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1. Introduction
Consider the following optimization problem

min
x∈Rn

f (x) := 1
2x
>Ax− b>x,

where A is an n × n symmetric positive definite matrix. The problem has a
unique solution: x∗ = A−1b. We are interested in the case when n is huge
(millions, billions). Note that f is (strongly) convex and quadratic.

2. Algorithm: Stochastic Descent
The state-of-the-art methods for convex optimization in huge dimensions are
r̲andomized coordinate descent (RCD) methods. We now describe a method
which includes RCD as a special case: stochastic descent (SD). SD is a
special case of the sketch-and-project method developed in [1].

Algorithm 1 [1, 2] (Stochastic Descent).
Parameter: some distribution D over vectors in Rn

Initialization: Choose x0 ∈ Rn

for t = 0, 1, 2 . . . do
Draw a fresh sample st from D
xt+1←− xt − s>t (Axt−b)

s>t Ast
st

end for

RCD is obtained as a special case by letting D be a distribution over unit
coordinate (i.e., basis) vectors in Rn: {e1, e2, · · · , en}:

st ∼ D ⇔ st = ei with probability pi > 0.

Theorem 1 [1, 2]. Algorithm 1 converges linearly in expectation as
(1− ρmax)t‖x0 − x∗‖2

A ≤ Es∼D[‖xt − x∗‖2
A] ≤ (1− ρmin)t‖x0 − x∗‖2

A,

where ‖x‖A = (x>Ax)1/2, W := Es∼D

[
A1/2ss>A1/2

s>As

]
, ρmax = λmax(W),

ρmin = λmin(W). Moreover, 0 < ρmin ≤ 1/n and ρmax ≤ 1.

3. Research Question
RCD with probabilities pi = Aii/Tr(A) satisfies: ρmin = λ1/Tr(A), where λ1
is the smallest eigenvalue of A. When ρmin is small, RCD is slow. Can we
modify RCD by utilizing some spectral information, if known, so
that the rate gets improved?

4. New Algorithm
Let A =

n∑
i=1

λiuiu
>
i be the eigenvalue decomposition of A, with 0 < λ1 ≤ λ2 ≤

· · · ≤ λn being the eigenvalues, and u1, . . . , un the eigenvectors.
Algorithm 2 (Stochastic Spectral Coordinate Descent).

Parameter: Choose k ∈ {0, . . . , n− 1}; set Ck = kλk+1 + ∑n
i=k+1 λi

Run Algorithm 1 with the following distribution D:

st =

ei with probability pi = Aii

Ck
, i = 1, 2, . . . , n

ui with probability pn+i = λk+1−λi

Ck
, i = 1, 2, . . . , k.

Note that for k = 0, Algorithm 2 reduces to RCD.
Theorem 2. For every n ≥ 2, Algorithm 2 has the rate

ρmin = λk+1

Ck
.

Moreover, the rate improves as k grows, and interpolates between the
RCD rate λ1/Tr(A) for k = 0, and the optimal rate 1/n for k = n− 1:

λ1

Tr(A)
= λ1

C0
≤ · · · ≤ λk+1

Ck
≤ · · · ≤ λn−1

Cn−2
≤ λn

Cn−1
= 1

n
.

The total work of Algorithm 2 depends on k:
Work(D) := P (D)︸ ︷︷ ︸

preprocessing cost

+ C(D)︸ ︷︷ ︸
cost of 1 iteration

× I(D)︸ ︷︷ ︸
number of iterations till ε-solution

k P (D) C(D) I(D)
0 O(n) O(n) Tr(A)

λ1
ln(1/ε)

0 < k < n− 1 computation of λi for i = 1, 2, . . . , k + 1
computation of ui for i = 1, 2, . . . , k

O(n) Ck

λk+1
ln(1/ε)

n− 1 computation of λi for i = 1, 2, . . . , n
computation of ui for i = 1, 2, . . . , n− 1 O(n) n ln(1/ε)

5. Numerical Experiments

Figure: Eigenvalues were sampled from
uniform distribution on [10; 11]; n = 50

Figure: Eigenvalues were sampled from
uniform distribution on [0; 100, 000]; n = 50

Figure: Eigenvalues decay exponentially;
n = 10

Figure: All eigenvalues equal to 1, except for
the largest, which is equal to 1,000; n = 10

Figure: Half of eigenvalues were sampled from
uniform distribution on [10, 11] and half from
uniform distribution on [100, 101]; n = 20

Figure: Half of eigenvalues were sampled from
uniform distribution on [50, 51] and half from
uniform distribution on [100, 101]; n = 20

Figure: One third of eigenvalues were sampled
from uniform distribution on [10; 11], one third
from uniform distribution on [100; 101] and
one third from uniform distribution on
[1, 000; 1, 001]; n = 30

Figure: Two thirds of eigenvalues were sampled
from uniform distribution on [100; 101] and
one third from uniform distribution on
[1000, 1001]; n = 30

6. Bibliography
[1] R. M. Gower and P. Richtárik. Randomized iterative methods for linear

systems. SIAM Journal on Matrix Analysis and Applications, 36(4):1660–
1690, 2015.

[2] P. Richtárik and M. Takáč. Stochastic reformulations of linear systems: Al-
gorithms and convergence theory. arXiv preprint arXiv:1706.01108, 2017.


