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1. Unified Theory of SGD
Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. "A Unified 
Theory of SGD: Variance reduction, Sampling, Quantization and 
Coordinate Descent." In International Conference on Artificial 
Intelligence and Statistics, pp. 680-690. 2020.\
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Stochastic/Finite-Sum Optimization

Stochastic optimization Finite-sum optimization

is too expensive to compute

An unbiased stochastic estimator of can be computed efficiently



  

5
Stochastic Gradient Descent

Stochastic gradient
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Stochastic Gradient Descent

Stochastic gradient

How to choose the stochastic gradient?



  

Stochastic Gradient
Infinitely many ways of getting unbiased estimator with «good» properties

Flexibility to construct stochastic gradients in order to target desirable properties:

convergence speed

iteration cost

overall complexity

parallelizability

communication cost and etc.



  

Stochastic Gradient
Infinitely many ways of getting unbiased estimator with «good» properties

Flexibility to construct stochastic gradients in order to target desirable properties:

convergence speed

iteration cost

overall complexity

parallelizability

communication cost and etc.

Too many methods

hard to keep up with new results

challenges in terms of the analysis

problems with a fair comparison: different assumptions are used in different papers



  

The First Problem

A single unifying theoretical framework for different variants of 
SGD is required

The first contribution of the dissertation



  

Key Parametric Assumption
10



  

Key Parametric Assumption
11

Reflects smoothness properties of the problem and noises introduced by stochastic gradients



  

Key Parametric Assumption
12

Reflects smoothness properties of the problem and noises introduced by stochastic gradients

Describes the process of variance reduction



  

Additional Assumption13

Generalization of strong convexity – quasi-strong convexity:



  

Main Theorem

If the stepsize satisfies 

, where
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Main Theorem

If the stepsize satisfies 

, where

then the iterates of SGD satisfy

where
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In one theorem, we recover the sharpest rates for all known special cases



  

2. Distributed Optimization



  

Distributed Optimization

Some problems cannot be solved on a single a machine in a reasonable time 
(deep learning models with billions of parameters and gigabytes of data)

There exist such problems where the data that defines the optimization problem is 
private and distributed among several machines (federated learning)

These problems are typically solved in a distributed way
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parameters of the model

. . .
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parameters of the model
server

# of workers/devices

n workers/devices

. . .
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loss on the data accessible by worker i

# of workers/devices
. . .
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1 Server broadcasts the parameters

Parallel SGD



  

. . .

26

1 Server broadcasts the parameters

2 Devices compute stochastic 
gradients in parallel

Parallel SGD
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1 Server broadcasts the parameters

2

3 Server gathers stochastic gradients

Devices compute stochastic 
gradients in parallel

Parallel SGD
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1 Server broadcasts the parameters

2

3 Server gathers stochastic gradients

Devices compute stochastic 
gradients in parallel

Parallel SGD

4 Server updates the parameters



  

stepsize

. . .
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1 Server broadcasts the parameters

2

3 Server gathers stochastic gradients

Devices compute stochastic 
gradients in parallel

Parallel SGD

4 Server updates the parameters



  

stepsize

. . .
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1 Server broadcasts the parameters

2

3 Server gathers stochastic gradients

Devices compute stochastic 
gradients in parallel

Parallel SGD

4 Server updates the parameters

5 Repeat steps 1 – 4



  

stepsize

. . .
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Good news:
Very simple 
algorithm

Can be much faster 
than non-parallel SGD

1 Server broadcasts the parameters

2

3 Server gathers stochastic gradients

Devices compute stochastic 
gradients in parallel

Parallel SGD

4 Server updates the parameters

5 Repeat steps 1 – 4



  

1 Server broadcasts the parameters

2

3 Server gathers stochastic gradients

4 Server updates the parameters

stepsize

5 Repeat steps 1 – 4

Good news:
Very simple 
algorithm

Can be much faster 
than non-parallel SGD

Issues:

Overload of the server

communication is a bottleneck

. . .

Devices compute stochastic 
gradients in parallel

33
Parallel SGD



  

3. Unified theory of Error-Feedback 
SGD

Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter 
Richtarik,  Linearly Converging Error Compensated SGD. Advances in
Neural Information Processing Systems, 33, 2020.



