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1. Preliminaries

Problem: unconstrained variational inequality problem (VIP)

find z* € RY such that F (z*) =0

Assumptions:

@ Lipschitzness  ||F(z) — F ()| < Lz — 2'|| Vz,2’ € R
Quasi-strong ok k|2 d
® monotonicity <F(:1?),:C v > =y H.Cl? o H ve e R
® F(z) =E[Fe(z)] o F(z) =33 Fi(x)
i=1

2. Stochastic Extragradient
Extragradient method (EG) is one of the most popular methods for VIPs
gt = ph — VI (.CCk — v F (:z:k))
There are two main options in the stochastic case:

‘ Same-Sample Stochastic Extragradient (S-SEG)
2t =gk — yFe (2 — yFe (2F))
‘ Independent-Samples Stochastic Extragradient (I-SEG)
= (o ()

€ State-of-the-art results [1, 2, 3] are derived via different proof techniques
and rely on different assumptions

€ Some interesting directions are unexplored, e.g., non-uniform sampling

3. Our Contributions

New theoretical framework for the analysis of SEG
Our analysis recovers tight guarantees for several known special cases
New results for known methods, new variants of SEG

Weak assumptions in the special cases

Numerical experiments that corroborate our theory

4. General Analysis of SEG

stochastic estimator

Generalized
update rule: Ik+1 & . (Ik)

randomness/stochasticity at step k

Key assumption: there exist non-negative constants A, B, C,

Dy, Dy >0, p € |0, 1] and (possibly random) sequence {(}, }such that

2—|—D1

Ber (72 |l9¢x (#)|°| < 24P+ C [Ja* — 27
Pk‘ Z P . + BGk — DQ
P, = Eer [yer (ger (2¥) 2" —2*)]

xk — *

General convergence result: let the key assumption hold with A < 1 / 2
and p > (' > 0. Then the iterates of generalized SEG satisfy

5 [[lo# = o] < @+ €= p) 2 — o) + 22222
5. Same-Sample SEG
For simplicity, consider a finite-sum case: F'(x) = % Zn: Fi(x)

i=1
Assumptions: HFg(I) — F@(y)l\ < LzHI — yH
(Fi(z) — Fi(27), @ —a%) 2 pi|lw — |
allowed to be negative

p= %Zi:m—zo i + % Z?::HKU i = 0

SSEG: oMl =2t — e Fa (28 — e P (2F))

Uniform sampling (US) Importance sampling (IS)

Plet=i] =

n

Y1,k =7

gk = A gn, @ < 1/4

We prove that both options (an much more) fit our framework
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6. Independent-Samples SEG
e [|Fe(x) — F(2)|"] <6z —a*||° + o

Assumption:
@ When & = 0 it recovers uniformly bounded variance assumption

I-SEG: phtl = gk — "}/Fﬁzc (:17’“ — ")/F;lc (Ik))

O £f, 55 are sampled independently

We prove that I-SEG in this setup fit our framework as well

7. Comparison with SOTA Results

Our general theorem implies the results highlighted in green

Convergence Rate for

Method Citation Constant Stepsize Diminishing Stepsize
) 2 2
(Mishchenko et al., 2020) (1 — Ypomin) K RZ 4 12USx Imax 1) oxp (—’LE""#K) s
S-SEG-US Hmin Hmin max pe . K
. K p2 | Y90Sk Lmax R EK TS
This paper (1 —~vp)" R + ﬁz m ) exp ( — ¢ — —|—2 =%
. K 2 Yo LR K o
S-SEG-IS This paper (1 —~vm)" RS + % ﬁo exp (—“T) + ﬁ|251*<
2
(Hsieh et al., 2020) (1= m720™)" Ry + b o
C=mL(1+yL)+ 22 prorl/
2’1 2
I-SEG (Beznosikov et al., 2020) (1 — ")/M)KR(% + % R?) exp (_%) + MgbK
2
. 5 kR2 exp (—&) + MgbK
. g
This paper (1 —~vpu)" RS + Pyyl—b _ { 5 L+\/5/—b}
F = max 4 oo, m

tance to optimality
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Notation: [bmin = MIN;efy) i Lypax = MaX;c|p] L;

) _
UIQJS* = 5 2i= | Fi(2*)]]7 UIQS* — %Z?:l %@,HFJ:U*)HQ

8. Numerical Experiments

We tested the methods on qudratic unconstrained games. The first experiment
shows the benefits of importance sampling compared to the uniform sampling,
the last two experiments compare our results with theoretical SOTA.

—- |-SEGy, = —4,”1/@’ 72 = 2 (ours)
. —@— |-SEG with decreasing step-size (ours Cor. 4.1)
| ~h— I-SEG 41 = 7, = - (Beznosikov et al., 2020)
—»— |-SEG with decreasing step-size (Hsieh et al, 2020)

0] 0 10°
1079 —®— S-SEG-US N B S-SEG =L, = 2 (ours) 1
\\ -®- S-SEG-IS . —®— S-SEG with decreasing step-size (ours Cor. 3.1)

~# S-SEG v, = 7, = 5+ (Mishchenko et al., 2020)
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