Secure Distributed Training at Scale

Motivation

Many areas of deep learning benefit from large foundation models
trained on public data.

These models are usually trained on HPC clusters not available to small
labs and independent researchers.

Instead, several smaller groups can pool their compute resources
together and train a model that benefits all participants.

However, any participant can jeopardize such a training run by sending
incorrect updates (see the scheme below), unless we use special
distributed training algorithms with Byzantine tolerance.

Prior work on Byzantine tolerance involves redundant communication or

trusted parameter servers, both infeasible in large-scale deep learning.
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Contribution

We propose a novel protocol for decentralized Byzantine-tolerant
training suitable for large-scale deep learning, where the extra
communication cost does not depend on the number of parameters.

To achieve that, we modify Butterfly All-Reduce (see the scheme above)
with a robust aggregation technique known as CENTEREDCLIP
(Karimireddy et al., 2020) and several cryptography-based verifications.

We also propose a heuristic for resisting Sybil attacks from computationally

constrained attackers, allowing to accept any number of untrusted peers
joining midway through training.
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Step 1. Use Butterfly All-Reduce, but clip gradient

outliers (protects from large perturbations)
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Step 2. Validate that peers are not

cheating during the clipping procedure
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Step 3. Periodically validate gradients of
random peers by recalculation (protects
from a series of small perturbations)

Convergence Bounds

 We prove that our method converges to any predefined accuracy
under realistic assumptions.

* |f the required accuracy is high or the number of attackers is low, it
converges with the same speed as the usual Parallel SGD without
malicious workers.

e QOur convergence rates are state-of-the-art in the decentralized
Byzantine-tolerant setting (and better than SOTA for the centralized
Byzantine-tolerant setting if the required accuracy is high).

* We prove strong results for non-convex problems (see below), as well
as for convex and strongly convex problems (see in the paper).
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Here, 02 is the upper bound on the gradient variance, € is the target accuracy, n is the
total number of peers, 6 is the maximal share of malicious peers, m is the number of
peers serving as validators on each step.

Experiments

 We ensure that our method does not harm convergence.

* We experiment with 7 kinds of attacks while training ResNet-18
and 4 kinds of attacks while training ALBERT-large.
 We test attacks at various stages of training, with various

periodicity and number of attackers.

 We show that our method succeeds to protect the training run

unlike other methods from prior work.
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