  

Compression Operators

Unbiased compressors
(quantizations)

Biased compressors

35



  

Compression Operators

Unbiased compressors
(quantizations)

Biased compressors
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Compression Operators

Unbiased compressors
(quantizations)

Biased compressors
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 Example: RandK (for K = 2)

Compression Operators

Unbiased compressors
(quantizations)

Biased compressors

Pick K = 2 components uniformly at random

for unbiasedness
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 Example: RandK (for K = 2)

Compression Operators

Unbiased compressors
(quantizations)

Biased compressors

Pick K = 2 components uniformly at random

for unbiasedness

Example: TopK (for K = 2)

Pick K = 2 components with largest absolute value
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 Example: RandK (for K = 2)

Compression Operators

Unbiased compressors
(quantizations)

Biased compressors

Pick K = 2 components uniformly at random

for unbiasedness

Example: TopK (for K = 2)

Pick K = 2 components with largest absolute value

40

Well studied in 
the (strongly) convex case



  

 Example: RandK (for K = 2)

Compression Operators

Unbiased compressors
(quantizations)

Biased compressors

Pick K = 2 components uniformly at random

for unbiasedness

Example: TopK (for K = 2)

Pick K = 2 components with largest absolute value

41

Well studied in 
the (strongly) convex case

Much less is known, e.g., no 
linearly converging methods 

are developed



  

The Second Problem

Theory of distributed methods with biased compression 
requires improvements

The second contribution of the dissertation



  

Parallel SGD with Biased Compressor Can 
Diverge at Exponential Rate
Beznosikov, Aleksandr, Samuel Horváth, Peter Richtárik, and Mher Safaryan. "On Biased 
Compression for Distributed Learning." arXiv preprint arXiv:2002.12410 (2020).
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Parallel SGD with Biased Compressor Can 
Diverge at Exponential Rate
Beznosikov, Aleksandr, Samuel Horváth, Peter Richtárik, and Mher Safaryan. "On Biased 
Compression for Distributed Learning." arXiv preprint arXiv:2002.12410 (2020).

In this case Parallel SGD with Top1 compression operator satisfies

44



  

Parallel SGD with Biased Compressor Can 
Diverge at Exponential Rate
Beznosikov, Aleksandr, Samuel Horváth, Peter Richtárik, and Mher Safaryan. "On Biased 
Compression for Distributed Learning." arXiv preprint arXiv:2002.12410 (2020).

In this case Parallel SGD with Top1 compression operator satisfies

One can fix this using one special 
trick called error-compensation

45



  

Error-Compensated SGD
46

Beznosikov, Aleksandr, Samuel Horváth, Peter Richtárik, and Mher Safaryan. "On Biased 
Compression for Distributed Learning." arXiv preprint arXiv:2002.12410 (2020).

Stich, Sebastian U., Jean-Baptiste Cordonnier, and Martin Jaggi. "Sparsified SGD with memory." 
In Advances in Neural Information Processing Systems, pp. 4447-4458. 2018.

Karimireddy, Sai Praneeth, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. "Error Feedback 
Fixes SignSGD and other Gradient Compression Schemes." In International Conference on 
Machine Learning, pp. 3252-3261. 2019.

Stich, Sebastian U., and Sai Praneeth Karimireddy. "The error-feedback framework: Better rates for SGD 
with delayed gradients and compressed communication." arXiv preprint arXiv:1909.05350 (2019).

Seide, Frank, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. "1-bit stochastic gradient descent and 
its application to data-parallel distributed training of speech dnns." In Fifteenth Annual 
Conference of the International Speech Communication Association. 2014.



  

. . .

