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The problem

Variational inequality problem (VIPs) :
Find x∗ ∈ Rd such that

⟨F (x∗), x − x∗⟩ + R(x) − R(x∗) ≥ 0 ∀x ∈ Rd.

• F : Rd → Rd is some operator,
• R : Rd → R is a regularization term.

Examples

• Minimization problem:
min
x∈Rd

f (x) + R(x),

for which F (x) := ∇f (x).

• Saddle point problem:
min

x1∈Rd1
max

x2∈Rd2
f (x1, x2) + R1(x1) − R2(x2),

for which F (x) := (∇x1f (x1, x2), −∇x2f (x1, x2)) and R(x) :=
R1(x1) + R2(x2).

The method

SGDA (Stochastic Gradient Descent-Ascent):
xk+1 = proxγkR(xk − γkg

k),
where gk is an unbiased estimator of F (xk), γk > 0 is a stepsize at
iteration k, and proxγR(x) := arg miny∈Rd {R(y) + ∥y−x∥2/2γ} is a
proximal operator defined for any γ > 0 and x ∈ Rd.

Setting

• Operator F is µ-quasi-strongly monotone and ℓ-star-cocoercive:
there exist constants µ ≥ 0 and ℓ > 0 such that for all x ∈ Rd

⟨F (x) − F (x∗), x − x∗⟩ ≥ µ∥x − x∗∥2,

∥F (x) − F (x∗)∥2 ≤ ℓ⟨F (x) − F (x∗), x − x∗⟩.

• gk is an unbiased estimator of F (xk): Ek

[
gk
]

= F (xk), and

Ek

[
∥gk − g∗,k∥2

]
≤ 2A⟨F (xk) − g∗,k, xk − x∗,k⟩ + Bσ2

k + D1,

Ek

[
σ2

k+1

]
≤ 2C⟨F (xk) − g∗,k, xk − x∗,k⟩ + (1 − ρ)σ2

k + D2,

where x∗,k = projX∗(xk), g∗,k = F (x∗,k), A, B, C, D1, D1 ≥ 0 and
{σk}k≥0 is a sequence of (possibly random) non-negative variables.

Main Contributions

⋄ Unified analysis of SGDA: We propose a general assump-
tion on the stochastic estimates and the VIP and show that
several variants of SGDA satisfy this assumption. We derive
general convergence results for (i) quasi-strongly monotone,
(ii) monotone star-cocoercive, and (iii) cocoercive problems.

⋄ Extensions of known methods and analysis with
sharp rates: As a by-product of the generality of our theo-
retical framework, we derive new results for the proximal ex-
tensions of several known methods (e.g., proximal SGDA-AS,
proximal SGDA with coordinate randomization).
For the known methods fitting our framework our general the-
orems either recover the best rates known for these methods
(SGDA-AS) or tighten them (SGDA-SAGA, Coord. SGDA).

⋄ New methods: The flexibility of our approach allows us to
develop and analyze several new variants of SGDA.
For example, a new variance-reduced method (L-SVRGDA),
and new distributed methods with compression (QSGDA,
DIANA-SGDA, VR-DIANA-SGDA).

1. Unified analysis of SGDA

Theorem

Let F be µ-quasi-strongly monotone (µ > 0) and let Assumption
on gk hold. Assume that 0 < γ ≤ min {1/µ, 1/2(A+CM)} for some
M > B/ρ. Then the iterates of SGDA, satisfy:

E[Vk] ≤
(

1 − min
{

γµ, ρ − B

M

})k

V0 + γ2(D1 + MD2)
min {γµ, ρ − B/M}

,

where the Lyapunov function Vk is defined by Vk = ∥xk−x∗,k∥2+
Mγ2σ2

k for all k ≥ 0.

Corollary

Let the assumptions of Theorem 1 hold. Then, for some choice
of γk, the iterates of SGDA satisfy:

E[VK] ≤ 32hV0

µ
exp

(
−µ

h
K

)
+ 36(D1 + 2BD2/ρ)

µ2K
,

where h = max {2(A + 2BC/ρ), 2µ/ρ}.

