Don't Compress Gradients in Random Reshuffling: Compress Gradient Differences

Abdurakhmon Sadiev 1,2 Grigory Malinovsky 1 Eduard Gorbunov 1,2,3,4 Igor Sokolov 1 Ahmed Khaled 5 Konstantin Burlachenko 1

Peter Richtárik¹

¹KAUST ³MBZUAI ⁴MILA

⁵Princeton University Algorithms & Communication complexities

The Problem

We study the optimization problem of Federated Learning (FL), which has the form

$$\min_{x \in \mathbb{R}^d} \left[f(x) := \frac{1}{M} \sum_{m=1}^M f_m(x) \right], \qquad (1)$$

$$A \text{ compression operator is a randomized norm } \mathcal{Q} : \mathbb{R}^d \to \mathbb{R}^d \text{ such that for some } \omega > 0$$

$$\mathbb{E} \left[\mathcal{Q}(x) \right] = x \qquad \mathbb{E} \left[\| \mathcal{Q}(x) - x \|^2 \right] < \omega$$

where M is the number of clients/devices and each function

$$f_m(x) := \frac{1}{n} \sum_{i=1}^n f_m^i(x),$$
 (2)

represents the loss on client m.

Smoothness & Strong Convexity

Smoothness

$$\|\nabla f_m^i(x) - \nabla f_m^i(y)\| \le L_{i,m} \|x - y\|;$$

Strong convexity of objective function

$$\frac{\mu}{2} \|x - y\|^2 \le f(x) - f(y) - \langle \nabla f(y), x - y \rangle;$$

• Strong convexity of each losses on clients

$$\frac{\widetilde{\mu}}{2} \|x - y\|^2 \le f_m^i(x) - f_m^i(y) - \left\langle \nabla f_m^i(y), x - y \right\rangle;$$
 for all $m \in [M]$ and $i \in [n]$.

References

[1] Gorbunov, et al. "A Unified Theory of SGD: Variance Reduction, Sampling, Quantization and Coordinate Descent." AIS-TATS, 2020.

[2] Reisizadeh, et al. "Fedpaq: A communication-efficient federated learning method with periodic averaging and quantization." AISTATS, 2020.

[3] Malinovsky, et al. "Federated random reshuffling with compression and variance reduction." arXiv, 2022.

[4] Haddadpour, et al. "Federated learning with compression: Unified analysis and sharp guarantees." AISTATS, 2021.

Compressed Learning

Unbiased Compressor

A compression operator is a randomized mapping

$$\mathbb{E}\left[\mathcal{Q}(x)\right] = x, \qquad \mathbb{E}\left[\|\mathcal{Q}(x) - x\|^2\right] \le \omega \|x\|^2$$
 for all $x \in \mathbb{R}^d$.

 \bullet Rand-K sparsification operator is defined via

$$Q(x) := \frac{d}{k} \sum_{i \in S} x_i e_i,$$

where $S \subseteq [d]$ is a subset of [d] of cardinality kchosen uniformly at random. This is unbiased compressor with $\omega := \frac{d}{k} - 1$.

Main Goal

Design and analyze communication-efficient algorithms for Federated Learning using compression, random reshuffling, and/or local steps and improving upon existing algorithms both theoretically and practically.

Notation

- $[M] := \{1, \dots, M\}$
- Bregman divergence:

$$D_h(x,y) := h(x) - h(y) - \langle \nabla h(y), y - x \rangle;$$

• Maximal smoothness constant:

$$L_{\max} := \max_{i \mid m} L_{i,m};$$

• Iterate sequence $\{x_{\star}^{i}\}_{i}$:

$$x_{\star}^{i+1} = x_{\star}^{i} - \frac{\gamma}{M} \sum_{m=1}^{M} \nabla f_{m}^{\pi_{m}^{i}}(x_{\star})$$

Shuffling radius:

$$\sigma_{rad}^2 := \max_i \left\{ \frac{1}{\gamma^2 M} \sum_{m=1}^M \mathbb{E} D_{f_m^{\pi^i}} \left(x_\star^i, x_\star \right) \right\}$$

• Heterogeneity constant:

$$\zeta_{\star}^{2} := \frac{1}{M} \sum_{m=1}^{M} \left\| \nabla f_{m} \left(x_{\star} \right) \right\|^{2};$$

• Variances at the solution point x^* :

$$\sigma_{\star}^{2} := \frac{1}{Mn} \sum_{m=1}^{M} \sum_{i=1}^{n} \left\| \nabla f_{m}^{i} \left(x_{\star} \right) - \nabla f_{m} \left(x_{\star} \right) \right\|^{2}.$$

