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1. Byzantine-Robust Optimization

Distributed optimization problem:

min
x∈Rd

f (x) = 1
G
∑
i∈G

fi(x)

 , fi(x) = 1
m

m∑
j=1

fi,j(x) ∀i ∈ G

• G is the set of regular clients
• B is the set of Byzantine workers – the workers that can arbi-
trarily deviate from the prescribed protocol (maliciously or not) and
are assumed to be omniscient
• G ⊔ B = [n] is the set of clients participating in training

Main difficulties in Byzantine-robust optimization:
• When functions are arbitrarily heterogeneous, the problem is im-
possible to solve
• Fraction of Byzantines δ = B/n should be smaller than 1/2

• Standard approaches based on averaging are vulnerable
• Robust aggregation alone does not ensure robustness [1]
• Non-triviality of partial participation: all existing ap-
proaches are vulnerable to the situations when regular workers do
not form a majority during some rounds

2. Robust Aggregation

Popular aggregation rules:
• Krum(x1, . . . , xn) := argminxi∈{x1,...,xn}

∑
j∈Si

∥xj − xi∥2 [7], where
Si ⊆ {x1, . . . , xn} are n − |B| − 2 closest vectors to xi

• Robust Fed. Averaging: RFA(x1, . . . , xn) := argminx∈Rd

∑n
i=1 ∥x − xi∥

• Coordinate-wise Median: [CM(x1, . . . , xn)]t := argminu∈R
∑n

i=1 |u−[xi]t|
These defenses are vulnerable to Byzantine attacks [8,9]
and do not satisfy the following definition.

Definition 1: (δ, c)-Robust Aggregator (modification of the definition from [1])

The quantity x̂ is (δ, c)-Robust Aggregator ((δ, c)-RAgg) if

E
[
∥x̂ − x∥2

]
≤ cδσ2, where (1)

• Input: {x1, x2, . . . , xn}
• There exists a subset G ⊆ [n] of size |G| = G ≥ (1 − δ)n for
δ < 0.5 such that 1

G(G−1)
∑

i,l∈G E[∥xi − xl∥2] ≤ σ2

• x = 1
|G|

∑
i∈G xi

• x̂ is agnostic ((δ, c)-ARAgg), if it can be computed without
knowledge of σ

One can robustify Krum, RFA, and CM using bucketing [1].
Algorithm Bucketing: Robust Aggregation using bucketing [1]

1: Input: {x1, . . . , xn}, s ∈ N – bucket size, Aggr – aggregator
2: Sample random permutation π = (π(1), . . . , π(n)) of [n]
3: Compute yi = 1

s

∑min{si,n}
k=s(i−1)+1 xπ(k) for i = 1, . . . , ⌈n/s⌉

4: Return: x̂ = Aggr(y1, . . . , y⌈n/s⌉)

Main Contributions

⋄ New method: Byz-VR-MARINA-PP. We develop
Byzantine-tolerant Variance-Reduced MARINA with Par-
tial Participation (Byz-VR-MARINA-PP) – the first dis-
tributed method having Byzantine robustness and
allowing partial participation of clients.

⋄ New convergence rates. We derive convergence guaran-
tees for the proposed method under mild assumptions.

⋄ New application of gradient clipping. The key tool
that allows our method to withstand Byzantines attacks even
when all sampled clients are Byzantine is clipping.

3. Ingredient 1: Variance Reduction

SGD: xk+1 = xk − γgk, gk = 1
n

∑n
i=1 ∇fi,jk

i
(xk)

✗ Variances of the estimators ∇fi,jk
i
(xk) do not go to zero

✗ Byzantines can easily hide in the noise and create a large bias
(even if the aggregation is robust)

SAGA [2]: xk+1 = xk − γgk, gk = 1
n

∑n
i=1 gk

i ,
gk

i = ∇fjk
i
(xk) − ∇fi,jk

i
(wk

i,jk
i
) + 1

m

m∑
j=1

∇fi,j(wk
i,j)

