sum_{i=1}^N \sigma_i^2 \leq G \right\} \leq 2 \exp\left(-\frac{b^2}{2G + 2cb/3}\right).$$

Bernstein Inequality for Martingale Differences

Minimization Problems

Lemma 1 [Bennett, 1962, Dzhaparidze and Van Zanten, 2001, Freedman et al., 1975]

Let the sequence of random variables $\{X_i\}_{i\geq 1}$ form a martingale difference sequence, i.e. $\mathbb{E}\left[X_i\mid X_{i-1},\ldots,X_1\right]=0$ for all $i\geq 1$. Assume that conditional variances $\sigma_i^2\stackrel{\text{def}}{=}\mathbb{E}\left[X_i^2\mid X_{i-1},\ldots,X_1\right]$ exist and are bounded and assume also that there exists deterministic constant c>0 such that $|X_i|\leq c$ almost surely for all $i\geq 1$. Then for all b>0, G>0 and $N\geq 1$

$$\mathbb{P}\left\{ \left| \left. \sum_{i=1}^N X_i \right| > b \text{ and } \sum_{i=1}^N \sigma_i^2 \leq G \right\} \leq 2 \exp\left(-\frac{b^2}{2G + 2cb/3} \right).$$

To bound $\frac{2\gamma}{N} \sum_{k=0}^{N-1} \langle x^* - x^k, \theta_k \rangle + \frac{2\gamma^2}{N} \sum_{k=0}^{N-1} \|\theta_k\|^2$ we need to

- ullet upper bound bias, variance, and distortion of $heta_k$
- have upper bounds for $\|x^k x^*\|$ and $\|\theta_k\|$ that hold with large probability

Magnitude, Bias, Variance, Distortion

Lemma 2

Let X be a random vector in \mathbb{R}^n and $X = \text{clip}(X, \lambda)$. Then,

Minimization Problems

$$\left\|\widetilde{X} - \mathbb{E}[\widetilde{X}]\right\| \le 2\lambda. \tag{12}$$

Moreover, if for some $\sigma \geq 0$ we have $\mathbb{E}[X] = x \in \mathbb{R}^n$, $\mathbb{E}[\|X - x\|^2] \leq \sigma^2$, and $x < \lambda/2$, then

$$\left\| \mathbb{E}[\widetilde{X}] - x \right\| \le \frac{4\sigma^2}{\lambda},$$
 (13)

$$\mathbb{E}\left[\left\|\widetilde{X} - x\right\|^2\right] \leq 18\sigma^2,\tag{14}$$

$$\mathbb{E}\left[\left\|\widetilde{X} - \mathbb{E}[\widetilde{X}]\right\|^2\right] \leq 18\sigma^2. \tag{15}$$

September 9, 2022

Bound on the Distance to the Solution

Minimization Problems

Inequality

$$\frac{2\gamma(1 - 2\gamma L)}{N} \sum_{k=0}^{N-1} \Delta_k \leq \frac{1}{N} \left(R_0^2 - R_N^2 \right) \\
+ \frac{2\gamma}{N} \sum_{k=0}^{N-1} \langle x^* - x^k, \theta_k \rangle + \frac{2\gamma^2}{N} \sum_{k=0}^{N-1} \|\theta_k\|^2$$

implies

$$R_N^2 \le R_0^2 + 2\gamma \sum_{k=0}^{N-1} \langle x^* - x^k, \theta_k \rangle + 2\gamma^2 \sum_{k=0}^{N-1} \|\theta_k\|^2.$$

Bound on the Distance to the Solution

Inequality

$$\frac{2\gamma(1 - 2\gamma L)}{N} \sum_{k=0}^{N-1} \Delta_k \leq \frac{1}{N} \left(R_0^2 - R_N^2 \right) \\
+ \frac{2\gamma}{N} \sum_{k=0}^{N-1} \langle x^* - x^k, \theta_k \rangle + \frac{2\gamma^2}{N} \sum_{k=0}^{N-1} \|\theta_k\|^2$$

implies

$$R_N^2 \le R_0^2 + 2\gamma \sum_{k=0}^{N-1} \langle x^* - x^k, \theta_k \rangle + 2\gamma^2 \sum_{k=0}^{N-1} \|\theta_k\|^2.$$

Key idea: prove $R_N \leq CR_0$ with high probability for some numerical constant C using the induction!

High-Probability Convergence of clipped-SGD

It is sufficient to make all assumptions on a ball around the solution!

Clipping and Heavy-Tailed Noise

It is sufficient to make all assumptions on a ball around the solution!

Theorem 1

Let f be convex and L-smooth on $B_{7R_0}(x^*) = \{x \in \mathbb{R}^n \mid ||x - x^*|| \le 7R_0\}$ and (9) holds on $B_{7R_0}(x^*)$.

It is sufficient to make all assumptions on a ball around the solution!

Theorem $1\,$

Let f be convex and L-smooth on $B_{7R_0}(x^*) = \{x \in \mathbb{R}^n \mid ||x - x^*|| \le 7R_0\}$ and (9) holds on $B_{7R_0}(x^*)$. Then, for all $\beta \in (0,1)$, $\varepsilon \geq 0$ such that $\ln(LR_0^2/\varepsilon\beta) \geq 2$ there exists a choice of γ such that clipped-SGD with clipping level $\lambda \sim 1/\gamma$ and batchsize $m_k = 1$ finds \bar{x}^N satisfying $f(\bar{x}^N) - f(x^*) \le \varepsilon$ with probability at least $1 - \beta$ using

It is sufficient to make all assumptions on a ball around the solution!

