Secure Distributed Training at Scale

Motivation

Many areas of deep learning benefit from large foundation models
trained on public data.

These models are usually trained on HPC clusters not available to small
labs and independent researchers.

Instead, several smaller groups can pool their compute resources
together and train a model that benefits all participants.

However, any participant can jeopardize such a training run by sending
incorrect updates (see the scheme below), unless we use special
distributed training algorithms with Byzantine tolerance.

Prior work on Byzantine tolerance involves redundant communication or

trusted parameter servers, both infeasible in large-scale deep learning.

SpLIT SCATTER REDUCE ALL-GATHER MERGE
[] .
@ 9= Y| O =9
u go = —> Z > — | =g
[] L .
@ g:=) =3

Contribution

We propose a novel protocol for decentralized Byzantine-tolerant
training suitable for large-scale deep learning, where the extra
communication cost does not depend on the number of parameters.

To achieve that, we modify Butterfly All-Reduce (see the scheme above)
with a robust aggregation technique known as CENTEREDCLIP
(Karimireddy et al., 2020) and several cryptography-based verifications.

We also propose a heuristic for resisting Sybil attacks from computationally

constrained attackers, allowing to accept any number of untrusted peers
joining midway through training.

References

Karimireddy, Sai Praneeth, Lie He, and Martin Jaggi. "Learning from history for byzantine robust
optimization." International Conference on Machine Learning. PMLR, 2021.

Allen-Zhu, Zeyuan, et al. "Byzantine-Resilient Non-Convex Stochastic Gradient Descent."
International Conference on Learning Representations. 2020.

Michael Diskin, Max Ryabinin

Protocol

Eduard Gorbunov®*, Alexander Borzunov®,

MIPT

|

Vandex @

Step 1. Use Butterfly All-Reduce, but clip gradient

outliers (protects from large perturbations)

y/

University

Step 2. Validate that peers are not

cheating during the clipping procedure

an t r

g;-:@; O_’QIZV(:Et,ﬁl)—’ —>B—>gl
A
BROADCAST R
9= VELE) ™ hash(als)) [1% %
E
’ R

2

[]

[1]

N\

T

CENTEREDCLIP [| .

1
>

Generate 7t

with MPRNG

Outliers are | |

5| Verify that

CenteredClip
was performed
correctly using

random
projections to

clipped

Peer ¢ validates g; from the previous step, ¢ and j are randomly chosen using rt-

1

—C
LA O
—C

Step 3. Periodically validate gradients of
random peers by recalculation (protects
from a series of small perturbations)

Convergence Bounds

 We prove that our method converges to any predefined accuracy
under realistic assumptions.

* |f the required accuracy is high or the number of attackers is low, it
converges with the same speed as the usual Parallel SGD without
malicious workers.

e QOur convergence rates are state-of-the-art in the decentralized
Byzantine-tolerant setting (and better than SOTA for the centralized
Byzantine-tolerant setting if the required accuracy is high).

* We prove strong results for non-convex problems (see below), as well
as for convex and strongly convex problems (see in the paper).

Decentralized? Work Non-convex
) Allen-Zhu et al. (2021) R
Karimireddy et al. (2020) | % + 25 + %o
v This work E% - g—; 55 %6—222

Here, 02 is the upper bound on the gradient variance, € is the target accuracy, n is the
total number of peers, 6 is the maximal share of malicious peers, m is the number of
peers serving as validators on each step.

Experiments

 We ensure that our method does not harm convergence.

* We experiment with 7 kinds of attacks while training ResNet-18
and 4 kinds of attacks while training ALBERT-large.
 We test attacks at various stages of training, with various

periodicity and number of attackers.

 We show that our method succeeds to protect the training run

unlike other methods from prior work.

Training w/o attacks

0.8 0.8 -
> BTARD (ours), T=1
£ UG —— BTARD (ours), =10 | 007
S —— CClip with PS, T=1
— 0.4- - _ 0.4'
E ~— Geometric median
—— (Coord-wise median
0.2 1 02;
M — No defense
0 1000 2000 3000 4000
Attack: Delayed gradients, step 1000
0.8
>
2 0.6
=
o
= 0.4
L
~
0.2

0 1000 2000 3000 4000

Training step

Attack: Sign flipping, step 1000

0 1000 2000 3000 4000

Attack: Label flipping, step 1000

0 1000 2000 3000 4000

Training step