1 Server broadcasts new parametersStep k+1

2 Workers compute stochastic 
gradients in parallel

3 Compression

4 Devices send compressed 
vectors and update unsent 
information

5 Server gathers 
the information 
and updates the 
parameters

6 Repeat steps 
1 – 5

47



  

Key Assumption

Reflects smoothness properties of the problem and noises introduced by compressions and 
stochastic gradients

Describes the process of variance reduction of the variance coming from compressions

Describes the process of variance reduction of the variance coming from stochastic gradients

48



  

Main Theorem

Some quantity depending only on the 
starting point and stepsize

Linear function

49



  

Methods with Error Compensation Covered by 
Our Framework

Our framework covers even methods without error compensation and 
methods with delayed updates

50



  

Logistic Regression with l2-regularization
51



  

Logistic Regression with l2-regularization

partial variance reduction

52



  

Logistic Regression with l2-regularization

partial variance reduction

full variance reduction

53



  

More Methods Fitting our Framework

The generality of our approach helps to obtain convergence guarantees for a big number of 
different stochastic methods (even without error compensation). Here are some examples.

54



  

More Methods Fitting our Framework

The generality of our approach helps to obtain convergence guarantees for a big number of 
different stochastic methods (even without error compensation). Here are some examples.

Methods without error feedback: SGD, SGD-SR (arbitrary sampling), SAGA, SVRG, 
L-SVRG, QSGD, TernGrad, DQGD, DIANA, DIANAsr-DQ, VR-DIANA, JacSketch, 
SEGA

bold font = new method
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More Methods Fitting our Framework

The generality of our approach helps to obtain convergence guarantees for a big number of 
different stochastic methods (even without error compensation). Here are some examples.

Methods without error feedback: SGD, SGD-SR (arbitrary sampling), SAGA, SVRG, 
L-SVRG, QSGD, TernGrad, DQGD, DIANA, DIANAsr-DQ, VR-DIANA, JacSketch, 
SEGA

Methods with delayed updates: D-SGD, D-SGD-SR (arbitrary sampling), D-QSGD, 
D-SGD-DIANA, D-LSVRG, D-QLSVRG, D-LSVRG-DIANA

bold font = new method

In one theorem, we recover the sharpest rates for all known special cases

Our analysis works for non-strongly convex objectives as well

57



  

4. Unified theory of Local-SGD

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local SGD: 
Unified Theory and New Efficient Methods. International Conference on 
Artificial Intelligence and Statistics. PMLR, 2021.
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Local-SGD



  

60
Local First-Order Methods

A lot of results are already known...
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Local First-Order Methods

A lot of results are already known...

… but many fruitful directions were unexplored

better understanding of the local shifts

importance sampling

variance reduction

variable number of local steps

general theory for multiple data similarity types



  

The Third Problem

A single unifying theoretical framework for different variants of 
Local-SGD for heterogeneous/homogeneous problems

is required

The third contribution of the dissertation



  

Standard Assumptions

– L-smooth and strongly quasi-convex
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Standard Assumptions

– L-smooth and strongly quasi-convex
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Standard Assumptions

– L-smooth and strongly quasi-convex

the solution of the problem

65



  

Key Assumption: “Unbiasedness“
66

However, in general,

needed to prevent clients’ drift via local shifts



  

Key Assumption: Bounded Second Moments
67



  

Key Assumption: Bounded Second Moments
68

virtual iterates:



  

Key Assumption: Bounded Second Moments
69

virtual iterates:

workers’ iterates discrepancy



  

Key Assumption: Shifts and Variance Reduction
70



  

Key Assumption: Iterates Discrepancy
71

workers’ iterates discrepancy



  

Main Theorem: Simplified Version
depends only on the starting point and stepsize

Linear function

72



  

S-Local-SVRG: Update Rule
73

Finite-sum case:



  

S-Local-SVRG: Update Rule
74

Finite-sum case:



  

S-Local-SVRG: Update Rule
75

Finite-sum case:

uniformly at random



  

S-Local-SVRG: Update Rule
76

Finite-sum case:

uniformly at random



  

S-Local-SVRG: Rate of Convergence

S-Local-SVRG finds such 
 

that after

iterations/oracle calls per node

77



  

S-Local-SVRG: Rate of Convergence

S-Local-SVRG finds such 
 

that after

iterations/oracle calls per node

78

The first linearly converging local method for heterogeneous data



  
Our framework covers even methods without local updates

79
Methods Covered by Our Framework



  

5. Faster Distributed Methods with 
Compression for

Non-Convex Optimization 
Eduard Gorbunov, Konstantin P. Burlachenko, Zhize Li, Peter 
Richtarik. MARINA: Faster Non-Convex Distributed Learning with 
Compression, Proceedings of the 38th International Conference on 
Machine Learning, PMLR 139:3788-3798, 2021.



