Byzantine Robustness and Partial Participation Can Be Achieved Simultaneously:

Just Clip Gradient Differences

Grigory Malinovsky 1 Peter Richtárik 1 Samuel Horváth 2 Eduard Gorbunov 2

 1 King Abdullah University of Science and Technology 2 Mohamed bin Zayed University of Artificial Intelligence

1. Byzantine-Robust Optimization

Distributed optimization problem:

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) = \frac{1}{\mathcal{G}} \sum_{i \in \mathcal{G}} f_i(x) \right\}, \quad f_i(x) = \frac{1}{m} \sum_{j=1}^m f_{i,j}(x) \quad \forall i \in \mathcal{G}$$

 \bullet \mathcal{G} is the set of regular clients

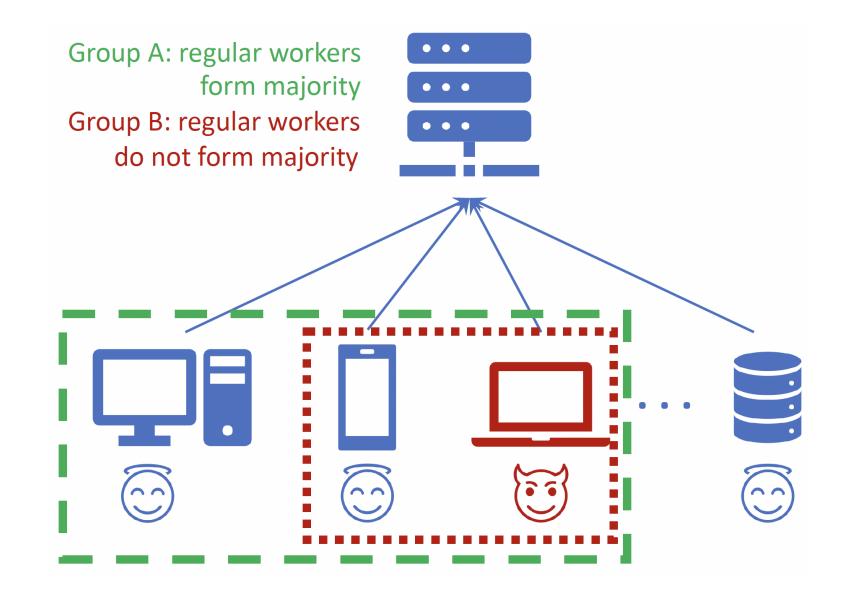
جامعة الملك عبدالله

King Abdullah University of

Science and Technology

للعلوم والتقنية

- \mathcal{B} is the set of $Byzantine\ workers$ the workers that can arbitrarily deviate from the prescribed protocol (maliciously or not) and are assumed to be omniscient
- $\mathcal{G} \sqcup \mathcal{B} = [n]$ is the set of clients participating in training



Main difficulties in Byzantine-robust optimization:

- When functions are arbitrarily heterogeneous, the problem is impossible to solve
- Fraction of Byzantines $\delta = B/n$ should be smaller than 1/2
- Standard approaches based on averaging are vulnerable
- Robust aggregation alone does not ensure robustness [1]
- Non-triviality of partial participation: all existing approaches are vulnerable to the situations when regular workers do not form a majority during some rounds

2. Robust Aggregation

Popular aggregation rules:

- $\operatorname{Krum}(x_1, \dots, x_n) := \operatorname{argmin}_{x_i \in \{x_1, \dots, x_n\}} \sum_{j \in S_i} ||x_j x_i||^2$ [7], where $S_i \subseteq \{x_1, \dots, x_n\}$ are $n - |\mathcal{B}| - 2$ closest vectors to x_i
- Robust Fed. Averaging: $RFA(x_1, ..., x_n) := \operatorname{argmin}_{x \in \mathbb{R}^d} \sum_{i=1}^n \|x x_i\|$
- Coordinate-wise Median: $[CM(x_1, ..., x_n)]_t := \operatorname{argmin}_{u \in \mathbb{R}} \sum_{i=1}^n |u [x_i]_t|$ These defenses are vulnerable to Byzantine attacks [8,9] and do not satisfy the following definition.

Definition 1: (δ, c) -Robust Aggregator (modification of the definition from [1]

The quantity
$$\widehat{x}$$
 is (δ, c) -Robust Aggregator $((\delta, c)$ -RAgg) if
$$\mathbb{E}\left[\|\widehat{x} - \overline{x}\|^2\right] \leq c\delta\sigma^2, \text{ where}$$
 (1)

• Input: $\{x_1, x_2, \dots, x_n\}$

- There exists a subset $\mathcal{G} \subseteq [n]$ of size $|\mathcal{G}| = G \ge (1 \delta)n$ for $\delta < 0.5 \text{ such that } \frac{1}{G(G-1)} \sum_{i,l \in \mathcal{G}} \mathbb{E}[\|x_i - x_l\|^2] \le \sigma^2$
- $\bullet \ \overline{x} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} x_i$
- \hat{x} is agnostic $((\delta, c)$ -ARAgg), if it can be computed without knowledge of σ

One can robustify Krum, RFA, and CM using bucketing [1].