2. SGDA with Arbitrary Sampling

• Consider a random sampling vector ξ = (ξ1, . . . , ξn)⊤ ∈ Rn. One
can rewrite F (x) = 1

n

∑n
i=1 Fi(x) as

F (x) = 1
n

n∑
i=1

ED[ξiFi(x)] = ED [Fξ(x)] ,

where Fξ(x) = 1
n

∑n
i=1 ξiFi(x).

• Assume that stochastic operator Fξ(x), ξ ∼ D is ℓD-expected
cocoercive, i.e. such that for all x ∈ Rd,

ED
[
∥Fξ(x) − Fξ(x∗)∥2

]
≤ ℓD⟨F (x) − F (x∗), x − x∗⟩,

where x∗ = projX∗(x).
• SGDA with Arbitrary Sampling [2] : gk = Fξk(xk).

Corollary

Let F be µ-quasi-strongly monotone and ℓD-expected cocoercive.
Then for all K > 0 there exists a choice of γ for which the iterates
of SGDA with Arbitrary Sampling, satisfy:

E[∥xK − x∗,K∥2] = O
(

ℓDΩ2
0

µ
exp

(
− µ

ℓD
K

)
+ σ2

∗
µ2K

)
,

where Ω2
0 = ∥x0 − x∗,0∥2.

3. SGDA with Variance Reduction

• Focus on the finite-sum problem:

F (x) = 1
n

n∑
i=1

Fi(x)

• Assume that F is ℓ̂-averaged star-cocoercive, i.e. there exists a
constant ℓ̂ > 0 such that for all x ∈ Rd

1
n

n∑
i=1

∥Fi(x) − Fi(x∗)∥2 ≤ ℓ̂⟨F (x) − F (x∗), x − x∗⟩,

where x∗ = projX∗(x).
• L-SVRGDA:

gk = Fjk
(xk) − Fjk

(wk) + F (wk), wk+1 =

xk, with prob. p,

wk, with prob. 1 − p,

where in kth iteration jk is sampled uniformly at random from [n].
Corollary

Let F be µ-quasi strongly monotone and ℓ̂-averaged star-
cocoercive. Then, for p = n, γ = 1/6ℓ̂ and any K ≥ 0 we
have for L-SVRGDA

E[∥xk − x∗∥2] ≤ V0 exp
(

− min
{

µ

6ℓ̂
,

1
2n

}
K

)
.

Table: Summary of the complexity results for variance reduced methods. By
default, operator F is assumed to be µ-strongly monotone and, as the result,
the solution is unique. Our results rely on µ-quasi strong monotonicity of F .
Methods supporting R(x) ̸≡ 0 are highlighted with ∗. Notation: ℓ, L = averaged
cocoercivity/Lipschitz constants depending on the sampling strategy, e.g., for
uniform sampling ℓ

2 = 1
n

∑n
i=1 ℓ2

i , L
2 = 1

n

∑n
i=1 L2

i and for importance sampling
ℓ = 1

n

∑n
i=1 ℓi, L = 1

n

∑n
i=1 Li; ℓ̂ = averaged star-cocoercivity constant.

Method Citation Assumptions Complexity
SVRE [3] Fi is ℓi-cocoer. n + ℓ

µ

EG-VR∗ [1] Fi is Li-Lip. n +
√

nL
µ

SVRGDA∗ [4] Fi is Li-Lip. n + L
2

µ2

SAGA-SGDA∗ [4] Fi is Li-Lip. n + L
2

µ2

VR-AGDA [5] Fi is Lmax-Lip. min
{

n + L9
max
µ9 , n2/3L3

max
µ3

}
L-SVRGDA∗ This paper ℓ̂-av. st.-cocoer. n + ℓ̂

µ

SAGA-SGDA∗ This paper ℓ̂-av. st.-cocoer. n + ℓ̂
µ

4. Distributed SGDA with Compression

• Assume that F (x) = 1
n

∑n
i=1 Fi(x), where {Fi}n

i=1 are distributed
across n devices connected with parameter-server in a centralized
fashion.
• Operator Q : Rd → Rd (possibly randomized) is called unbiased
compressor/quantization if there exists a constant ω ≥ 1 such that
for all x ∈ Rd

E[Q(x)] = x, E[∥Q(x) − x∥2] ≤ ω∥x∥2.