Theorem 1

Let f be convex and L-smooth on $B_{7R_0}(x^*)=\{x\in\mathbb{R}^n\mid \|x-x^*\|\leq 7R_0\}$ and (9) holds on $B_{7R_0}(x^*)$. Then, for all $\beta\in(0,1),\ \varepsilon\geq 0$ such that $\ln(^{LR_0^2/\varepsilon\beta})\geq 2$ there exists a choice of γ such that clipped-SGD with clipping level $\lambda\sim ^1/\gamma$ and batchsize $m_k=1$ finds \bar{x}^N satisfying $f(\bar{x}^N)-f(x^*)\leq \varepsilon$ with probability at least $1-\beta$ using

$$\mathcal{O}\left(\max\left\{\frac{LR_0^2}{\varepsilon}, \frac{\sigma^2R_0^2}{\varepsilon^2}\ln\left(\frac{LR_0^2}{\varepsilon\beta} + \frac{\sigma^2R_0^2}{\varepsilon^2\beta}\right)\right\}\right) \quad \text{iterations/oracle calls}.$$

It is sufficient to make all assumptions on a ball around the solution!

Theorem 1

Let f be convex and L-smooth on $B_{7R_0}(x^*)=\{x\in\mathbb{R}^n\mid \|x-x^*\|\leq 7R_0\}$ and (9) holds on $B_{7R_0}(x^*)$. Then, for all $\beta\in(0,1),\ \varepsilon\geq 0$ such that $\ln(^{LR_0^2/\varepsilon\beta})\geq 2$ there exists a choice of γ such that clipped-SGD with clipping level $\lambda\sim ^1\!/\gamma$ and batchsize $m_k=1$ finds \bar{x}^N satisfying $f(\bar{x}^N)-f(x^*)\leq \varepsilon$ with probability at least $1-\beta$ using

$$\mathcal{O}\left(\max\left\{\frac{LR_0^2}{\varepsilon}, \frac{\sigma^2R_0^2}{\varepsilon^2}\ln\left(\frac{LR_0^2}{\varepsilon\beta} + \frac{\sigma^2R_0^2}{\varepsilon^2\beta}\right)\right\}\right) \quad \text{iterations/oracle calls.}$$

• Same result (up to the difference in logarithmic factors) as for SGD in the light-tailed case

Minimization Problems

It is sufficient to make all assumptions on a ball around the solution!

Theorem $1\,$

Let f be convex and L-smooth on $B_{7R_0}(x^*) = \{x \in \mathbb{R}^n \mid ||x - x^*|| < 7R_0\}$ and (9) holds on $B_{7R_0}(x^*)$. Then, for all $\beta \in (0,1)$, $\varepsilon \geq 0$ such that $\ln(LR_0^2/\varepsilon\beta) \geq 2$ there exists a choice of γ such that clipped-SGD with clipping level $\lambda \sim 1/\gamma$ and batchsize $m_k = 1$ finds \bar{x}^N satisfying $f(\bar{x}^N) - f(x^*) \le \varepsilon$ with probability at least $1 - \beta$ using

$$\mathcal{O}\left(\max\left\{\frac{LR_0^2}{\varepsilon}, \frac{\sigma^2R_0^2}{\varepsilon^2}\ln\left(\frac{LR_0^2}{\varepsilon\beta} + \frac{\sigma^2R_0^2}{\varepsilon^2\beta}\right)\right\}\right) \quad \text{iterations/oracle calls.}$$

- Same result (up to the difference in logarithmic factors) as for SGD in the light-tailed case
- Same result (up to the difference in logarithmic factors) as for RSMD in the heavy-tailed case, but for unconstrained case

Accelerated clipped-SGD: clipped-SSTM

Minimization Problems

 Stochastic Similar Triangles Method was proposed by Gasnikov and Nesterov [2016]

Minimization Problems

- Stochastic Similar Triangles Method was proposed by Gasnikov and Nesterov [2016]
- We combine it with a gradient clipping:

$$\alpha_{k+1} = \frac{k+2}{2aL}, \quad A_{k+1} = A_k + \alpha_{k+1}, \quad \lambda_{k+1} = \frac{B}{\alpha_{k+1}}$$

$$x^{k+1} = \frac{A_k y^k + \alpha_{k+1} z^k}{A_{k+1}}$$

$$z^{k+1} = z^k - \alpha_{k+1} \underbrace{\tilde{\nabla} f(x^{k+1}, \xi^k)}_{\text{clip}(\tilde{\nabla} f(x^{k+1}, \xi^k), \lambda_{k+1})}$$

$$y^{k+1} = \frac{A y^k + \alpha_{k+1} z^{k+1}}{A_{k+1}}$$

Accelerated clipped-SGD: clipped-SSTM

- Stochastic Similar Triangles Method was proposed by Gasnikov and Nesterov [2016]
- We combine it with a gradient clipping:

$$\alpha_{k+1} = \frac{k+2}{2aL}, \quad A_{k+1} = A_k + \alpha_{k+1}, \quad \lambda_{k+1} = \frac{B}{\alpha_{k+1}}$$

$$x^{k+1} = \frac{A_k y^k + \alpha_{k+1} z^k}{A_{k+1}}$$

$$z^{k+1} = z^k - \alpha_{k+1} \underbrace{\tilde{\nabla} f(x^{k+1}, \xi^k)}_{\text{clip}(\tilde{\nabla} f(x^{k+1}, \xi^k), \lambda_{k+1})}$$

$$y^{k+1} = \frac{A y^k + \alpha_{k+1} z^{k+1}}{A_{k+1}}$$

- Why factor a is needed?
- Why λ_{k+1} is chosen this way?