Q-RR

```
Input: x_0 – starting point, \gamma > 0 – stepsize
    e: \mathbf{for} \ t = 0, 1, \dots, T - 1 \ \mathbf{do}
  3: Receive x_t from the server
   4: x_{t m}^0 = x_t
 5: Sample random permutation of [n]:
      \pi_m = (\pi_m^0, \dots, \pi_m^{n-1})
       for i = 0, 1, ..., n - 1 do
              for m = 1, ..., M in parallel do
                 Receive x_t^i from the server
                 Compute and send \mathcal{Q}\left(\nabla f_m^{\pi_m^i}(x_t^i)\right)
10: x_t^{i+1} = x_t^i - \gamma \frac{1}{M} \sum_{m=1}^M \mathcal{Q} \left( \nabla f_m^{\pi_m^i}(x_t^i) \right)
11: Send x_t^{i+1} to the workers
 12: x_{t+1} = x_t^n
13: Output: x_T
    Q-RR [NEW]:
    \widetilde{\mathcal{O}}\left(\left(1+\frac{\omega}{M}\right)\frac{L_{\max}}{\widetilde{\mu}}+\frac{\omega\left(\zeta_{\star}^{2}+\sigma_{\star}^{2}\right)}{M\widetilde{\mu}^{2}\varepsilon}+\frac{\sigma_{rad}}{\sqrt{\widetilde{\mu}^{3}\varepsilon}}\right)
     QSGD [1]:
    \widetilde{\mathcal{O}}\left(\left(1+\frac{\omega}{M}\right)\frac{L_{\max}}{\mu}+\frac{(\omega\zeta_{\star}^2+(1+\omega)\sigma_{\star}^2)}{M\mu^2\varepsilon}\right).
```

✓ Easy to implement;

✓ Memory friendly (does not require storing any additional vectors).

X Q-RR has no theoretical advantages over QSGD unless ω is very small. This phenomenon is also observed in the experiments.

This method illustrates non-triviality of proper generalization of RR to the distributed learning with compression.

DIANA-RR

```
Input: x_0 – starting point, \{h_{0,m}^i\}_{m,i=1,1}^{M,n} – initial
      shift-vectors, \gamma > 0 – stepsize, \alpha > 0 – stepsize for
      learning the shifts
     for t = 0, 1, ..., T - 1 do
         Receive x_t from the server
        x_{t,m}^{0} = x_{t}
        Sample random permutation of [n]:
      \pi_m = (\pi_m^0, \dots, \pi_m^{n-1})
          for i = 0, 1, ..., n - 1 do
              for m = 1, 2, ..., M in parallel do
                Receive x_t^i from the server
                 Compute and send \mathcal{Q}\left(\nabla f_m^{\pi_m^i}(x_t^i) - h_{t,m}^{\pi_m^i}\right)
                \hat{g}_{t,m}^{\pi_{m}^{i}} = h_{t,m}^{\pi_{m}^{i}} + \mathcal{Q}\left(
abla f_{m}^{\pi_{m}^{i}}(x_{t,m}^{i}) - h_{t,m}^{\pi_{m}^{i}}
ight)
                h_{t+1,m}^{\pi_m^i} = h_{t,m}^{\pi_m^i} + lpha \mathcal{Q} \left( 
abla f_m^{\pi_m^i}(x_{t,m}^i) - h_{t,m}^{\pi_m^i} 
ight)
            x_t^{i+1} = x_t^i - \gamma \frac{1}{M} \sum_{m=1}^{M} \hat{g}_{t,m}^{\pi_m^i}
 13: Send x_t^{i+1} to the workers
14: x_{t+1} = x_t^n
     : Output: x_T
```

DIANA-RR [NEW]:

$$\widetilde{\mathcal{O}}\left(n(1+\omega) + \left(1 + \frac{\omega}{M}\right) \frac{L_{\max}}{\widetilde{\mu}} + \frac{\sigma_{rad}}{\sqrt{\varepsilon}\widetilde{\mu}^3}\right)$$
DIANA [1]:
$$\widetilde{\mathcal{O}}\left(\left(1 + \frac{\omega}{M}\right) \frac{L_{\max}}{\mu} + \frac{(1+\omega)\sigma_{\star}^2}{M\mu^2\varepsilon}\right).$$

✓ Unlike Q-RR, DIANA-RR does not have a $\mathcal{O}(1/\varepsilon)$

✓ Overall complexity of DIANA-RR improves over **DIANA**, since $\mathcal{O}\left(\sigma_{\text{rad}}/\sqrt{\varepsilon\tilde{\mu}^3}\right)$ has a better dependence on ε than $\mathcal{O}\left(\frac{(1+\omega)\sigma_{\star}^2}{(M\mu^2\varepsilon)}\right)$.

X It can be memory expensive to maintain

Q-NASTYA

```
Input: x_0 – starting point, \gamma > 0 – local stepsize,
     \eta > 0 – global stepsize
     for t = 0, 1, ..., T - 1 do
         for m=1,\ldots,M in parallel \mathbf{do}
              Receive x_t from the server
             x_{t.m}^{0} = x_{t}
             Sample random permutation of [n]:
      \pi_m = (\pi_m^0, \dots, \pi_m^{n-1})
             for i = 0, 1, ..., n - 1 do
                x_{t,m}^{i+1} = x_{t,m}^i - \gamma \nabla f_m^{\pi_m^i}(x_{t,m}^i)
            g_{t,m} = \frac{1}{\gamma_n} \left( x_t - x_{t,m}^n \right)
            Send \mathcal{Q}_t(g_{t,m}) to the server
11: g_t = \frac{1}{M} \sum_{m=1}^{M} Q_t(g_{t,m})
12: x_{t+1} = x_t - \eta g_t
13: Send x_{t+1} to the workers
14: x_T = x_T^n
15: Output: x_T
       Q-NASTYA [NEW]:
     \widetilde{\mathcal{O}}\left(\frac{L_{\max}}{\mu}\left(1+\frac{\omega}{M}\right)+\frac{\omega}{M}\frac{\zeta_{\star}^{2}}{\varepsilon\mu^{3}}+\sqrt{\frac{L_{\max}}{\varepsilon\mu^{3}}}\sqrt{\zeta_{\star}^{2}+\frac{\sigma_{\star}^{2}}{n}}\right)
```

