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Clipping and Heavy-Tailed Noise



Stochastic Gradient Descent (SGD)

X=X~y VAXE, ") ()

- f - the function to be minimized
- Vf(xk, €F) - stochastic gradient, i.e., unbiased estimate of Vf(x®):
Eee[VA(X*, €%)] = Vf(x*)



Clipped Stochastic Gradient Descent (clipped-SGD)

X — Xk clip (Vf(x’?, £k, )\) (2)

© cLip(x,A) = min{1, /x| }x
- cLip(VA(x*,€k), \) - biased estimate of Vf(x*):
Eer[cTip(VF(xk, €F), N)] # VA(X®)



Origin of Clipping

- Gradient clipping was proposed in (Pascanu et al., 2013).
Originally it was used to handle exploding and vanishing
gradients in RNNs.

Without clipping With clipping

J(w,b)

Figure 1: from (Goodfellow et al., 2016)



Few Years Later in NLP...

- Merity et al. (2017) use gradient clipping for LSTM

- Peters et al. (2017) trained their deep bidirectional language
model with Adam + clipping

- Mosbach et al. (2020) fine-tune BERT using AdamW + clipping



Few Years Later in NLP...

- Merity et al. (2017) use gradient clipping for LSTM

- Peters et al. (2017) trained their deep bidirectional language
model with Adam + clipping

- Mosbach et al. (2020) fine-tune BERT using AdamW + clipping

It seems that gradient clipping is an important component in training
these models. Why?



Heavy-Tailed Noise in Stochastic Gradients

Let us look at the distribution of || Vf(x, &) — Vf(X)|| in two settings:

- Standard CV task: training ResNet50 on ImageNet dataset
- Standard NLP task: training BERT on Wikipedia+Books dataset



Heavy-Tailed Noise in Stochastic Gradients
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Figure 2: from (Zhang et al,, 2020)

We see that ADAM is much better than SGD when the noise in the
stochastic gradient is heavy-tailed



Adamand clipped-SGD

- clipped-SGD:
X =xF —~ . clip (Vf(xk,g’e) /\k)
- Adam:

mk=ﬁ1mfe—1+( — B)VA(X*, €°),
= Bovi— + (1= Bo)(VAX®, €9))?,

X kT mfe
vk 46

- When B; = 0 Adam (RMSprop) can be seen as clipped-SGD with
“adaptive” \x



Definition of Heavy-Tailed Noise in Stochastic Gradients

- Random vector X has light tails if
b2
PK-EWI 2 0} <260 (-5 ) W20 )
ag

The above condition is equivalent (up to the numerical factor in

o) to
E [exp (”X‘OE[X”V)} < exp(1). (8)



Definition of Heavy-Tailed Noise in Stochastic Gradients

- Random vector X has light tails if
b2
PK-EWI 2 0} <260 (-5 ) W20 )
ag

The above condition is equivalent (up to the numerical factor in
o) to ,
X —E|X
E {exp (H 2[ Il )} < exp(1). (4)
ag

- Otherwise we say that X has heavy tails. However, in this talk, we
will assume that it has bounded central a-th moment for some
a € (1,2):

E[|IX — EX]|%] < o© (5)



In-Expectation Guarantees vs
High-Probability Convergence



Problem and Assumptions

min {f(x) = E¢ [f(x, )]} (6)
- f:R" — R" is convex and L-smooth, i.e, Vx,y € R"

fx) > fy) + (V) x = ), (7)
IVA(x) = VIW)II < Llix =yl (8)
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Problem and Assumptions

min {f() = Ee [x. )} Q

- f:R" — R" is convex and L-smooth, i.e, Vx,y € R"

fx) > fy) + (V) x = ), (7)
IVA(x) = VIW)II < Llix =yl (8)

- Stochastic gradient Vf(x, £) with bounded central a-th moment
(a € (1,2]) is available, i.e., Vx € R"

E¢ [VA(x, )] = VA(X), Ee[IVAx,€) = Vi) T <o (9)

1



SGD Does Not Converge When o < 2

- In-expectation guarantees: E[||x — x*||] < &, E[f(x) — f(x*)] <&,
E[| V)| < e
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- In-expectation guarantees: E[||x — x*||?] < ¢, E[f(x) — f(x*)] <&,
E[[Vf0)I1A < e

- Consider the example from (Zhang et al,, 2020): f(x) = 3||x||* and
Vf(x, &) = x + & where E[¢] = 0 and E||¢]|* < o® but E||¢]|? = o0
(e.g., € can Levy a-stable distribution)