Variational Inequalities

clipped-SSTM: Intuition Behind the Proof

• The key idea is the same: prove that $R_N \leq CR_0$ with high probability using the induction

Variational Inequalities

clipped-SSTM: Intuition Behind the Proof

- The key idea is the same: prove that $R_N < CR_0$ with high probability using the induction
- The method is accelerated it is more sensitive to the quality of estimate $\widetilde{\nabla} f(x^{k+1}, \boldsymbol{\xi}^k)$

clipped-SSTM: Intuition Behind the Proof

- The key idea is the same: prove that $R_N < CR_0$ with high probability using the induction
- The method is accelerated it is more sensitive to the quality of estimate $\widetilde{\nabla} f(x^{k+1}, \boldsymbol{\xi}^k)$
 - For deterministic SSTM (i.e., STM) one can prove $\|\nabla f(x^{k+1})\| = \mathcal{O}(1/\alpha_{k+1})$
 - This hints to choose $\lambda_{k+1} \sim 1/\alpha_{k+1}$ (in the hope that $\|\nabla f(x^{k+1})\| = \mathcal{O}(1/\alpha_{k+1})$ in the stochastic case with high probability)

clipped-SSTM: Intuition Behind the Proof

- The key idea is the same: prove that $R_N < CR_0$ with high probability using the induction
- The method is accelerated it is more sensitive to the quality of estimate $\widetilde{\nabla} f(x^{k+1}, \boldsymbol{\xi}^k)$
 - For deterministic SSTM (i.e., STM) one can prove $\|\nabla f(x^{k+1})\| = \mathcal{O}(1/\alpha_{k+1})$
 - This hints to choose $\lambda_{k+1} \sim 1/\alpha_{k+1}$ (in the hope that $\|\nabla f(x^{k+1})\| = \mathcal{O}(1/\alpha_{k+1})$ in the stochastic case with high probability)
 - Parameter a allows to choose smaller stepsizes and, as the result, batchsizes $m_{k}=1$

Variational Inequalities

High-Probability Convergence of clipped-SSTM

It is sufficient to make all assumptions on a ball around the solution!

It is sufficient to make all assumptions on a ball around the solution!

Theorem 2

Clipping and Heavy-Tailed Noise

Let f be convex and L-smooth on $B_{3R_0}(x^*)$ and (9) holds on $B_{3R_0}(x^*)$.

Variational Inequalities

High-Probability Convergence of clipped-SSTM

It is sufficient to make all assumptions on a ball around the solution!

Theorem 2

Let f be convex and L-smooth on $B_{3R_0}(x^*)$ and (9) holds on $B_{3R_0}(x^*)$. Then, for all $\beta \in (0,1)$, $\varepsilon \geq 0$ such that $\ln(\sqrt{L}R_0/\sqrt{\varepsilon}\beta) \geq 2$ there exists a choice of a such that clipped-SSTM with clipping level $\lambda \sim 1/\alpha_{k+1}$ and batchsize $m_k = 1$ finds y^N satisfying $f(y^N) - f(x^*) \le \varepsilon$ with probability at least $1 - \beta$ using

It is sufficient to make all assumptions on a ball around the solution!

Theorem 2

Clipping and Heavy-Tailed Noise

Let f be convex and L-smooth on $B_{3R_0}(x^*)$ and (9) holds on $B_{3R_0}(x^*)$. Then, for all $\beta \in (0,1)$, $\varepsilon \geq 0$ such that $\ln(\sqrt{L}R_0/\sqrt{\varepsilon}\beta) \geq 2$ there exists a choice of a such that clipped-SSTM with clipping level $\lambda \sim 1/\alpha_{k+1}$ and batchsize $m_k = 1$ finds y^N satisfying $f(y^N) - f(x^*) \le \varepsilon$ with probability at least $1 - \beta$ using

$$\mathcal{O}\left(\max\left\{\sqrt{\frac{LR_0^2}{\varepsilon}}\ln\left(\sqrt{\frac{LR_0^2}{\varepsilon\beta^2}}\right), \frac{\sigma^2R_0^2}{\varepsilon^2}\ln\left(\frac{\sigma^2R_0^2}{\varepsilon^2\beta}\right)\right\}\right) \quad \text{iterations/oracle calls}.$$

It is sufficient to make all assumptions on a ball around the solution!

Theorem 2

Let f be convex and L-smooth on $B_{3R_0}(x^*)$ and (9) holds on $B_{3R_0}(x^*)$. Then, for all $\beta \in (0,1)$, $\varepsilon \geq 0$ such that $\ln(\sqrt{L}R_0/\sqrt{\varepsilon}\beta) \geq 2$ there exists a choice of a such that clipped-SSTM with clipping level $\lambda \sim 1/\alpha_{k+1}$ and batchsize $m_k = 1$ finds y^N satisfying $f(y^N) - f(x^*) \leq \varepsilon$ with probability at least $1 - \beta$ using

$$\mathcal{O}\left(\max\left\{\sqrt{\frac{LR_0^2}{\varepsilon}}\ln\left(\sqrt{\frac{LR_0^2}{\varepsilon\beta^2}}\right),\frac{\sigma^2R_0^2}{\varepsilon^2}\ln\left(\frac{\sigma^2R_0^2}{\varepsilon^2\beta}\right)\right\}\right)\quad\text{iterations/oracle calls}.$$

 Same result (up to the difference in logarithmic factors) as for AC-SA in the light-tailed case

It is sufficient to make all assumptions on a ball around the solution!

