Byzantine Robustness and Partial Participation Can Be Achieved Simultaneously:
Just Clip Gradient Differences
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1. Byzantine-Robust Optimization

Distributed optimization problem:

min Zfz , = E;f”(@

d
reR ZEQ

e ( is the set of regular clients

e 5 is the set of Byzantine workers — the workers that can arbi-
trarily deviate from the prescribed protocol (maliciously or not) and
are assumed to be omniscient

e JLIB =
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n| is the set of clients participating in training

Group A: regular workers
form majority

Group B: regular workers
do not form majority
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Main difficulties in Byzantine-robust optimization:

e When functions are arbitrarily heterogeneous, the problem is im-
possible to solve

e [raction of Byzantines = B/n should be smaller than 1/2

e Standard approaches based on averaging are vulnerable

e Robust aggregation alone does not ensure robustness [1]

e Non-triviality of partial participation: all existing ap-
proaches are vulnerable to the situations when regular workers do

S

not form a majority during some rounds

2. Robust Aggregation

Popular aggregation rules:

o Krum(zy,...,y,) == argming cr, 1>
S; CHxy,...,x,} are n — |B| — 2 closest vectors to z;

e Robust Fed. Averaging: RFA(zy,...,x,) = argmin, g.> . ||z — |
e Coordinate-wise Median: [CM(z1,...,z,)], = argmin, g > ., |u—[x
These defenses are vulnerable to Byzantine attacks [8,9]
and do not satisfy the following definition.

i|I” [7], where

Definition 1: (9, ¢)-Robust Aggregator (modification of the definition from [1])

The quantity Z is (J, c)-Robust Aggregator ((, ¢)-RAgg) if
E [HEE —Z \2} < cdo*, where (1)

o [nput: {z1,29,...,2,}
e There exists a subset G C |n| of size |G| = G > (1 — §)n for
0 < 0.5 such that ( GG 2-ileG Elllz; — z||7] < 0?
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e 7 is agnostic ((d,c)-ARAgg), if it can be computed without
knowledge of o

One can robustify Krum, RFA, and CM using bucketing [1].

Algorithm Bucketing: Robust Aggregation using bucketing [1]

1. lnput: {z1,...,2,}, s € N — bucket size, Aggr — aggregator
2. Sample random permutation 7= (m(1),...,m(n)) of |n]

3: Compute y; = 1Z?Ii f“fH:L‘ ) fori=1,...,[n/s]
4

. Return: 53\ — Aggr(yly .. 7y|_n/s_|)
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Main Contributions

¢ New method: Byz-VR-MARINA-PP. We develop
Byzantine-tolerant Variance-Reduced MARINA with Par-
tial Participation (Byz-VR-MARINA-PP) — the first dis-
tributed method having Byzantine robustness and
allowing partial participation of clients.

¢ New convergence rates. We derive convergence guaran-
tees for the proposed method under mild assumptions.

¢ New application of gradient clipping. The key tool
that allows our method to withstand Byzantines attacks even
when all sampled clients are Byzantine is clipping.

3. Ingredient 1: Variance Reduction

SGD: 2" = g — gk, gF = lZ? 1Vfi,jk(xk)
X Variances of the estimators V f; (") do not go to zero

X DByzantines can easily hide in the noise and create a large bias
(even if the aggregation is robust)

SAGA [2]: 2! = aF — ygk, b =157 gk
= V(") = Vil + 5 2 Viswl)

v/~ Variances of the estimators g~ go to zero
X Analysis relies on the unbiasedness: E[gF | 2*] = V fi(«")

SARAH/Geom-SARAH /PAGE [3,4,5]:

xk+1 — ajk o ,ng’ "= %Z?:l gzk7
g — sz( ", with prob. p,
Z +ijjz( k) — ijjz( z*71),  with prob. 1 —p

v Varlances of the estimators g¥ go to zero
v/ Analysis does not rely on the unbiasedness: E|

g | 2" # V fi(a")
How can variance reduction help? It leaves less space for
Byzantines to hide in the noise.
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4. Ingredient 2: Clipping

Clipping operator:

min {1’H7AH} xr, ifxz=#£0,

0, otherwise.

clip(z, A) = <

Properties of clipping:

e Boundedness: ||clip(x, A)|| < A

v/ If the direction is spoiled, clipping ensures that the algorithm
does not go far away even when Byzantines form majority

e Controlled bias: ||clip(z, A) — x| < (1 —min{1, 2 }) ||z
v/ If the vector x is good enough, the right choice of the clipping

level will not spoil the magnitude of the vector
v Clipping preserves the direction

5. New Method: Byz-VR-MARINA-PP

Algorithm Byz-VR-MARINA-PP

1: Input: starting point x', stepsize -, minibatch size b, probability
€ (0, 1], number of iterations K, (0, c)-ARAgg, clients' sample
size 1 < C < n, clipping coefficients {c,};>1, direction g
2. for k=0,1,..., K —1do
3. Get a sample from Bernoulli distribution: ¢ ~ Be(p)

4. Sample the set of clients S C |n], |Si| = C if ¢ = 0;
otherwise S = |n]
5. Broadcast g, ¢; to all workers
6: for it € GN S in parallel do
7. o =% — yg" and N\ = g ||2F T — 28]
( k+1 -
sz<flj )7 if Cp — 17

