

We are interested in solving the unconstrained minimization problem

$$\min_{w \in \mathbb{R}^d} f(w)$$

- These problems appear in computer vision, natural language processing and other machine-learning tasks.
- The standard algorithm for solving this problem is stochastic gradient descent (SGD):

$$w_{t+1} = w_t -
u_t g_t$$

- However, tuning the step size is a significant issue when training large models. Therefore, we need adaptive methods.
- AdaGrad step size:

$$u_t = rac{eta}{\sqrt{ ext{diag}\left(\Delta I + \sum_{ au=0}^t g_ au g_ au^ op
ight)}}$$

- AdaGrad is not scale-invariant and suffers when data is poorly scaled.
- We propose a scale-invariant algorithm, KATE (by removing the square root from the denominator), which uses step size:

$$u_t = rac{eta m_t}{ ext{diag} \left(\Delta I + \sum_{ au=0}^t g_ au g_ au^ op
ight)}$$

Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad

Require: Initial point $w_0 \in \mathbb{R}^d$, step size $\beta > 0, \eta \in \mathbb{R}^d_+$ and $b_{-1}, m_{-1} = 0$.

- 1: **for** t = 0, 1, ..., T **do**
- 2: Compute $g_t \in \mathbb{R}^d$ such that $\mathbb{E}[g_t] = \nabla f(w_t)$.
- 3: $b_t^2 = b_{t-1}^2 + g_t^2$
- 4: $m_t^2 = m_{t-1}^2 + \eta g_t^2 + \frac{g_t^2}{b_t^2}$
- 5: $w_{t+1} = w_t \frac{\beta m_t}{b_t^2} g_t$

Sayantan Choudhury, Nazarii Tupitsa, Nicolas Loizou, Samuel Horvarth, Martin Takac, Eduard Gorbunov

Scan me!

 We rigorously prove that KATE is scale-invariant for solving generalised linear models (GLMs).

Convergence Guarantees:

Algorithm	Convergence rate	Scale invariance
AdaGradNorm (Ward et al., 2020)	$\mathcal{O}\left(\log T \middle/ \sqrt{T} ight)$	X
AdaGrad (Défossez et al., 2020)	$\mathcal{O}\left(\log T/\sqrt{T} ight)$	X
Adam (Défossez et al., 2020)	$\mathcal{O}\left(\log T \big/ \sqrt{T} ight)$	X
KATE (this work)	$\mathcal{O}\left(\log T/\sqrt{T} ight)$	✓

Numerical Experiments:

Robustness of KATE

Scale-Invariance of KATE

Training ResNet18 on CIFAR10

BERT Finetuning on Emotions