SGD Does Not Converge When o < 2

- In-expectation guarantees: E[||x — x*||?] < ¢, E[f(x) — f(x*)] <&,
E[I VA < e

- Consider the example from (Zhang et al,, 2020): f(x) = 3||x||* and
Vf(x, &) = x + & where E[¢] = 0 and E||¢]|* < o® but E||¢]|? = o0
(e.g., € can Levy a-stable distribution)

- Then, after one step of SGD we have

Ellx' —x*|> = EX° —x* —yVAX, &)
= X —x*|I? = 29E [ — x*, Vf(x°, £%)]
infinite

+9° E|VAXY, &)
—_——

= @9

The method does not converge in expectation (in L,) when a < 2!
What about the case when o = 2 (bounded variance)?



In-Expectation Guarantees and Trajectories of the Method

Consider SGD with constant stepsize
X = X~y V(X €)

applied to a toy stochastic quadratic problem:

min (09 = Eelf(6 €)1}, f(.€) = 57 + (€.,

XERN

where E[¢] = 0 and E[||¢]|] = o2



In-Expectation Guarantees and Trajectories of the Method

Consider SGD with constant stepsize
X = X~y V(X €)

applied to a toy stochastic quadratic problem:

min (09 = Eelf(6 €)1}, f(.€) = 57 + (€.,

XER"
where E[¢] = 0 and E[||¢]|?] = o%. We consider three scenarios:

- £ has Gaussian distribution
- ¢ has Weibull distribution (non-sub-Gaussian)

- ¢ has Burr Type XII distribution (non-sub-Gaussian)



In-Expectation Guarantees and Trajectories of the Method

For all of three cases, state-of-the-art theory on SGD (Ghadimi and
Lan, 2013) says
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In-Expectation Guarantees and Trajectories of the Method

For all of three cases, state-of-the-art theory on SGD (Ghadimi and
Lan, 2013) says

B [f() — )] < (1) (00~ ) + 22 (o)

However, the behavior in practice does depend on the distribution:

Gaussian tails, fix°) — fix") =2.87 Weibull tails, fix°) — fix*) =2.87 Burr Type Xl tails, fix®) — fix*) = 2.87
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Figure 3: from (Gorbunov et al., 2020)
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In-Expectation Guarantees vs High-Probability Guarantees

- In-expectation guarantees: E[||x — x*||] < ¢, E[f(x) — f(x*)] <e,
E[[VIX)IP] < e

- Typically, depend only on some moments of stochastic gradient,
e.g., variance



In-Expectation Guarantees vs High-Probability Guarantees

- In-expectation guarantees: E[||x — x*||?] < e, E[f(x) — f(x*)] <e,
E[[VIX)IP] < e
- Typically, depend only on some moments of stochastic gradient,
e.g., variance
- High-probability guarantees: P{||x — x*||? <e} >1- 3,
P{f(x) = f(x*) < e} 2 1= B, P{|IVX)> < e} > 1-8

- Sensitive to the distribution of the stochastic gradient noise



High-Probability Convergence of SGD under Bounded Variance

Assumption

Natural idea: apply Markov's inequality:
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High-Probability Convergence of SGD under Bounded Variance

Assumption

Natural idea: apply Markov's inequality:

E[f(%) — f(x')]

P{f(%) —f(x") > e} <

Taking enough steps of SGD, we can guarantee E[f(X) — f(x*)] < ef
that implies P{f(X) — f(x*) > e} < 3 or, equivalently,
P{f(8) —f(x*) <e} >1-8.
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High-Probability Convergence of SGD under Bounded Variance

Assumption

Natural idea: apply Markov's inequality:

P (R) () > ) < LT,

g

Taking enough steps of SGD, we can guarantee E[f(X) — f(x*)] < ef
that implies P{f(X) — f(x*) > e} < 3 or, equivalently,
P{f(8) —f(x*) <e} >1-8.

Bad news: to ensure E [f(X) — f(x*)] < &8 SGD needs

2 2p2
@] <max {LERBO, ;;g}) oracle calls

Negative-power dependence on f :(

16



High-Probability Convergence of SGD under Bounded Variance

Assumption

Natural idea: apply Markov's inequality:

P (R) () > ) < LT,

g

Taking enough steps of SGD, we can guarantee E[f(X) — f(x*)] < ef
that implies P{f(X) — f(x*) > e} < 3 or, equivalently,
P{f(8) —f(x*) <e} >1-8.