3: Set gk_i_l <

g]’C + clip, (Q (ﬁi(azkﬂ, xk))) ., otherwise,
where A;(z k“ ") is a minibatched estimator of V f;(z**!) —
V fi(z), Q) for i € GN S, are computed independently

9 end for
10. if ¢, = 1 then

1. ¢" = ARAgg {9/ }icm)

12: else

13:  ¢"!' = ¢" 4+ ARAgg ({clipAk+1 (Q (&-(zkﬂ, xk)))} )
1€S)

14 end if

15 end for

e When o = +00 Byz-VR-MARINA-PP reduces to Byz-VR-MARINA

e O is a compression operator

k1

e Clipping level is proportional to ||z 2¥||, which is the key to controlling the bias

6. Technical Preliminaries

Definition 2: Unbiased Compression

Operator Q : RY — R? is called unbiased compressor/compres-
sion operator if there exists w > 0 such that for any z € R?

E[Qw) == E[Q@) —al’| <wlzl> (3

e Bounded aggregator: ARAgg(x1, ..., x,) < F maxc, H%H

e Smoothness and 1ower—boundedness. Ve, y € Rd we have
Vi) =Vl < Lilz—yll, [V filz) =V fily)|| < Lillz—y|
for i € G and f, = inf cpa f(z) > —00

o (*heterogeneity: &> icq |V fi(z) = Vf(2)||* < ¢* Vz eR?
e Global Hessian variance assumption:
é Zg IV fi(z) = Vill* = IV f(z) -

o Zfocad Hessian variance assumption:

= %EH&(%@/) — Ai(z,y)|]* <
1€

Vfi(z) — Vfi(y) and Ay(z,y) is an unbiased mini-batched esti-
mator of A;(z,y) with batch size b

VIWIP < Lillz -yl

L3 2 _
||z — yl|7, where Ay(z,y) =
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7. Convergence Results

Theorem 1

— X

Let the introduced assumptions kH

1
Assume that 0 < v < = where

4 SOPGng(1_5> 4 160 64 )
A = 1—? (; C2(1 = 5max) p(l — pg) + ?pG'ng C5maxw> L* + —2(1 — pg)FA maXL
4 (8paPg(l—0)n 16
- (p T — o) (10w + 1) + ?pGngC(SmaX (10w + 1 )
4 (80pcPgr(l —d)n 160 2
5 (p T — o) (w+1)+ ?pGPQk COmax (W + 1)) >
where [Je = P {G’g > (1 — Opax) C } and
Pg, = P {z € GE | GE > (1 — Oax) C’}. Then for all K > 0 the
point % chosen uniformly at random from the iterates z°, ', ... %
produced by Byz-VR-MARINA-PP satisfies
2@0 48C5C2
E||Vf@E")?P] < + 1
VS € iy + = ()

where & = f(2")— fﬁ-%”go —V f(2")||* and E[-] denotes the full expectation.

e When ¢ = 0 (homogeneous data) the method converges asymptotically to the exact solution
with rate O(1/k)

o If C' =1, then pg = % and ng = é; it C = 2, then pg = igg__ll)) and 77% = %; finally, if
C:n,thenpgzlandpgézl

e Recommended value of p = min{¢/n, ¥/m, 1/(1+w)}

8. Experiments

e We consider a logistic regression model with #o-regularization
e 15 good workers and 5 Byzantines; access to the entire dataset
e Agoregation: coordinate-wise median with bucketing

e Shift-back attack: if Byzantines form a majority during round k. then each

Byzantine sends 2" — z*; otherwise, they follow protocol

CM | SHB CM | SHB CM | SHB
—&— Partial (20% clients)

f
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—e— Byz-VR-MARINA-PP

—¥— Byz-VR-MARINA <10 clip mult. = 0.01

clip mult. = 0.1
clip mult. = 1.0
clip mult. = 10.0

clip mult. = None

N
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Left: Linear convergence of Byz-VR-MARINA-PP with clipping versus non-convergence without
clipping. Middle: Full versus partial participation. Right: Clipping multiplier « sensitivity:.

e We consider a ResNet-18 model architecture with layer norm
e We consider the CIFAR 10 dataset with heterogeneous splits with 20 clients, 5

of which are Byzantines, and 4 clients are sampled in each step
e Attacks: we consider A Little is Enough (ALIE), Bit Flipping (BF), and Shift-

Back (SHB) attacks
e Aggregation: we consider coordinate median (CM) and robust federated aver-
aging (RFA) with bucketing.

CM | ALIE CM | SHB RFA | ALIE RFA | SHB

—o— W/ Clip —o— W/ Clip

—¥— W/O Clip —¥— WJ/O Clip

30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30
epochs epochs epochs epochs

CM | ALIE CM | SHB RFA | ALIE RFA | SHB

—e— W/ Clip
—¥— W/O Clip

—e— W/ Clip
—¥— W/O Clip

30 40 50 60 0 10 30 30 30
epochs epochs epochs epochs

Training loss (top) and test accuracy (bottom) of 2 aggregation rules (CM, RFA) under 4 attacks
(BF, LF, ALIE, SHB) on the CIFAR10 dataset under heterogeneous data split with 20 clients, 5

of which are malicious, 4 clients sampled per round.
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