  

Unbiased compression (quantization)
81

 Example: RandK (for K = 2)

Pick K = 2 components uniformly at random

for unbiasedness



  

Known Results for Non-Convex Problems
82

The best-known 
complexity results in the 

non-convex case



  

Known Results for Non-Convex Problems
83

The best-known 
complexity results in the 

non-convex case

For Rand1



  

The Fourth Problem

New distributed methods with compression with better 
convergence guarantees are needed for distributed non-

convex optimization

The fourth contribution of the dissertation



  

Quantized Gradient Descent (QGD)
85

Alistarh, Dan, Demjan Grubic, Jerry Li, Ryota Tomioka, and 
Milan Vojnovic. "QSGD: Communication-efficient SGD via 
gradient quantization and encoding." In Advances in Neural 
Information Processing Systems, pp. 1709-1720. 2017.



  

1 Server broadcasts the parameters

2 Devices compute the gradients

. . .

86

3 Devices quantize the gradients

4 Server gathers quantized gradients

5 Server updates parameters

stepsize

6 Repeat steps 1 - 5



  

Assumptions

1

2

87

Uniform lower bound:

Smoothness:



  

Complexity Bound for QGD
88

Khaled, Ahmed, and Peter Richtárik. "Better theory for SGD in the nonconvex world." arXiv preprint 
arXiv:2002.03329 (2020).

QGD finds such that after



  

Complexity Bound for QGD
89

Khaled, Ahmed, and Peter Richtárik. "Better theory for SGD in the nonconvex world." arXiv preprint 
arXiv:2002.03329 (2020).

QGD finds such that after

communication 
rounds



  

Complexity Bound for QGD
90

Khaled, Ahmed, and Peter Richtárik. "Better theory for SGD in the nonconvex world." arXiv preprint 
arXiv:2002.03329 (2020).

QGD finds such that after

communication 
rounds

Hides 
numerical 
factors and 
smoothness 
constants



  

Complexity Bound for QGD
91

Khaled, Ahmed, and Peter Richtárik. "Better theory for SGD in the nonconvex world." arXiv preprint 
arXiv:2002.03329 (2020).

QGD finds such that after

communication 
rounds

Hides 
numerical 
factors and 
smoothness 
constants

Not optimal!



  

DIANA
92

Mishchenko, Konstantin, Eduard Gorbunov, Martin Takáč, and 
Peter Richtárik. "Distributed learning with compressed gradient 
differences." arXiv preprint arXiv:1901.09269 (2019).

Horváth, Samuel, Dmitry Kovalev, Konstantin Mishchenko, 
Sebastian Stich, and Peter Richtárik. "Stochastic distributed 
learning with gradient quantization and variance reduction." 
arXiv preprint arXiv:1904.05115 (2019).



  

93



  

94

QGD:
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QGD:

DIANA:

learnable local shifts
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QGD:

DIANA:

learnable local shifts

vectors that devices 
have to send



  

Complexity Bounds for DIANA and QGD
97

DIANA:

QGD:



  

Complexity Bound for DIANA
98

DIANA:

QGD:

Is it possible to get better rates?



  

New Method: MARINA
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DIANA:
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DIANA:

MARINA:

typically small
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DIANA:

MARINA:

vectors that devices 
have to send

typically small



  

 

 

Complexity Bounds for MARINA and DIANA
103

DIANA:

MARINA:



  

MARINA with partial participation of clients

Rates under Polyak- Lojasiewicz Condition

104

Explicit dependencies on smoothness constants, non-uniform sampling

Variance Reduced MARINA (uses stochastic gradients instead of full gradients)

Numerical experiments with generalized linear models and neural networks

The Dissertation Also Contains



  