Theorem 2

Clipping and Heavy-Tailed Noise

Let f be convex and L-smooth on $B_{3R_0}(x^*)$ and (9) holds on $B_{3R_0}(x^*)$. Then, for all $\beta \in (0,1)$, $\varepsilon \geq 0$ such that $\ln(\sqrt{LR_0}/\sqrt{\varepsilon}\beta) \geq 2$ there exists a choice of a such that clipped-SSTM with clipping level $\lambda \sim 1/\alpha_{k+1}$ and batchsize $m_k = 1$ finds y^N satisfying $f(y^N) - f(x^*) \le \varepsilon$ with probability at least $1 - \beta$ using

$$\mathcal{O}\left(\max\left\{\sqrt{\frac{LR_0^2}{\varepsilon}}\ln\left(\sqrt{\frac{LR_0^2}{\varepsilon\beta^2}}\right),\frac{\sigma^2R_0^2}{\varepsilon^2}\ln\left(\frac{\sigma^2R_0^2}{\varepsilon^2\beta}\right)\right\}\right)\quad\text{iterations/oracle calls}.$$

- Same result (up to the difference in logarithmic factors) as for AC-SA in the light-tailed case
- Better result than for clipped-SGD

Variational Inequalities

Theoretical Extensions

In [Gorbunov et al., 2020, 2021] we also have

- Results for the strongly convex objectives
- Results for the functions with Hölder continuous gradient

Numerical Experiments: Setup

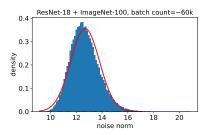
We tested the performance of the methods on the following problems¹:

- BERT ($\approx 0.6M$ parameters) fine-tuning on CoLA dataset. We use pretrained BERT and freeze all layers except the last two linear ones. This dataset contains 8551 sentences, and the task is binary classification - to determine if sentence is grammatically correct.
- ResNet-18 ($\approx 11.7M$ parameters) training on ImageNet-100 (first 100 classes of ImageNet). It has 134395 images.

Variational Inequalities

¹The code is available at https://github.com/ClippedStochasticMethods/clipped-SSTM

Numerical Experiments: Noise Distribution



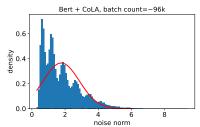


Figure: Noise distribution of the stochastic gradients for ResNet-18 on ImageNet-100 and BERT fine-tuning on the CoLA dataset before the training. Red lines: probability density functions of normal distributions with means and variances empirically estimated by the samples. Batch count is the total number of samples used to build a histogram.

Evolution of the Noise Distribution, Image Classification



Figure: Evolution of the noise distribution for ResNet-18 + ImageNet-100 task.

September 9, 2022

Evolution of the Noise Distribution, Text Classification

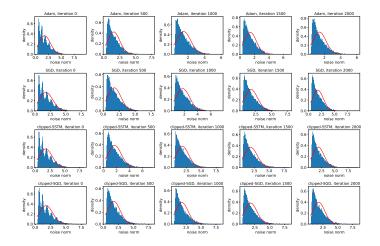
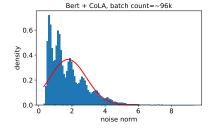


Figure: Evolution of the noise distribution for BERT + CoLA task.

Evolution of the Noise Distribution, Text Classification



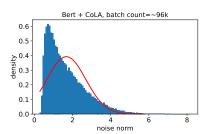


Figure: Evolution of the noise distribution for BERT + CoLA task, from iteration 0 (before the training) to iteration 500.

1.2

1e5

Numerical Results, Image Classification

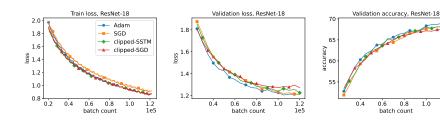


Figure: Train and validation loss + accuracy for different optimizers on ResNet-18 + ImageNet-100 problem. Here, "batch count" denotes the total number of used stochastic gradients. The noise distribution is almost Gaussian even vanilla SGD performs well, i.e., gradient clipping is not required.

Numerical Results, Text Classification

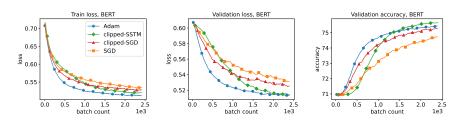


Figure: Train and validation loss + accuracy for different optimizers on BERT + CoLA problem. The noise distribution is heavy-tailed, the methods with clipping outperform SGD by a large margin.

Variational Inequalities

•000000000000000000

Variational Inequality Problem

find
$$x^* \in Q \subseteq \mathbb{R}^n$$
 such that $\langle F(x^*), x - x^* \rangle \ge 0, \ \forall x \in Q$ (VIP-C)

Variational Inequality Problem

find
$$x^* \in Q \subseteq \mathbb{R}^n$$
 such that $\langle F(x^*), x - x^* \rangle \ge 0, \ \forall x \in Q$ (VIP-C)

• $F: Q \to \mathbb{R}^n$ is L-Lipschitz operator: $\forall x, y \in Q$

$$||F(x) - F(y)|| \le L||x - y||$$
 (16)

Variational Inequalities

Variational Inequality Problem

find
$$x^* \in Q \subseteq \mathbb{R}^n$$
 such that $\langle F(x^*), x - x^* \rangle \ge 0, \ \forall x \in Q$ (VIP-C)

• $F: Q \to \mathbb{R}^n$ is L-Lipschitz operator: $\forall x, y \in Q$

Minimization Problems

$$||F(x) - F(y)|| \le L||x - y||$$
 (16)