✓ Variances of the estimators gk
i go to zero

✗ Analysis relies on the unbiasedness: E[gk
i | xk] = ∇fi(xk)

SARAH/Geom-SARAH/PAGE [3,4,5]:
xk+1 = xk − γgk, gk = 1

n

∑n
i=1 gk

i ,

gk
i =

∇fi(xk), with prob. p,

gk−1
i + ∇fi,jk

i
(xk) − ∇fi,jk

i
(xk−1), with prob. 1 − p

✓ Variances of the estimators gk
i go to zero

✓ Analysis does not rely on the unbiasedness: E[gk
i | xk] ̸= ∇fi(xk)

How can variance reduction help? It leaves less space for
Byzantines to hide in the noise.

4. Ingredient 2: Clipping

Clipping operator:

clip(x, λ) =

min
{

1, λ
∥x∥

}
x, if x ̸= 0,

0, otherwise.
(2)

Properties of clipping:
• Boundedness: ∥clip(x, λ)∥ ≤ λ

✓ If the direction is spoiled, clipping ensures that the algorithm
does not go far away even when Byzantines form majority

• Controlled bias: ∥clip(x, λ) − x∥ ≤
(
1 − min

{
1, λ

∥x∥

})
∥x∥

✓ If the vector x is good enough, the right choice of the clipping
level will not spoil the magnitude of the vector

✓ Clipping preserves the direction

5. New Method: Byz-VR-MARINA-PP

Algorithm Byz-VR-MARINA-PP

1: Input: starting point x0, stepsize γ, minibatch size b, probability
p ∈ (0, 1], number of iterations K, (δ, c)-ARAgg, clients’ sample
size 1 ≤ C ≤ n, clipping coefficients {αk}k≥1, direction g0

2: for k = 0, 1, . . . , K − 1 do
3: Get a sample from Bernoulli distribution: ck ∼ Be(p)
4: Sample the set of clients Sk ⊆ [n], |Sk| = C if ck = 0;

otherwise Sk = [n]
5: Broadcast gk, ck to all workers
6: for i ∈ G ∩ Sk in parallel do
7: xk+1 = xk − γgk and λk+1 = αk+1∥xk+1 − xk∥

8: Set gk+1
i =

∇fi(xk+1), if ck = 1,

gk + clipλk+1

(
Q

(
∆̂i(xk+1, xk)

))
, otherwise,

where ∆̂i(xk+1, xk) is a minibatched estimator of ∇fi(xk+1) −
∇fi(xk), Q(·) for i ∈ G ∩ Sk are computed independently

9: end for
10: if ck = 1 then
11: gk+1 = ARAgg

(
{gk+1

i }i∈[n]
)

12: else
13: gk+1 = gk + ARAgg

({
clipλk+1

(
Q
(

∆̂i(xk+1, xk)
))}

i∈Sk

)
14: end if
15: end for

• When αk ≡ +∞ Byz-VR-MARINA-PP reduces to Byz-VR-MARINA
• Q is a compression operator

• Clipping level is proportional to ∥xk+1 − xk∥, which is the key to controlling the bias

6. Technical Preliminaries

Definition 2: Unbiased Compression

Operator Q : Rd → Rd is called unbiased compressor/compres-
sion operator if there exists ω ≥ 0 such that for any x ∈ Rd

E [Q(x)] = x, E
[
∥Q(x) − x∥2

]
≤ ω∥x∥2. (3)

Assumptions

• Bounded aggregator: ARAgg(x1, . . . , xn) ≤ F maxi∈[n] ∥xi∥
• Smoothness and lower-boundedness: ∀x, y ∈ Rd we have
∥∇f (x)−∇f (y)∥ ≤ L∥x−y∥, ∥∇fi(x)−∇fi(y)∥ ≤ Li∥x−y∥
for i ∈ G and f∗ = infx∈Rd f (x) > −∞
• ζ2-heterogeneity: 1