• QSGDA:

gk = 1
n

n∑
i=1

Q(gk
i )

for the setting, where all stochastic realizations gk
i are unbiased and

have bounded variance, i.e., for all i ∈ [n] and k ≥ 0 the following
holds:

E[gk
i ] = Fi(xk), E[∥gk

i − Fi(xk)∥2] ≤ σ2
i .

Corollary

Let F be µ-quasi strongly monotone, ℓ-star-cocoercive, and ℓ̂-
averaged star-cocoercive and the bounded variance assumption
holds. Then, for some γ and any K ≥ 0 we have for QSGDA

E[∥xK − x∗,K∥2] ≤ 32(3ℓ + 9ωℓ̂/n)
µ

Ω2
0 exp

(
− µ

(3ℓ + 9ωℓ̂/n)
K

)

+ 36
µ2K

· 3(1 + 3ω)σ2 + 9ωζ2
∗

n
,

where Ω2
0 = ∥x0 − x∗,0∥2.

• VR-DIANA-SGDA:
∆k

i = gk
i − hk

i , hk+1
i = hk

i + αQ(∆k
i ),

gk = hk + 1
n

n∑
i=1

Q(∆k
i ), hk+1 = 1

n

n∑
i=1

hk+1
i = hk + α

1
n

n∑
i=1

Q(∆k
i ),

for the finite-sum setting, where Fi(x) = 1
m

∑m
j=1 Fij(x) under as-

sumption that there exists a constant ℓ̃ > 0 such that for all x ∈ Rd

1
nm

n∑
i=1

m∑
j=1

∥Fij(x) − Fij(x∗)∥2 ≤ ℓ̃⟨F (x) − F (x∗), x − x∗⟩,

where x∗ = projX∗(x).

Corollary

Let F be µ-quasi strongly monotone, ℓ-star-cocoercive and ℓ̃-
averaged star-cocoercive. Then, for p = 1

m, α = min
{

1
3m, 1

1+ω

}
,

some γ and any K ≥ 0 we have for VR-DIANA-SGDA

E[∥xk − x∗∥2] ≤ V0 exp
(

− min
{

µ

6ℓ̂
,

1
2n

}
K

)
.

5. Experiments

• We consider quadratic games:

F (x) = 1
n

n∑
i=1

Aix + bi,

where each matrix Ai ∈ Rd×d is non-symmetric with all eigenvalues
having strictly positive real part. Enforcing all the eigenvalues to
have strictly positive real part ensures that the operator is strongly
monotone and cocoercive.
In our experiments we focus on two different settings:

(i) problems without constraints, and
(ii) problems with ℓ1 regularization and constraints forcing the solu-

tion to lie in the ℓ∞-ball of radius r.

• Uniform sampling (US) vs Importance sampling (IS).
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Figure: Comparison of Uniform Sampling (US) vs Importance Sampling (IS): the
first plot shows the result for the problem without constraints, the second one –
with constraints.

• Comparison of variance reduced methods.
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Figure: Comparison of variance reduced methods: the first plot shows the result
for the problem without constraints, the second one – with constraints.

• Comparison of distributed methods.

0 5000 10000 15000 20000 25000 30000

Number of oracles call

10−5

10−4

10−3

10−2

10−1

100

D
is

ta
nc

e
to

op
tim

al
ity

SGDA
QSGDA
DIANA-SGDA
VR-DIANA-SGDA

103 104 105 106 107 108

Number of bits communicated

10−10

10−8

10−6

10−4

10−2

100

D
is

ta
nc

e
to

op
tim

al
ity

SGDA
QSGDA
DIANA-SGDA
VR-DIANA-SGDA

Figure: Comparison of algorithms in distributed setting: the first plot shows the
results in terms of the number of oracle calls, the second – the number of bits
communicated.
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