
Don’t Compress Gradients in Random Reshuffling: Compress Gradient Differences
Abdurakhmon Sadiev1,2 Grigory Malinovsky1 Eduard Gorbunov1,2,3,4 Igor Sokolov1 Ahmed Khaled5 Konstantin Burlachenko1

Peter Richtárik1
1KAUST 2MIPT 3MBZUAI 4MILA 5Princeton University

The Problem

We study the optimization problem of Federated
Learning (FL), which has the form

min
x∈Rd

f (x) := 1
M

M∑
m=1

fm(x)

 , (1)

where M is the number of clients/devices and each
function

fm(x) := 1
n

n∑
i=1

f i
m(x), (2)

represents the loss on client m.

Smoothness & Strong Convexity

• Smoothness
∥∇f i

m(x) − ∇f i
m(y)∥ ≤ Li,m∥x − y∥;

• Strong convexity of objective function
µ

2
∥x − y∥2 ≤ f (x) − f (y) − ⟨∇f (y), x − y⟩ ;

• Strong convexity of each losses on clients
µ̃

2
∥x − y∥2 ≤ f i

m(x)−f i
m(y)−

〈
∇f i

m(y), x − y
〉

;

for all m ∈ [M ] and i ∈ [n].

References

[1] Gorbunov, et al. "A Unified Theory of SGD: Variance Re-
duction, Sampling, Quantization and Coordinate Descent." AIS-
TATS, 2020.
[2] Reisizadeh, et al. "Fedpaq: A communication-efficient feder-
ated learning method with periodic averaging and quantization."
AISTATS, 2020.
[3] Malinovsky, et al. "Federated random reshuffling with com-
pression and variance reduction." arXiv, 2022.
[4] Haddadpour, et al. "Federated learning with compression:
Unified analysis and sharp guarantees." AISTATS, 2021.

Compressed Learning

Unbiased Compressor

A compression operator is a randomized mapping
Q : Rd → Rd such that for some ω > 0
E [Q(x)] = x, E

[
∥Q(x) − x∥2

]
≤ ω∥x∥2

for all x ∈ Rd.

• Rand-K sparsification operator is defined via

Q(x) := d

k

∑
i∈S

xiei,

where S ⊆ [d] is a subset of [d] of cardinality k
chosen uniformly at random. This is unbiased
compressor with ω := d

k − 1.

Main Goal

Design and analyze communication-efficient algo-
rithms for Federated Learning using compression,
random reshuffling, and/or local steps and improv-
ing upon existing algorithms both theoretically
and practically.

Notation

• [M ] := {1, . . . , M}
• Bregman divergence:

Dh(x, y) := h(x) − h(y) − ⟨∇h(y), y − x⟩;
• Maximal smoothness constant:

Lmax := max
i,m

Li,m;

• Iterate sequence
{
xi

⋆

}
i:

xi+1
⋆ = xi

⋆ − γ

M

M∑
m=1

∇fπi
m

m (x⋆)

• Shuffling radius:

σ2
rad := maxi

{
1

γ2M

M∑
m=1

EDfπi
m

(
xi

⋆, x⋆

)}
• Heterogeneity constant:

ζ2
⋆ := 1

M

M∑
m=1

∥∇fm (x⋆)∥2 ;

• Variances at the solution point x⋆:

σ2
⋆ := 1

Mn

M∑
m=1

n∑
i=1

∥∥∥∇f i
m (x⋆) − ∇fm (x⋆)

∥∥∥2
.

Algorithms & Communication complexities

Q-RR

1: Input: x0 – starting point,γ > 0 – stepsize
2: for t = 0, 1, . . . , T − 1 do
3: Receive xt from the server
4: x0

t,m = xt

5: Sample random permutation of [n]:
πm = (π0

m, . . . , πn−1
m )

6: for i = 0, 1, . . . , n − 1 do
7: for m = 1, . . . , M in parallel do
8: Receive xi

t from the server
9: Compute and send Q

(
∇f

πi
m

m (xi
t)
)

10: xi+1
t = xi

t − γ 1
M

∑M
m=1 Q

(
∇f

πi
m

m (xi
t)
)

11: Send xi+1
t to the workers

12: xt+1 = xn
t

13: Output: xT

Q-RR [NEW]:

Õ
((

1 + ω

M

)
Lmax

µ̃
+ ω (ζ2

⋆ + σ2
⋆)

Mµ̃2ε
+ σrad√

µ̃3ε

)
QSGD [1]:

Õ
((

1 + ω

M

)
Lmax

µ
+ (ωζ2

⋆ + (1 + ω)σ2
⋆)

Mµ2ε

)
.

