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1. The Problem 3. Light and Heavy Talls 6. Comparison of Complexities

Problem: expectation minimization ‘ﬂg[Vf(:C, f)] =V f(x) Complexity = number of stochastic first-order oracle calls needed by the

: W ] ) method to find such point .U that
xnéﬁl“ {f(ac) B g[f(a?,f)]} - - s e (va(ﬂfaf) —2 Vf(:c))HQ) Prob{f(z) — f(x") > e} < [

Light tails:  E; < exp(1)

Assumptions: convexity and smoothness The red color is used to indicate the restrictions we eliminated in our analysis.
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f(:lf) — f(y) > (Vf(y), L — y> Heavy talils: ¢ {va(xa §) — Vf(x)”Q} <0 (& — diameter of the domain (if it is bounded), Ry = H:UO — :,(;*H
||Vf(£13) — Vf(y) || < LH:U — y” Q Light-tailed case is well-understood: there exist results for SGD [1] Method Complexity Tails | Domain
and accelerated SGD (AC-SA) [2,3] that coincide with corresponding SGD P \
One of the most popular methods to solve such problems is SGD: convergence bounds in expectation. 1] O (max{ to- }/ light | bounded
k+1 _ _k k ¢k Heavy-tailed case is partially studied: in convex case there exist non- AC-SA [LRZ o i \ . .
L — APACANSY e accelerated result matching the complexity of light-tailed SGD* [4]. [2,3] O} mmx = e In(T / HghL | ibiteary
There is a lot of literature on the convergence in expectation. However, we , , RSMD LO?2 z(_)z
focus on the convergence with high probability. 4. Our Contributions (4] O (max{ ) } In(5~ )) heavy | bounded
NP The f lerated stochastic method ing with th e olied O (max{ LR <Rk in(8~1)) | heavy =~ R
2 M otivafti Onal Exa m ple e first accelerated stochastic method converging with the same rate [This work] =t y
' as AC-SA but without light-tailed assumption — Clipped Stochastic clipped-SSTN —= 2= P
Consider the following instance of the problem described above: Similar Triangles Method (clipped-SSTM) (This work] O (maX {\/ = ”} In =27 0) heavy =~ R"

The generalization of clipped-SSTM to the strongly convex case

7. Numerical Experiments

NS R
fl@,6) =2+ (60 Elg=0  E[|?] =

: The first high-probability complexity gurantees for clipped-SGD in We conducted several numerical experiments on logistic regression problem
The state-of-the-art analysis of SGD for this porblem gives: , convex and strongly convex cases
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[f (@) = f@)] <@ =" (f (") = F (27) + 5. Accelerated SGD with Clipping min & f(z) = 3 log (14 exp (—p; - (A2);)
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This bound cannot explain the following phenomenon Clipped Stochastic Similar Triangles Method (clipped-SSTM) =
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All parameters that the bound above depends on are the same for both runs of e Batching: draw fresh i.i.d. samples fl e f Refe rences
SGD. The difference is only in distributions of stochastic gradients and it is . . . L
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