• F is monotone: $\forall x, y \in Q$

$$\langle F(x) - F(y), x - y \rangle \ge 0 \tag{17}$$

Minimization Problems

Min-max problems:

$$\min_{u \in U} \max_{v \in V} f(u, v) \tag{18}$$

Min-max problems:

$$\min_{u \in U} \max_{v \in V} f(u, v) \tag{18}$$

Variational Inequalities

If f is convex-concave, then (18) is equivalent to finding $(u^*, v^*) \in U \times V$ such that $\forall (u, v) \in U \times V$

$$\langle \nabla_u f(u^*, v^*), u - u^* \rangle \ge 0, \quad -\langle \nabla_v f(u^*, v^*), v - v^* \rangle \ge 0,$$

Minimization Problems

Min-max problems:

$$\min_{u \in U} \max_{v \in V} f(u, v) \tag{18}$$

If f is convex-concave, then (18) is equivalent to finding $(u^*, v^*) \in U \times V$ such that $\forall (u, v) \in U \times V$

$$\langle \nabla_u f(u^*, v^*), u - u^* \rangle \ge 0, \quad -\langle \nabla_v f(u^*, v^*), v - v^* \rangle \ge 0,$$

which is equivalent to (VIP-C) with $Q = U \times V$, $x = (u^{\top}, v^{\top})^{\top}$, and

$$F(x) = \begin{pmatrix} \nabla_u f(u, v) \\ -\nabla_v f(u, v) \end{pmatrix}$$

Minimization Problems

Min-max problems:

$$\min_{u \in U} \max_{v \in V} f(u, v) \tag{18}$$

If f is convex-concave, then (18) is equivalent to finding $(u^*, v^*) \in U \times V$ such that $\forall (u, v) \in U \times V$

$$\langle \nabla_u f(u^*, v^*), u - u^* \rangle \ge 0, \quad -\langle \nabla_v f(u^*, v^*), v - v^* \rangle \ge 0,$$

which is equivalent to (VIP-C) with $Q = U \times V$, $x = (u^{\top}, v^{\top})^{\top}$, and

$$F(x) = \begin{pmatrix} \nabla_u f(u, v) \\ -\nabla_v f(u, v) \end{pmatrix}$$

These problems appear in various applications such as robust optimization [Ben-Tal et al., 2009] and control [Hast et al., 2013], adversarial training [Goodfellow et al., 2015, Madry et al., 2018] and generative adversarial networks (GANs) [Goodfellow et al., 2014].

36 / 59

Minimization problems:

$$\min_{x \in Q} f(x) \tag{19}$$

Variational Inequalities

000000000000000000

Minimization problems:

$$\min_{x \in O} f(x) \tag{19}$$

If f is convex, then (19) is equivalent to finding a stationary point of f, i.e., it is equivalent to (VIP-C) with

$$F(x) = \nabla f(x)$$

(VIP)

Variational Inequality Problem: Unconstrained Case

When $Q = \mathbb{R}^n$ (VIP-C) can be rewritten as

find
$$x^* \in \mathbb{R}^n$$
 such that $F(x^*) = 0$

In this talk, we focus on (40) rather than (VIP-C)

Gradient Descent-Ascent (GDA) and Extragradient (EG)

Minimization Problems

GDA [Krasnosel'skii, 1955, Mann, 1953]:

$$x^{k+1} = x^k - \gamma F(x^k)$$

✓ Very simple

Does not converge for some simple problems (like bilinear games)

Gradient Descent-Ascent (GDA) and Extragradient (EG)

• GDA [Krasnosel'skii, 1955, Mann, 1953]:

$$x^{k+1} = x^k - \gamma F(x^k)$$

- ✓ Very simple
- Does not converge for some simple problems (like bilinear games)
- EG [Korpelevich, 1976]

$$x^{k+1} = x^k - \gamma F(x^k - \gamma F(x^k))$$

- ✓ Converges for any monotone and *L*-Lipschitz operator
- X Requires two oracle calls per step (although this can be easily fixed)
- Converges worse than Alternating GDA for some popular tasks (GANs)

Stochastic VIP

We consider with

$$F(x) = \mathbb{E}_{\xi}[F_{\xi}(x)]$$

ullet We have access to F_{ξ} such that for all $x\in\mathbb{R}^n$

$$\mathbb{E}_{\xi}\left[\|F_{\xi}(x) - F(x)\|^{2}\right] \leq \sigma^{2} \tag{20}$$

Variational Inequalities

0000000000000000000

Stochastic VIP

We consider with

$$F(x) = \mathbb{E}_{\xi}[F_{\xi}(x)]$$

• We have access to F_{ξ} such that for all $x \in \mathbb{R}^n$

$$\mathbb{E}_{\xi}\left[\|F_{\xi}(x) - F(x)\|^{2}\right] \le \sigma^{2} \tag{20}$$

• For GDA-based methods we assume ℓ -star-cocoercivity: $\forall x \in \mathbb{R}^n$

$$\ell\langle F(x), x - x^* \rangle \ge ||F(x)||^2$$

Stochastic VIP

We consider with

$$F(x) = \mathbb{E}_{\xi}[F_{\xi}(x)]$$

• We have access to F_{ξ} such that for all $x \in \mathbb{R}^n$

$$\mathbb{E}_{\xi}\left[\|F_{\xi}(x) - F(x)\|^{2}\right] \leq \sigma^{2} \tag{20}$$

• For GDA-based methods we assume ℓ -star-cocoercivity: $\forall x \in \mathbb{R}^n$

Minimization Problems

$$\ell\langle F(x), x - x^* \rangle \ge ||F(x)||^2$$

• For EG-based methods we assume monotonicity and L-Lipschitzness: $\forall x, y \in \mathbb{R}^n$

$$\langle F(x) - F(y), x - y \rangle \ge 0,$$

 $\|F(x) - F(y)\| \le L\|x - y\|$

Stochastic GDA (SGDA) and Stochastic EG (SEG)

