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1. Preliminaries

References

Problem: unconstrained variational inequality problem (VIP)

5. Same-Sample SEG

2. Stochastic Extragradient

4. General Analysis of SEG 6. Independent-Samples SEG

Assumptions:

Lipschitzness

Quasi-strong 
monotonicity

Extragradient method (EG) is one of the most popular methods for VIPs
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Assumption:

or

There are two main options in the stochastic case:

Same-Sample Stochastic Extragradient (S-SEG)

Independent-Samples Stochastic Extragradient (I-SEG)

State-of-the-art results [1, 2, 3] are derived via different proof techniques 
and rely on different assumptions

Some interesting directions are unexplored, e.g., non-uniform sampling

3. Our Contributions
New theoretical framework for the analysis of SEG

Our analysis recovers tight guarantees for several known special cases

New results for known methods, new variants of SEG

Weak assumptions in the special cases

Numerical experiments that corroborate our theory

7. Comparison with SOTA Results

Generalized 
update rule:

stochastic estimator

randomness/stochasticity at step k

Key assumption: there exist non-negative constants 

                                           and (possibly random) sequence           such that

General convergence result: let the key assumption hold with 

and                        . Then the iterates of generalized SEG satisfy

For simplicity, consider a finite-sum case:

Assumptions:

allowed to be negative

S-SEG:

Uniform sampling (US) Importance sampling (IS)

8. Numerical Experiments

We prove that both options (an much more) fit our framework

We tested the methods on qudratic unconstrained games. The first experiment 
shows the benefits of importance sampling compared to the uniform sampling, 
the last two experiments compare our results with theoretical SOTA.

Notation:

Our general theorem implies the results highlighted in green

When δ = 0 it recovers uniformly bounded variance assumption

I-SEG:

           are sampled independently

We prove that I-SEG in this setup fit our framework as well
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