✓ Easy to implement;
✓ Memory friendly (does not require storing any
additional vectors).
✗ Q-RR has no theoretical advantages over QSGD
unless ω is very small. This phenomenon is also
observed in the experiments.
This method illustrates non-triviality of proper
generalization of RR to the distributed learning with
compression.

DIANA-RR

1: Input: x0 – starting point, {hi
0,m}M,n

m,i=1,1 – initial
shift-vectors, γ > 0 – stepsize, α > 0 – stepsize for
learning the shifts

2: for t = 0, 1, . . . , T − 1 do
3: Receive xt from the server
4: x0

t,m = xt

5: Sample random permutation of [n]:
πm = (π0

m, . . . , πn−1
m )

6: for i = 0, 1, . . . , n − 1 do
7: for m = 1, 2, . . . , M in parallel do
8: Receive xi

t from the server
9: Compute and send Q

(
∇f

πi
m

m (xi
t) − h

πi
m

t,m

)
10: ĝ

πi
m

t,m = h
πi

m
t,m + Q

(
∇f

πi
m

m (xi
t,m) − h

πi
m

t,m

)
11: h

πi
m

t+1,m = h
πi

m
t,m + αQ

(
∇f

πi
m

m (xi
t,m) − h

πi
m

t,m

)
12: xi+1

t = xi
t − γ 1

M

∑M
m=1 ĝ

πi
m

t,m

13: Send xi+1
t to the workers

14: xt+1 = xn
t

15: Output: xT

DIANA-RR [NEW]:

Õ
(

n(1 + ω) +
(

1 + ω

M

)
Lmax

µ̃
+ σrad√

εµ̃3

)
DIANA [1]:

Õ
((

1 + ω

M

)
Lmax

µ
+ (1 + ω)σ2

⋆

Mµ2ε

)
.

✓ Unlike Q-RR, DIANA-RR does not have a Õ (1/ε)
term;
✓ Overall complexity of DIANA-RR improves over
DIANA, since O (σrad/

√
εµ̃3) has a better dependence

on ε than O
(

(1+ω)σ2
⋆/(Mµ2ε)

)
.

✗ It can be memory expensive to maintain{
hi

t,m

}
m∈[M ],i∈[n]

shifts.

Q-NASTYA

1: Input: x0 – starting point, γ > 0 – local stepsize,
η > 0 – global stepsize

2: for t = 0, 1, . . . , T − 1 do
3: for m = 1, . . . , M in parallel do
4: Receive xt from the server
5: x0

t,m = xt

6: Sample random permutation of [n]:
πm = (π0

m, . . . , πn−1
m )

7: for i = 0, 1, . . . , n − 1 do
8: xi+1

t,m = xi
t,m − γ∇f

πi
m

m (xi
t,m)

9: gt,m = 1
γn

(
xt − xn

t,m

)
10: Send Qt(gt,m) to the server
11: gt = 1

M

∑M
m=1 Qt(gt,m)

12: xt+1 = xt − ηgt

13: Send xt+1 to the workers
14: xT = xn

T

15: Output: xT

Q-NASTYA [NEW]:
Õ
(

Lmax
µ

(
1 + ω

M

)
+ ω

M
ζ2

⋆

εµ3 +
√

Lmax
εµ3

√
ζ2

⋆ + σ2
⋆

n

)
FedPAQ [2]:

Õ
(

Lmax

µ

(
1 + ω

M

)
+ ω

M

σ2

µ2ε
+ σ2

Mµ2ε

)
.

✓ Unlike FedCOM [4], Q-NASTYA provably works in
a fully heterogeneous regime;
✓ Unlike FedPAQ, analysis of Q-NASTYA does not
rely on the bounded variance assumption;
✓ Unlike FedCRR [3], Q-NASTYA converges for any
ω ≥ 0;
✓ If ω is small, complexity of Q-NASTYA is superior
to FedPAQ.
✗ In the big ω regime, Q-NASTYA has the same
Õ (1/ε) dependence as FedPAQ.