Bad news: to ensure E [f(X) — f(x*)] < &8 SGD needs

2 2p2
O <max {LERBO, ;;g}) oracle calls

Negative-power dependence on f :(

Natural question: can we analyze high-probability convergence of
SGD better?
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High-Probability Convergence of SGD under Bounded Variance

Assumption

Failure of SGD

Foranye > 0, 5 € (0,1), and SGD parameterized by the number of
steps K and stepsize ~, there exists p-strongly convex L-smooth
problem and stochastic oracle with noise having bounded a-th
moment with e = 2, 0 < u < L such that for the iterates produced
by SGD with any stepsize 0 < v < 1/p

P{X—x|2>e} <8 — K—Q(MZE) (11)

This illustrates the necessity of modifying the method, e.g, one can
use gradient clipping



Main Results




Key Challenge in the Analysis of clipped-SGD

X1 =Xt — - cLip (Vf(xk, £, 3)

V(xk,€")

- Key challenge: E [ﬁf(xk,gk) \ xq £ VI(xH)



Analysis of clipped-SGD: Key Idea

- We start the proof classically:
I =2 = X = x| = 2y (xF - X, V(xR €9))

2 IVFOE, €)1

IN
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Analysis of clipped-SGD: Key Idea

- We start the proof classically:
I =2 = X = x| = 2y (xF - X, V(xR €9))
+7 | VA, €)1
<

- Using convexity and smoothness of fand simple
rearrangements, we eventually get for A, = f(x*) — f(x*),
= X = x|l, 6 = VX", £%) = VF(x*)

27(1 = 29L) = 1
= M < L (R RY)

Z

1

N
2y 7 2
i — x*,0;) —E 0
+N O<X X*, 6r) N 2 1|6kl

=
Il

How to upper bound the sums in red?
19



Bernstein Inequality for Martingale Differences

Lemma 1 (Bennett, 1962; Dzhaparidze and Van Zanten, 2007;
Freedman et al., 1975)

Let the sequence of random variables {X;};>; form a martingale
difference sequence, i.e. E[X; | Xi_1,...,X;] = 0forall i > 1. Assume
that conditional variances o? e [X?| Xi_1,...,X%)] exist and are
bounded and assume also that there exists deterministic constant

¢ > 0 such that |Xj| < c almost surely for all i > 1.

20



Bernstein Inequality for Martingale Differences

Lemma 1 (Bennett, 1962; Dzhaparidze and Van Zanten, 2007;
Freedman et al., 1975)

Let the sequence of random variables {X;};>; form a martingale
difference sequence, i.e. E[X; | Xi_1,...,X;] = 0forall i > 1. Assume
that conditional variances o? e [X?| Xi_1,...,X%)] exist and are
bounded and assume also that there exists deterministic constant
¢ > 0 such that |Xj| < c almost surely for all i > 1. Then for all

b>0G>0andN>1

b2
{‘ZX‘ > b and ZO’ <G} <2exp< 26+2cb/3>
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Bernstein Inequality for Martingale Differences

Lemma 1 (Bennett, 1962; Dzhaparidze and Van Zanten, 2007;
Freedman et al., 1975)
Let the sequence of random variables {X;};>; form a martingale

difference sequence, i.e. E[X; | Xi_1,...,X;] = 0forall i > 1. Assume

that conditional variances o? e [X?| Xi_1,...,X%)] exist and are

bounded and assume also that there exists deterministic constant
¢ > 0 such that |Xj| < c almost surely for all i > 1. Then for all
b>0G>0andN >1

b2
{‘ZX‘ > b and ZO’ <G} <2exp< 26+25b/3>

N—1
To bound 22 3™ (x* — xk,6) + 2= 3" ||6, |2 we need to
k=0 r=0

- upper bound bias, variance, and distortion of 6,
- have high-prob. upper bounds for ||x* — x*|| and ||6|| 20



Magnitude, Bias, Variance, Distortion

Lemma 2

Let X be a random vector in RY and X = clip(X, A). Then,
[IX = E[X]|| < 2A. Moreover, if for some o > 0 and « € (1, 2] we have
E[X] = x € RY, E[||X — x||*] < ¢%, and ||x|| < /2, then

o] = 22 o
A < e 2
E[HY—]E[X]HZ} < 18X, (14)

21



Bound on the Distance to the Solution

Inequality
20-205 5 < L)
S0+ 25 e
N N —
implies

RY < REH2yD (¢ —x"00) + 292 116kl
k=0 k=0
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Bound on the Distance to the Solution

Inequality

N—1

2 N—
27y 7 2
N (X" = Xx*, 0p) + N ;H%H
implies

RY < REH2yD (¢ —x"00) + 292 116kl
k=0 k=0

Key idea: prove Ry < CRg with high probability for some numerical
constant C using the induction!