FedPAQ [2]:

$$\widetilde{\mathcal{O}}\left(\frac{L_{\max}}{\mu}\left(1+\frac{\omega}{M}\right)+\frac{\omega}{M}\frac{\sigma^2}{\mu^2\varepsilon}+\frac{\sigma^2}{M\mu^2\varepsilon}\right).$$

✓ Unlike FedCOM [4], Q-NASTYA provably works in a fully heterogeneous regime;

✓ Unlike FedPAQ, analysis of Q-NASTYA does not rely on the bounded variance assumption;

✓ Unlike FedCRR [3], Q-NASTYA converges for any $\omega \geq 0;$ ✓ If ω is small, complexity of Q-NASTYA is superior

to FedPAQ. \times In the big ω regime, Q-NASTYA has the same

 $\mathcal{O}(1/\varepsilon)$ dependence as FedPAQ.

DIANA-NASTYA

: **Input:** x_0 – starting point, $\{h_{0,m}\}_{m=1}^M$ – initial shift-vectors, $\gamma > 0$ – local stepsize, $\eta > 0$ – global stepsize, $\alpha > 0$ – stepsize for learning the shifts : $\mathbf{for}\ t = 0, 1, \dots, T - 1\ \mathbf{do}$ for m = 1, ..., M in parallel do Receive x_t from the server $x_{t,m}^{0} = x_{t}$ Sample random permutation of [n]: $\pi_m = (\pi_m^0, \dots, \pi_m^{n-1})$ for i = 0, 1, ..., n - 1 do $x_{t,m}^{i+1} = x_{t,m}^i - \gamma \nabla f_m^{\pi_m^i}(x_{t,m}^i)$ $g_{t,m} = \frac{1}{\gamma n} (x_t - x_{t,m}^n)$ Send $Q_t(g_{t,m} - h_{t,m})$ to the server $h_{t+1,m} = h_{t,m} + \alpha \mathcal{Q}_t \left(g_{t,m} - h_{t,m} \right)$ $\hat{g}_{t,m} = h_{t,m} + \mathcal{Q}_t \left(g_{t,m} - h_{t,m} \right)$ $h_{t+1} = h_t + \frac{\alpha}{M} \sum_{m=1}^{M} Q_t (g_{t,m} - h_{t,m})$ $\hat{g}_t = h_t + \frac{1}{M} \sum_{m=1}^{M} Q_t (g_{t,m} - h_{t,m})$ $x_{t+1} = x_t - \eta \hat{g}_t$ 16: Output: x_T

DIANA-NASTYA [NEW]:

$$\widetilde{\mathcal{O}}\left(\omega + \frac{L_{\max}}{\mu}\left(1 + \frac{\omega}{M}\right) + \sqrt{\frac{L_{\max}}{\varepsilon\mu^3}}\sqrt{\zeta_{\star}^2 + \frac{\sigma_{\star}^2}{n}}\right)$$
FedCRR-VR [3]:

FedCRR-VR [3]:

$$\widetilde{\mathcal{O}}\left(\frac{\left(\omega+1\right)\left(1-\frac{1}{\kappa}\right)^{n}}{\left(1-\left(1-\frac{1}{\kappa}\right)^{n}\right)^{2}}+\frac{\sqrt{\kappa}\left(\zeta_{\star}+\sigma_{\star}\right)}{\mu\sqrt{\varepsilon}}\right)$$

✓ The complexity of **DIANA-NASTYA** is superior to both FedPAQ and Q-NASTYA;

✓ If $\kappa := \frac{L_{\text{max}}}{U} \gg 1$, complexity of DIANA-NASTYA is better than for FedCRR-VR.

• Each worker i has to maintain an additional vector state $h_{t,m}$, which causes an additional memory cost.

Experiments

Figure 1:The comparison of Q-NASTYA, DIANA-NASTYA, Q-RR, DIANA-RR and existing baselines (FedCOM, FedPAQ) on binary classification problem with with M=10 workers. Stepsizes were tuned and workers used Rand-k compressor with k/d = 0.02 (k = 6, d = 300).

Figure 2: The comparison of \mathbb{Q} -RR, \mathbb{Q} SGD, \mathbb{D} IANA, and \mathbb{D} IANA-RR on the task of training ResNet-18 on CIFAR-10 with M=10workers. Stepsizes were tuned and workers used Rand-k compressor with k/d = 0.05.