Minimization Problems

• SGDA:

$$x^{k+1} = x^k - \gamma F_{\xi^k}(x^k)$$

• SEG:

$$x^{k+1} = x^k - \gamma_2 F_{\xi_2^k} \left(x^k - \gamma_1 F_{\xi_1^k} (x^k) \right)$$

Stochastic GDA (SGDA) and Stochastic EG (SEG)

Minimization Problems

• SGDA:

$$x^{k+1} = x^k - \gamma F_{\xi^k}(x^k)$$

• SEG:

$$x^{k+1} = x^k - \gamma_2 F_{\xi_2^k} \left(x^k - \gamma_1 F_{\xi_1^k} (x^k) \right)$$

- ξ_1^k, ξ_2^k are i.i.d. samples
- $\gamma_2 \leq \gamma_1$

Prior Work on High-Probability Convergence

For the case of bounded domain (with diameter D) and under light-tails assumption

$$\mathbb{E}\left[\exp\left(\frac{\|F_{\xi}(x) - F(x)\|^2}{\sigma^2}\right)\right] \le \exp(1),\tag{21}$$

Variational Inequalities

Juditsky et al. [2011] proved that projected version of SEG (Mirror-Prox) finds \hat{x} such that 2 Gap $_D(\hat{x}) \leq \varepsilon$ with probability at least $1-\beta$ using

$$\mathcal{O}\left(\max\left\{\frac{LD^2}{\varepsilon}, \frac{\sigma^2D^2}{\varepsilon^2}\ln^2\left(\frac{1}{\beta}\right)\right\}\right)$$
 oracle calls

clipped-SGDA and clipped-SEG

• SGDA:

$$x^{k+1} = x^k - \gamma \cdot \operatorname{clip}\left(F_{\xi^k}(x^k), \lambda_k\right)$$

• SEG:

$$x^{k+1} = x^k - \gamma_2 \cdot \text{clip}\left(F_{\xi_2^k}(\widetilde{x}^k), \lambda_{2,k}\right), \quad \widetilde{x}^k = x^k - \gamma_1 \cdot \text{clip}\left(F_{\xi_1^k}(x^k), \lambda_{1,k}\right)$$

- ξ_1^k, ξ_2^k are i.i.d. samples
- $\gamma_2 \leq \gamma_1$

clipped-SGDA and clipped-SEG

• SGDA:

$$x^{k+1} = x^k - \gamma \cdot \text{clip}\left(F_{\xi^k}(x^k), \lambda_k\right)$$

• SEG:

$$x^{k+1} = x^k - \gamma_2 \cdot \text{clip}\left(F_{\xi_2^k}(\widetilde{x}^k), \lambda_{2,k}\right), \quad \widetilde{x}^k = x^k - \gamma_1 \cdot \text{clip}\left(F_{\xi_1^k}(x^k), \lambda_{1,k}\right)$$

- ξ_1^k, ξ_2^k are i.i.d. samples
- $\gamma_2 \leq \gamma_1$

The key idea behind the proof is exactly the same as in minimization!

High-Probability Convergence of clipped-SEG

It is sufficient to make all assumptions on a ball around the solution!

Theorem 3

Let F be monotone and L-Lipschitz on $B_{4R}(x^*)$ and (20) holds on $B_{4R}(x^*)$, $R > R_0$.

High-Probability Convergence of clipped-SEG

It is sufficient to make all assumptions on a ball around the solution!

Theorem 3

Let F be monotone and L-Lipschitz on $B_{4R}(x^*)$ and (20) holds on $B_{4R}(x^*)$, $R \geq R_0$. Then, for all $\beta \in (0,1)$, $\varepsilon \geq 0$ such that $\ln(6LR_0^2/\varepsilon\beta) \geq 1$ there exists a choice of $\gamma_1 = \gamma_2 = \gamma$ such that clipped-SEG with clipping level $\lambda \sim 1/\gamma$ finds \hat{x} satisfying $\operatorname{Gap}_{\mathcal{B}}(\hat{x}) \leq \varepsilon$ with probability at least $1 - \beta$ using

High-Probability Convergence of clipped-SEG

It is sufficient to make all assumptions on a ball around the solution!

Theorem 3

Clipping and Heavy-Tailed Noise

Let F be monotone and L-Lipschitz on $B_{4R}(x^*)$ and (20) holds on $B_{4R}(x^*)$, $R \geq R_0$. Then, for all $\beta \in (0,1)$, $\varepsilon \geq 0$ such that $\ln(6LR_0^2/\varepsilon\beta) \geq 1$ there exists a choice of $\gamma_1 = \gamma_2 = \gamma$ such that clipped-SEG with clipping level $\lambda \sim 1/\gamma$ finds \hat{x} satisfying $\operatorname{Gap}_{\mathcal{B}}(\hat{x}) \leq \varepsilon$ with probability at least $1 - \beta$ using

$$\mathcal{O}\left(\max\left\{\frac{LR^2}{\varepsilon}\ln\left(\frac{LR^2}{\varepsilon\beta}\right),\frac{\sigma^2R^2}{\varepsilon^2}\ln\left(\frac{\sigma^2R^2}{\varepsilon^2\beta}\right)\right\}\right) \text{ iterations/oracle calls.}$$

High-Probability Convergence of clipped-SEG

It is sufficient to make all assumptions on a ball around the solution!

