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The Problem

We study the optimization problem of Federated
Learning (FL), which has the form

min
x∈Rd

f (x) := 1
M

M∑
m=1

fm(x)

 , (1)

where M is the number of clients/devices and each
function

fm(x) := 1
n

n∑
i=1

f i
m(x), (2)

represents the loss on client m.

Smoothness & Strong Convexity

• Smoothness
∥∇f i

m(x) − ∇f i
m(y)∥ ≤ Li,m∥x − y∥;

• Strong convexity of objective function
µ

2
∥x − y∥2 ≤ f (x) − f (y) − ⟨∇f (y), x − y⟩ ;

• Strong convexity of each losses on clients
µ̃

2
∥x − y∥2 ≤ f i

m(x)−f i
m(y)−

〈
∇f i

m(y), x − y
〉

;

for all m ∈ [M ] and i ∈ [n].
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Compressed Learning

Unbiased Compressor

A compression operator is a randomized mapping
Q : Rd → Rd such that for some ω > 0
E [Q(x)] = x, E

[
∥Q(x) − x∥2

]
≤ ω∥x∥2

for all x ∈ Rd.

• Rand-K sparsification operator is defined via

Q(x) := d

k

∑
i∈S

xiei,

where S ⊆ [d] is a subset of [d] of cardinality k
chosen uniformly at random. This is unbiased
compressor with ω := d

k − 1.

Main Goal

Design and analyze communication-efficient algo-
rithms for Federated Learning using compression,
random reshuffling, and/or local steps and improv-
ing upon existing algorithms both theoretically
and practically.

Notation

• [M ] := {1, . . . , M}
• Bregman divergence:

Dh(x, y) := h(x) − h(y) − ⟨∇h(y), y − x⟩;
• Maximal smoothness constant:

Lmax := max
i,m

Li,m;

• Iterate sequence
{
xi

⋆

}
i:

xi+1
⋆ = xi

⋆ − γ

M

M∑
m=1

∇fπi
m

m (x⋆)

• Shuffling radius:

σ2
rad := maxi

{
1

γ2M

M∑
m=1

EDfπi
m

(
xi

⋆, x⋆

)}
• Heterogeneity constant:

ζ2
⋆ := 1

M

M∑
m=1

∥∇fm (x⋆)∥2 ;

• Variances at the solution point x⋆:

σ2
⋆ := 1

Mn

M∑
m=1

n∑
i=1

∥∥∥∇f i
m (x⋆) − ∇fm (x⋆)

∥∥∥2
.

Algorithms & Communication complexities

Q-RR

1: Input: x0 – starting point,γ > 0 – stepsize
2: for t = 0, 1, . . . , T − 1 do
3: Receive xt from the server
4: x0

t,m = xt

5: Sample random permutation of [n]:
πm = (π0

m, . . . , πn−1
m )

6: for i = 0, 1, . . . , n − 1 do
7: for m = 1, . . . , M in parallel do
8: Receive xi

t from the server
9: Compute and send Q

(
∇f

πi
m

m (xi
t)
)

10: xi+1
t = xi

t − γ 1
M

∑M
m=1 Q

(
∇f

πi
m

m (xi
t)
)

11: Send xi+1
t to the workers

12: xt+1 = xn
t

13: Output: xT

Q-RR [NEW]:

Õ
((

1 + ω

M

)
Lmax

µ̃
+ ω (ζ2

⋆ + σ2
⋆)

Mµ̃2ε
+ σrad√

µ̃3ε

)
QSGD [1]:

Õ
((

1 + ω

M

)
Lmax

µ
+ (ωζ2

⋆ + (1 + ω)σ2
⋆)

Mµ2ε

)
.

✓ Easy to implement;
✓ Memory friendly (does not require storing any
additional vectors).
✗ Q-RR has no theoretical advantages over QSGD
unless ω is very small. This phenomenon is also
observed in the experiments.
This method illustrates non-triviality of proper
generalization of RR to the distributed learning with
compression.

DIANA-RR

1: Input: x0 – starting point, {hi
0,m}M,n

m,i=1,1 – initial
shift-vectors, γ > 0 – stepsize, α > 0 – stepsize for
learning the shifts

2: for t = 0, 1, . . . , T − 1 do
3: Receive xt from the server
4: x0

t,m = xt

5: Sample random permutation of [n]:
πm = (π0

m, . . . , πn−1
m )

6: for i = 0, 1, . . . , n − 1 do
7: for m = 1, 2, . . . , M in parallel do
8: Receive xi

t from the server
9: Compute and send Q

(
∇f

πi
m

m (xi
t) − h

πi
m

t,m

)
10: ĝ

πi
m

t,m = h
πi

m
t,m + Q

(
∇f

πi
m

m (xi
t,m) − h

πi
m

t,m

)
11: h

πi
m

t+1,m = h
πi

m
t,m + αQ

(
∇f

πi
m

m (xi
t,m) − h

πi
m

t,m

)
12: xi+1

t = xi
t − γ 1

M

∑M
m=1 ĝ

πi
m

t,m

13: Send xi+1
t to the workers

14: xt+1 = xn
t

15: Output: xT

DIANA-RR [NEW]:

Õ
(

n(1 + ω) +
(

1 + ω

M

)
Lmax

µ̃
+ σrad√

εµ̃3

)
DIANA [1]:

Õ
((

1 + ω

M

)
Lmax

µ
+ (1 + ω)σ2

⋆

Mµ2ε

)
.