G

∑
i∈G ∥∇fi(x) − ∇f (x)∥2 ≤ ζ2 ∀x ∈ Rd

• Global Hessian variance assumption:
1
G

∑
i∈G

∥∇fi(x) − ∇fi(y)∥2 − ∥∇f (x) − ∇f (y)∥2 ≤ L2
±∥x − y∥2

• Local Hessian variance assumption:
1
G

∑
i∈G

E∥∆̂i(x, y) − ∆i(x, y)∥2 ≤ L2
±
b ∥x − y∥2, where ∆i(x, y) =

∇fi(x) − ∇fi(y) and ∆̂i(x, y) is an unbiased mini-batched esti-
mator of ∆i(x, y) with batch size b

7. Convergence Results
Theorem 1

Let the introduced assumptions hold and λk+1 = 2 maxi∈G Li

∥∥xk+1 − xk
∥∥.

Assume that 0 < γ ≤ 1
L+

√
A

, where

A = 4
p

(
80
p

pGPGk
C
(1 − δ)n

C2(1 − δmax)2 ω + 4
p

(1 − pG) + 160
p

pGPGk
C
cδmaxω

)
L2 + 64

p2 (1 − pG)F 2
A max

i∈G
L2

i

+4
p

(
8
p

pGPGk
C
(1 − δ)n

C2(1 − δmax)2 (10ω + 1) + 16
p

pGPGk
C
cδmax(10ω + 1)

)
L2

±

+4
p

(
80
p

pGPGk
C
(1 − δ)n

C2(1 − δmax)2 (ω + 1) + 160
p

pGPGk
C
cδmax(ω + 1)

)
L2

±
b

,

where pG := P
{

Gk
C ≥ (1 − δmax) C

}
and

PGk
C

:= P
{

i ∈ Gk
C | Gk

C ≥ (1 − δmax) C
}

. Then for all K ≥ 0 the
point x̂K chosen uniformly at random from the iterates x0, x1, . . . , xK

produced by Byz-VR-MARINA-PP satisfies

E
[
∥∇f (x̂K)∥2

]
≤ 2Φ0

γ(K + 1)
+ 48cδζ2

p
, (4)

where Φ0 = f (x0)−f∗+ γ
p∥g0−∇f (x0)∥2 and E[·] denotes the full expectation.

• When ζ = 0 (homogeneous data) the method converges asymptotically to the exact solution
with rate O(1/K)
• If C = 1, then pG = G

n and PGk
C

= 1
G; if C = 2, then pG = G(G−1)

n(n−1) and PGk
C

= 2
G; finally, if

C = n, then pG = 1 and PGk
C

= 1

• Recommended value of p = min{C/n, b/m, 1/(1+ω)}

8. Experiments

• We consider a logistic regression model with ℓ2-regularization
• 15 good workers and 5 Byzantines; access to the entire dataset
• Aggregation: coordinate-wise median with bucketing
• Shift-back attack: if Byzantines form a majority during round k, then each
Byzantine sends x0 − xk; otherwise, they follow protocol
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Left: Linear convergence of Byz-VR-MARINA-PP with clipping versus non-convergence without

clipping. Middle: Full versus partial participation. Right: Clipping multiplier α sensitivity.

• We consider a ResNet-18 model architecture with layer norm
• We consider the CIFAR 10 dataset with heterogeneous splits with 20 clients, 5
of which are Byzantines, and 4 clients are sampled in each step
• Attacks: we consider A Little is Enough (ALIE), Bit Flipping (BF), and Shift-
Back (SHB) attacks
• Aggregation: we consider coordinate median (CM) and robust federated aver-
aging (RFA) with bucketing.
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Training loss (top) and test accuracy (bottom) of 2 aggregation rules (CM, RFA) under 4 attacks

(BF, LF, ALIE, SHB) on the CIFAR10 dataset under heterogeneous data split with 20 clients, 5

of which are malicious, 4 clients sampled per round.
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