Don’'t Compress Gradients in Random Reshuffling: Compress Gradient Differences
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e Strong convexity of objective function
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e Strong convexity of each losses on clients

o [M]:={1,...,M)}
e Bregman divergence:

Dy(z,y) = h(z) — h(y) — (Vh(y),y — x);
e Maximal smoothness constant:

Lmax — INax Lz,ma

X Q-RR has no theoretical advantages over QSGD
unless w is very small. This phenomenon is also
observed in the experiments.

This method illustrates non-triviality of proper
generalization of RR to the distributed learning with
COMPress1on.

/ Unlike Q-RR, DIANA-RR does not have a O (1/e)

term;

v' Overall complexity of DIANA-RR improves over
DIANA, since O (owa/\/=i3) has a better dependence
on ¢ than O ((L+w)or/(mpe)).

v" Unlike FedPAQ), analysis of Q-NASTYA does not
rely on the bounded variance assumption;

v Unlike FedCRR [3], Q-NASTYA converges for any
w > 0;

v' If w is small, complexity of Q-NASTYA is superior
to FedPAQ.

(1= (-9

v' The complexity of DIANA-NASTYA is superior to
both FedPAQ and Q-NASTYA;

/If k= 2> 1, complexity of DIANA-NASTYA
is better than for FedCRR-VR.

e [tach worker ¢ has to maintain an additional vector
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2 e [terate sequence {xi} : { % } shifts. O (1/¢) dependence as FedPAQ. state hy,,, which causes an additional memory cost.
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Figure 1:The comparison of Q-NASTYA, DIANA-NASTYA, Q-RR, DIANA-RR and existing baselines (FedCOM, Fed PAQ)
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Figure 2:The comparison of Q-RR, QSGD, DIANA, and DIANA-RR on the task of training ResNet-18 on CIFAR-10 with M = 10

on binary classification problem with with M = 10 workers. Stepsizes were tuned and workers used Rand-k compressor with ~ workers. Stepsizes were tuned and workers used Rand-k compressor with #/a = 0.05.

k/a = 0.02 (k = 6,d = 300).