✓ Unlike Q-RR, DIANA-RR does not have a Õ (1/ε)
term;
✓ Overall complexity of DIANA-RR improves over
DIANA, since O (σrad/

√
εµ̃3) has a better dependence

on ε than O
(

(1+ω)σ2
⋆/(Mµ2ε)

)
.

✗ It can be memory expensive to maintain{
hi

t,m

}
m∈[M ],i∈[n]

shifts.

Q-NASTYA

1: Input: x0 – starting point, γ > 0 – local stepsize,
η > 0 – global stepsize

2: for t = 0, 1, . . . , T − 1 do
3: for m = 1, . . . , M in parallel do
4: Receive xt from the server
5: x0

t,m = xt

6: Sample random permutation of [n]:
πm = (π0

m, . . . , πn−1
m )

7: for i = 0, 1, . . . , n − 1 do
8: xi+1

t,m = xi
t,m − γ∇f

πi
m

m (xi
t,m)

9: gt,m = 1
γn

(
xt − xn

t,m

)
10: Send Qt(gt,m) to the server
11: gt = 1

M

∑M
m=1 Qt(gt,m)

12: xt+1 = xt − ηgt

13: Send xt+1 to the workers
14: xT = xn

T

15: Output: xT

Q-NASTYA [NEW]:
Õ
(

Lmax
µ

(
1 + ω

M

)
+ ω

M
ζ2

⋆

εµ3 +
√

Lmax
εµ3

√
ζ2

⋆ + σ2
⋆

n

)
FedPAQ [2]:

Õ
(

Lmax

µ

(
1 + ω

M

)
+ ω

M

σ2

µ2ε
+ σ2

Mµ2ε

)
.

✓ Unlike FedCOM [4], Q-NASTYA provably works in
a fully heterogeneous regime;
✓ Unlike FedPAQ, analysis of Q-NASTYA does not
rely on the bounded variance assumption;
✓ Unlike FedCRR [3], Q-NASTYA converges for any
ω ≥ 0;
✓ If ω is small, complexity of Q-NASTYA is superior
to FedPAQ.
✗ In the big ω regime, Q-NASTYA has the same
Õ (1/ε) dependence as FedPAQ.

DIANA-NASTYA

1: Input: x0 – starting point, {h0,m}M
m=1 – initial

shift-vectors, γ > 0 – local stepsize, η > 0 – global
stepsize, α > 0 – stepsize for learning the shifts

2: for t = 0, 1, . . . , T − 1 do
3: for m = 1, . . . , M in parallel do
4: Receive xt from the server
5: x0

t,m = xt

6: Sample random permutation of [n]:
πm = (π0

m, . . . , πn−1
m )

7: for i = 0, 1, . . . , n − 1 do
8: xi+1

t,m = xi
t,m − γ∇f

πi
m

m (xi
t,m)

9: gt,m = 1
γn

(
xt − xn

t,m

)
10: Send Qt (gt,m − ht,m) to the server
11: ht+1,m = ht,m + αQt (gt,m − ht,m)
12: ĝt,m = ht,m + Qt (gt,m − ht,m)
13: ht+1 = ht + α

M

∑M
m=1 Qt (gt,m − ht,m)

14: ĝt = ht + 1
M

∑M
m=1 Qt (gt,m − ht,m)

15: xt+1 = xt − ηĝt

16: Output: xT

DIANA-NASTYA [NEW]:

Õ

ω + Lmax

µ

(
1 + ω

M

)
+
√

Lmax

εµ3

√
ζ2

⋆ + σ2
⋆

n


FedCRR-VR [3]:

Õ

(ω + 1)
(
1 − 1

κ

)n

(
1 −

(
1 − 1

κ

)n)2 +
√

κ (ζ⋆ + σ⋆)
µ

√
ε


✓ The complexity of DIANA-NASTYA is superior to
both FedPAQ and Q-NASTYA;
✓ If κ := Lmax

µ ≫ 1, complexity of DIANA-NASTYA
is better than for FedCRR-VR.
• Each worker i has to maintain an additional vector
state ht,m, which causes an additional memory cost.

Experiments
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Figure 1:The comparison of Q-NASTYA, DIANA-NASTYA, Q-RR, DIANA-RR and existing baselines (FedCOM, FedPAQ)
on binary classification problem with with M = 10 workers. Stepsizes were tuned and workers used Rand-k compressor with
k/d = 0.02 (k = 6, d = 300).
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Figure 2:The comparison of Q-RR, QSGD, DIANA, and DIANA-RR on the task of training ResNet-18 on CIFAR-10 with M = 10
workers. Stepsizes were tuned and workers used Rand-k compressor with k/d = 0.05.