22



High-Probability Convergence of clipped-SGD

Theorem 1

Let f be convex and L-smooth on
Brg,(X*) = {x € R" | ||x — x*|| < 7Ro} and (9) holds on Byg, (x*).

23



High-Probability Convergence of clipped-SGD

Theorem 1

Let f be convex and L-smooth on

Brg, (X*) = {x € R" | ||x — x*|| < 7Ro} and (9) holds on Bk, (x*). Then,
for all B € (0,1), e > 0 such that In(LRi/=) > 2 there exists a choice
of v such that clipped-SGD with clipping level A ~ 1/y and
batchsize my, = 1 finds X" satisfying f(x") — f(x*) < ¢ with
probability at least 1 — 3 using
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High-Probability Convergence of clipped-SGD

Theorem 1

Let f be convex and L-smooth on

Brg, (X*) = {x € R" | ||x — x*|| < 7Ro} and (9) holds on Bk, (x*). Then,
for all B € (0,1), e > 0 such that In(LRi/=) > 2 there exists a choice
of v such that clipped-SGD with clipping level A ~ 1/y and
batchsize my, = 1 finds X" satisfying f(x") — f(x*) < ¢ with
probability at least 1 — 3 using

o(me () (5()7)})

iterations/oracle calls.
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Theoretical Extensions

In (Gorbunov et al., 2020, 2021, 2022; Sadiev et al.,, 2023) we also have
- Accelerated method (Clipped Stochastic Similar Triangles
Method)
- Results for the non-convex objectives
- Results for the strongly convex objectives
- Results for the functions with Holder continuous gradient
- Results for the variational inequalities

24



Numerical Experiments: Setup

We tested the performance of the methods on the following
problems’:

- BERT (=~ 0.6M parameters) fine-tuning on CoLA dataset. We use
pretrained BERT and freeze all layers except the last two linear
ones. This dataset contains 8551 sentences, and the task is
binary classification - to determine if sentence is grammatically
correct.

- ResNet-18 (~ 11.7M parameters) training on ImageNet-100
(first 100 classes of ImageNet). It has 134395 images.

The code is available at https://github.com/
ClippedStochasticMethods/clipped-SSTM

25


https://github.com/ClippedStochasticMethods/clipped-SSTM
https://github.com/ClippedStochasticMethods/clipped-SSTM

Numerical Experiments: Noise Distribution

ResNet-18 + ImageNet-100, batch count=~60k Bert + CoLA, batch count=~96k

0.3

density
o
N

0.1

4 6 8
noise norm

0.0
10 12 14 16 18 20

noise norm

Figure 4: Noise distribution of the stochastic gradients for ResNet-18 on
ImageNet-100 and BERT fine-tuning on the CoLA dataset before the
training. Red lines: probability density functions of normal distributions with
means and variances empirically estimated by the samples. Batch count is
the total number of samples used to build a histogram.
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Numerical Results, Image Classification

Train loss, ResNet-18 Validation loss, ResNet-18
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o14 °
1.2 1.4
1.0
0.8 £2 —
0.2 0.4 0.6 0.8 1.0 12 0.4 0.6 0.8 1.0 12
batch count le5 batch count le5

Validation accuracy, ResNet-18

accuracy
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Figure 5: Train and validation loss + accuracy for different optimizers on
ResNet-18 + ImageNet-100 problem. Here, “batch count” denotes the
total number of used stochastic gradients. The noise distribution is almost

Gaussian, even vanilla SGD performs well. 7



Numerical Results, Text Classification

Train loss, BERT Validation loss, BERT
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Figure 6: Train and validation loss + accuracy for different optimizers on
BERT + CoLA problem. The noise distribution is heavy-tailed, the methods

with clipping outperform SGD by a large margin.
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Conclusion

- Some popular problems have heavy-tailed noise: in NLP it was
observed before, for GANs we demonstrated empirically

- Clipping is a simple way to deal with heavy-tailed noise

- High-probability convergence results for methods with clipping
are better than known high-probability convergence results for
methods without it

- Partial explanation of the success of adaptive methods like
Adam on GANs and NLP tasks

29



About MBZUAI

e Established in 2019, located in Masdar City (Abu Dhabi, UAE)

e First classes started in January 2021 (because of COVID-19)

e Three departments: NLP, CV, and ML

e Some numbers: ~ 300 students, ~ 50 faculties, 20th in CSRankings
(Al, CV, ML, and NLP)

Figure 7: https://www.arabnews.com/node/1724111/amp
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