DIANA-NASTYA

1: Input: x0 – starting point, {h0,m}M
m=1 – initial

shift-vectors, γ > 0 – local stepsize, η > 0 – global
stepsize, α > 0 – stepsize for learning the shifts

2: for t = 0, 1, . . . , T − 1 do
3: for m = 1, . . . , M in parallel do
4: Receive xt from the server
5: x0

t,m = xt

6: Sample random permutation of [n]:
πm = (π0

m, . . . , πn−1
m )

7: for i = 0, 1, . . . , n − 1 do
8: xi+1

t,m = xi
t,m − γ∇f

πi
m

m (xi
t,m)

9: gt,m = 1
γn

(
xt − xn

t,m

)
10: Send Qt (gt,m − ht,m) to the server
11: ht+1,m = ht,m + αQt (gt,m − ht,m)
12: ĝt,m = ht,m + Qt (gt,m − ht,m)
13: ht+1 = ht + α

M

∑M
m=1 Qt (gt,m − ht,m)

14: ĝt = ht + 1
M

∑M
m=1 Qt (gt,m − ht,m)

15: xt+1 = xt − ηĝt

16: Output: xT

DIANA-NASTYA [NEW]:

Õ

ω + Lmax

µ

(
1 + ω

M

)
+
√

Lmax

εµ3

√
ζ2

⋆ + σ2
⋆

n


FedCRR-VR [3]:

Õ

(ω + 1)
(
1 − 1

κ

)n

(
1 −

(
1 − 1

κ

)n)2 +
√

κ (ζ⋆ + σ⋆)
µ

√
ε


✓ The complexity of DIANA-NASTYA is superior to
both FedPAQ and Q-NASTYA;
✓ If κ := Lmax

µ ≫ 1, complexity of DIANA-NASTYA
is better than for FedCRR-VR.
• Each worker i has to maintain an additional vector
state ht,m, which causes an additional memory cost.

Experiments

1000 3000 5000
Data passes

10 7

10 5

10 3

10 1

101

f(x
t)

f(x
)

mushrooms; Rand-2
QSGD
Q-RR
DIANA
DIANA-RR

1000 3000 5000
Data passes

10 7

10 5

10 3

10 1

101
f(x

t)
f(x

)
w8a; Rand-6

QSGD
Q-RR
DIANA
DIANA-RR

1000 3000 5000
Data passes

10 7

10 5

10 3

10 1

101

f(x
t)

f(x
)

a9a; Rand-2
QSGD
Q-RR
DIANA
DIANA-RR

1000 3000 5000
Data passes

10 3

10 1

f(x
t)

f(x
)

mushrooms; Rand-2
Q-NASTYA
DIANA-NASTYA
FedCOM
FedPAQ

1000 3000 5000
Data passes

10 3

10 1

f(x
t)

f(x
)

w8a; Rand-6
Q-NASTYA
DIANA-NASTYA
FedCOM
FedPAQ

1000 3000 5000
Data passes

10 3

10 1

f(x
t)

f(x
)

a9a; Rand-2
Q-NASTYA
DIANA-NASTYA
FedCOM
FedPAQ

Figure 1:The comparison of Q-NASTYA, DIANA-NASTYA, Q-RR, DIANA-RR and existing baselines (FedCOM, FedPAQ)
on binary classification problem with with M = 10 workers. Stepsizes were tuned and workers used Rand-k compressor with
k/d = 0.02 (k = 6, d = 300).

0 200 400 600 800 1000
Data passes

10

20

30

40

50

To
p1

 a
cc

 (v
al

id
at

io
n)

QSGD
Q-RR

0 500 1000 1500
Data passes

20

40

60

80

To
p1

 a
cc

 (v
al

id
at

io
n)

DIANA
DIANA-RR

Figure 2:The comparison of Q-RR, QSGD, DIANA, and DIANA-RR on the task of training ResNet-18 on CIFAR-10 with M = 10
workers. Stepsizes were tuned and workers used Rand-k compressor with k/d = 0.05.