Theorem 3

Clipping and Heavy-Tailed Noise

Let F be monotone and L-Lipschitz on $B_{4R}(x^*)$ and (20) holds on $B_{4R}(x^*)$, $R \geq R_0$. Then, for all $\beta \in (0,1)$, $\varepsilon \geq 0$ such that $\ln(6LR_0^2/\varepsilon\beta) \geq 1$ there exists a choice of $\gamma_1 = \gamma_2 = \gamma$ such that clipped-SEG with clipping level $\lambda \sim 1/\gamma$ finds \hat{x} satisfying $\operatorname{Gap}_R(\hat{x}) \leq \varepsilon$ with probability at least $1 - \beta$ using

$$\mathcal{O}\left(\max\left\{\frac{LR^2}{\varepsilon}\ln\left(\frac{LR^2}{\varepsilon\beta}\right),\frac{\sigma^2R^2}{\varepsilon^2}\ln\left(\frac{\sigma^2R^2}{\varepsilon^2\beta}\right)\right\}\right) \text{ iterations/oracle calls.}$$

- Same result (up to the difference in logarithmic factors) as for Mirror-Prox in the light-tailed case
- Derived for unconstrained case

High-Probability Convergence of clipped-SGDA

It is sufficient to make all assumptions on a ball around the solution!

Theorem 4

Let F be ℓ -star-cocoercive on $B_{2R}(x^*)$ and (20) holds on $B_{2R}(x^*)$, $R \geq R_0$.

High-Probability Convergence of clipped-SGDA

It is sufficient to make all assumptions on a ball around the solution!

Theorem 4

Let F be ℓ -star-cocoercive on $B_{2R}(x^*)$ and (20) holds on $B_{2R}(x^*)$, $R \geq R_0$. Then, for all $\beta \in (0,1)$, $\varepsilon \geq 0$ such that $\ln(6LR_0^2/\varepsilon\beta) \geq 1$ there exists a choice of γ such that clipped-SGDA with clipping level $\lambda \sim 1/\gamma$ finds \hat{x} satisfying

$$\frac{1}{K+1}\sum_{k=0}^{K}\|F(x^k)\|^2\leq \varepsilon$$
 with probability at least $1-\beta$ using

High-Probability Convergence of clipped-SGDA

It is sufficient to make all assumptions on a ball around the solution!

Theorem 4

Let F be ℓ -star-cocoercive on $B_{2R}(x^*)$ and (20) holds on $B_{2R}(x^*)$, $R \geq R_0$. Then, for all $\beta \in (0,1)$, $\varepsilon \geq 0$ such that $\ln(6LR_0^2/\varepsilon\beta) \geq 1$ there exists a choice of γ such that clipped-SGDA with clipping level $\lambda \sim 1/\gamma$ finds \hat{x} satisfying

$$\frac{1}{K+1}\sum_{k=0}^{K}\|F(x^k)\|^2\leq \varepsilon$$
 with probability at least $1-\beta$ using

$$\mathcal{O}\left(\max\left\{\frac{\ell^2R^2}{\varepsilon}\ln\left(\frac{\ell^2R^2}{\varepsilon\beta}\right),\frac{\ell^2\sigma^2R^2}{\varepsilon^2}\ln\left(\frac{\ell^2\sigma^2R^2}{\varepsilon^2\beta}\right)\right\}\right) \text{ iterations/oracle calls.}$$

High-Probability Convergence of clipped-SGDA

Minimization Problems

It is sufficient to make all assumptions on a ball around the solution!

Theorem 4

Let F be ℓ -star-cocoercive on $B_{2R}(x^*)$ and (20) holds on $B_{2R}(x^*)$, $R \geq R_0$. Then, for all $\beta \in (0,1)$, $\varepsilon \geq 0$ such that $\ln(^{6LR_0^2}/\varepsilon\beta) \geq 1$ there exists a choice of γ such that clipped-SGDA with clipping level $\lambda \sim ^1/\gamma$ finds \hat{x} satisfying

$$\frac{1}{K+1} \sum_{k=0}^{N} ||F(x^k)||^2 \le \varepsilon$$
 with probability at least $1 - \beta$ using

$$\mathcal{O}\left(\max\left\{\frac{\ell^2R^2}{\varepsilon}\ln\left(\frac{\ell^2R^2}{\varepsilon\beta}\right),\frac{\ell^2\sigma^2R^2}{\varepsilon^2}\ln\left(\frac{\ell^2\sigma^2R^2}{\varepsilon^2\beta}\right)\right\}\right) \text{ iterations/oracle calls.}$$

• The first high-probability complexity result for SGDA-based methods

40.40.41.41.1.1.000

Theoretical Extensions

In [Gorbunov et al., 2022] we also have

- extensions to the quasi-strongly monotone and star-negative comonotone problems for clipped-SEG
- extensions to the (quasi-strongly) monotone + star-cocoercive problems for clipped-SGDA

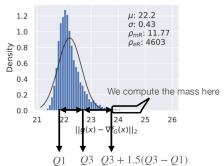
Numerical Experiments

In the experiments in training GANs, we tested the following methods

- clipped-SGDA with alternating updates
- Coord-clipped-SGDA clipped-SGDA with coordinate-wise clipping and alternating updates
- clipped-SEG
- Coord-clipped-SEG

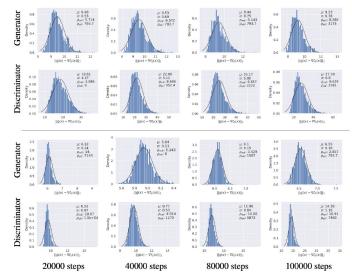
WGAN-GP on CIFAR10 Has Heavy-Tailed Gradients