6. Decentralized Fault-Tolerant 
Optimization 

Max Ryabinin, Eduard Gorbunov, Vsevolod Plokhotnyuk, and 
Gennady Pekhimenko. Moshpit SGD: Communication-Efficient 
Decentralized Training on Heterogeneous Unreliable Devices, 
accepted to NeurIPS 2021.
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Communication

With Parameter-Server (PS):

Simple and widely applicable approach

Not scalable: for large number of 
participants the communication is a 
bottleneck

Devices send and 
receive full vectors
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Communication

With Parameter-Server (PS):

Without PS via All-Reduce:

Simple and widely applicable approach

Not scalable: for large number of 
participants the communication is a 
bottleneck

Devices send and 
receive full vectors



  

108
Communication

With Parameter-Server (PS):

Without PS via All-Reduce:

Simple and widely applicable approach

Not scalable: for large number of 
participants the communication is a 
bottleneck

Scalable approach

Not robust to faults

Devices send and 
receive full vectors
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Communication

With Parameter-Server (PS):

Without PS via All-Reduce:

Without PS via gossip:

Simple and widely applicable approach

Not scalable: for large number of 
participants the communication is a 
bottleneck

Scalable approach

Not robust to faults

Devices send and 
receive full vectors

Scalable approach

Inevitable dependence on mixing 
matrix and graph structure

Devices send and 
receive full vectors

Mixing matrix defines the communication pattern



  

The Fifth Problem

New scalable decentralized fault-tolerant algorithm with better 
convergence guarantees than for gossip-based methods

is required

The fifth contribution of the dissertation



  

111
Moshpit All-Reduce: Main Idea

All-Reduce protocols are fragile: the fault of 1 worker affects all other workers
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Moshpit All-Reduce: Main Idea

All-Reduce protocols are fragile: the fault of 1 worker affects all other workers

The idea: execute All-Reduce in small groups
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Moshpit All-Reduce: Main Idea

All-Reduce protocols are fragile: the fault of 1 worker affects all other workers

The idea: execute All-Reduce in small groups

The fault of one peer affects only its group



  

114
Moshpit All-Reduce: General Case



  

115
Moshpit All-Reduce: Theoretical Properties

If n = MN and there are no faults, then Moshpit All-Reduce finds 
an exact average after N steps

Correctness: if all workers have a non-zero probability of successfully running a 
communication round and the order of peerst is random, then all local vectors 
converge to the global average with probability 1: 

Exponential convergence to the average: for a version of Moshpit All-Reduce with 
random splitting into r groups at each step, we have
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Moshpit SGD

Local-SGD with Moshpit All-Reduce instead of averaging

Number of active workers 
at iteration k+1



  

117
Assumptions

Homogeneity:

Bounded variance:

Effect of peers’ 
vanishing is bounded:
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Assumptions

Function f is (strongly) convex

Averaging quality:



  

119
Moshpit SGD: Complexity

Moshpit SGD finds such that after

iterations 
when μ > 0

iterations 
when μ = 0



  

120
Moshpit SGD: Complexity

Moshpit SGD finds such that after

iterations 
when μ > 0

iterations 
when μ = 0

If , then

the complexity of Moshpit SGD matches the complexity of centralized Local-SGD
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Moshpit SGD: ResNet-50 on Imagenet

We evaluate Moshpit SGD and several baselines in two environments 

(16 nodes with 1xV100 and 64 workers with 81 different GPUs)

Comparable to All-Reduce in terms of iterations, faster in terms of time

Decentralized methods run faster, but achieve worse results



  

122
Moshpit SGD: ALBERT on BookCorpus

Baseline: All-Reduce on 8 V100

Moshpit SGD: 66 preemptible GPUs

Cost of spot instances are much smaller, yet we converge 1.5x faster



  

7. Conclusion 



  

Unified theory of methods with error feedback and delayed updates
(16 new methods were proposed and analyzed)

124

Unified theory of SGD methods (5 new methods were proposed and analyzed)

Short Summary of the Results

Unified theory of Local-SGD methods (4 new methods were proposed and analyzed)

Faster methods for non-convex distributed optimization with compression
(3 new methods were proposed and analyzed)

New efficient fault-tolerant method for decentralized optimization was proposed 
and analyzed

New methods were tested numerically
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