- ρ_{mR} : relative fraction of mass after $Q_3 + 1.5 \cdot (Q_3 Q_1)$
 - For normal distribution there is $\approx .35\%$ of the mass
 - In this plot: ≈ 12 times more
- ρ_{meR} : relative fraction of mass after $Q_3 + 3 \cdot (Q_3 Q_1)$
 - For normal distribution there is $\approx 10^{-4}\%$ of the mass
 - In this plot: \approx 4603 times more



Clipping and Heavy-Tailed Noise

WGAN-GP on CIFAR10 Has Heavy-Tailed Gradients

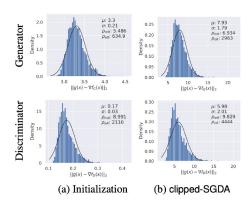


Clipping Helps for WGAN-GP on CIFAR10

(b) clipped-SGDA (19.7) (c) clipped-SEG (25.3)



StyleGAN2 on FFHQ Has Heavy-Tailed Gradients



Clipping Helps for StyleGAN2 on FFHQ

(c) SGDA

(d) clipped-SGDA

Clipping Helps for StyleGAN2 on FFHQ

- Still not matching Adam (on this GAN)
- StyleGan2 is full of trick and heuristics
- Has been tuned for Adam!

Conclusion

- Some popular problems have heavy-tailed noise: in NLP it was observed before, for GANs we demonstrated empirically
- Clipping is a simple way to deal with heavy-tailed noise

Minimization Problems

- High-probability convergence results for methods with clipping are better than known high-probability convergence results for methods without it
- Partial explanation of the success of adaptive methods like Adam on GANs and NLP tasks

References

References I

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton university press, 2009.

Minimization Problems

- G. Bennett. Probability inequalities for the sum of independent random variables. Journal of the American Statistical Association, 57(297):33–45, 1962.
- D. Davis, D. Drusvyatskiy, L. Xiao, and J. Zhang. From low probability to high confidence in stochastic convex optimization. Journal of machine learning research, 22(49), 2021.
- O. Devolder et al. Stochastic first order methods in smooth convex optimization. Technical report, CORE, 2011.
- K. Dzhaparidze and J. Van Zanten. On bernstein-type inequalities for martingales. Stochastic processes and their applications, 93(1):109–117, 2001.
- D. A. Freedman et al. On tail probabilities for martingales. the Annals of Probability, 3(1):100-118, 1975.
- A. Gasnikov and Y. Nesterov. Universal fast gradient method for stochastic composit optimization problems. arXiv preprint arXiv:1604.05275, 2016.

References II

- S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization i: A generic algorithmic framework. SIAM Journal on Optimization, 22(4):1469–1492, 2012.
- S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014.
- I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org.
- I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. ICLR 2015, 2015.

References III

- E. Gorbunov, M. Danilova, and A. Gasnikov. Stochastic optimization with heavy-tailed noise via accelerated gradient clipping. Advances in Neural Information Processing Systems, 33:15042–15053, 2020. URL https://proceedings.neurips.cc/paper/2020/file/ abd1c782880cc59759f4112fda0b8f98-Supplemental.pdf.
- E. Gorbunov, M. Danilova, I. Shibaev, P. Dvurechensky, and A. Gasnikov. Near-optimal high probability complexity bounds for non-smooth stochastic optimization with heavy-tailed noise. arXiv preprint arXiv:2106.05958, 2021. URL https://arxiv.org/pdf/2106.05958.pdf.
- E. Gorbunov, M. Danilova, D. Dobre, P. Dvurechensky, A. Gasnikov, and G. Gidel. Clipped stochastic methods for variational inequalities with heavy-tailed noise. arXiv preprint arXiv:2206.01095, 2022. URL https://arxiv.org/pdf/2206.01095.pdf.

References IV

- M. Hast, K. J. Åström, B. Bernhardsson, and S. Boyd. Pid design by convex-concave optimization. In 2013 European Control Conference (ECC), pages 4460-4465. IEEE, 2013.
- A. Juditsky, A. Nemirovski, and C. Tauvel. Solving variational inequalities with stochastic mirror-prox algorithm. Stochastic Systems, 1(1):17-58, 2011.
- G. M. Korpelevich. The extragradient method for finding saddle points and other problems. *Matecon*, 12:747–756, 1976.
- M. Krasnosel'skii. Two remarks on the method of successive approximations, uspehi mat. Nauk, 10:123-127, 1955.
- A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant to adversarial attacks. ICLR 2018, 2018.
- W. R. Mann. Mean value methods in iteration. Proceedings of the American Mathematical Society, 4(3):506–510, 1953.
- S. Merity, N. S. Keskar, and R. Socher. Regularizing and optimizing Istm language models. arXiv preprint arXiv:1708.02182, 2017.

References V

- M. Mosbach, M. Andriushchenko, and D. Klakow. On the stability of fine-tuning bert: Misconceptions, explanations, and strong baselines. *arXiv* preprint *arXiv*:2006.04884, 2020.
- A. V. Nazin, A. S. Nemirovsky, A. B. Tsybakov, and A. B. Juditsky. Algorithms of robust stochastic optimization based on mirror descent method. *Automation* and *Remote Control*, 80(9):1607–1627, 2019.
- R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In *International conference on machine learning*, pages 1310–1318, 2013.
- M. E. Peters, W. Ammar, C. Bhagavatula, and R. Power. Semi-supervised sequence tagging with bidirectional language models. *arXiv preprint* arXiv:1705.00108, 2017.
- J. Zhang, S. P. Karimireddy, A. Veit, S. Kim, S. J. Reddi, S. Kumar, and S. Sra. Why are adaptive methods good for attention models? *Advances in Neural Information Processing Systems*, 33, 2020.

September 9, 2022