Algorithm Bucketing: Robust Aggregation using bucketing [1]

- 1: Input: $\{x_1,\ldots,x_n\}$, $s\in\mathbb{N}$ bucket size, Aggr aggregator
- 2: Sample random permutation $\pi = (\pi(1), \dots, \pi(n))$ of [n]
- 3: Compute $y_i=rac{1}{s}\sum_{k=s(i-1)+1}^{\min\{si,n\}}x_{\pi(k)}$ for $i=1,\ldots,\lceil n/s
 ceil$
- 4: **Return:** $\widehat{x} = \operatorname{Aggr}(y_1, \dots, y_{\lceil n/s \rceil})$

Main Contributions

- ♦ New method: Byz-VR-MARINA-PP. We develop Byzantine-tolerant Variance-Reduced MARINA with Partial Participation (Byz-VR-MARINA-PP) – the first distributed method having Byzantine robustness and allowing partial participation of clients.
- ♦ New convergence rates. We derive convergence guarantees for the proposed method under mild assumptions.
- ♦ New application of gradient clipping. The key tool that allows our method to withstand Byzantines attacks even when all sampled clients are Byzantine is clipping.

3. Ingredient 1: Variance Reduction

SGD:
$$x^{k+1} = x^k - \gamma g^k$$
, $g^k = \frac{1}{n} \sum_{i=1}^n \nabla f_{i,j_i^k}(x^k)$

- lacktriangleright Variances of the estimators $\nabla f_{i,j_i^k}(x^k)$ do not go to zero
- > Byzantines can easily hide in the noise and create a large bias (even if the aggregation is robust)

$$\begin{array}{ll} \underline{\mathsf{SAGA}}\ [2]:\ x^{k+1} = x^k - \gamma g^k, \quad g^k = \frac{1}{n} \sum_{i=1}^n g_i^k, \\ g_i^k = \nabla f_{j_i^k}(x^k) - \nabla f_{i,j_i^k}(w_{i,j_i^k}^k) + \frac{1}{m} \sum_{j=1}^m \nabla f_{i,j}(w_{i,j}^k) \end{array}$$

- \checkmark Variances of the estimators g_i^k go to zero
- $m{\times}$ Analysis relies on the unbiasedness: $\mathbb{E}[g_i^k \mid x^k] = \nabla f_i(x^k)$

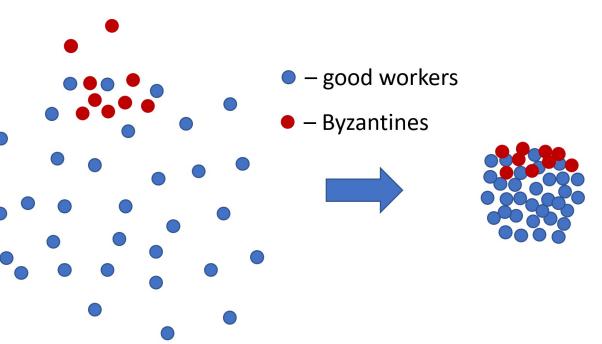
SARAH/Geom-SARAH/PAGE [3,4,5]:

$$\overline{x^{k+1}} = x^k - \gamma g^k, \quad g^k = \frac{1}{n} \sum_{i=1}^n g_i^k,$$

$$g_i^k = \begin{cases} \nabla f_i(x^k), & \text{with prob. } p, \\ g_i^{k-1} + \nabla f_{i,j_i^k}(x^k) - \nabla f_{i,j_i^k}(x^{k-1}), & \text{with prob. } 1 - p \end{cases}$$

- \checkmark Variances of the estimators g_i^k go to zero
- \checkmark Analysis does not rely on the unbiasedness: $\mathbb{E}[g_i^k \mid x^k] \neq \nabla f_i(x^k)$

How can variance reduction help? It leaves less space for Byzantines to hide in the noise.



4. Ingredient 2: Clipping

Clipping operator:

$$\operatorname{elip}(x,\lambda) = \begin{cases} \min\left\{1, \frac{\lambda}{\|x\|}\right\} x, & \text{if } x \neq 0, \\ 0, & \text{otherwise.} \end{cases}$$
 (2)

Properties of clipping:

- Boundedness: $\|\operatorname{clip}(x,\lambda)\| \leq \lambda$
- ✓ If the direction is spoiled, clipping ensures that the algorithm does not go far away even when Byzantines form majority
- Controlled bias: $\|\operatorname{clip}(x,\lambda) x\| \le \left(1 \min\left\{1, \frac{\lambda}{\|x\|}\right\}\right) \|x\|$
- \checkmark If the vector x is good enough, the right choice of the clipping level will not spoil the magnitude of the vector
- ✓ Clipping preserves the direction

5. New Method: Byz-VR-MARINA-PP

Algorithm Byz-VR-MARINA-PP

- : **Input:** starting point x^0 , stepsize γ , minibatch size b, probability $p \in (0,1]$, number of iterations K, (δ,c) -ARAgg, clients' sample size $1 \leq C \leq n$, clipping coefficients $\{\alpha_k\}_{k>1}$, direction g^0
- : for $k = 0, 1, \dots, K 1$ do
- Get a sample from Bernoulli distribution: $c_k \sim \text{Be}(p)$
- Sample the set of clients $S_k \subseteq [n]$, $|S_k| = C$ if $c_k = 0$; otherwise $S_k = [n]$
- 5: Broadcast g^k , c_k to all workers
- 6: **for** $i \in \mathcal{G} \cap S_k$ in parallel **do**
- 7: $x^{k+1}=x^k-\gamma g^k$ and $\lambda_{k+1}=lpha_{k+1}\|x^{k+1}-x^k\|$
- where $\widehat{\Delta}_i(x^{k+1},x^k)$ is a minibatched estimator of $abla f_i(x^{k+1})$ —

 $\nabla f_i(x^k)$, $\mathcal{Q}(\cdot)$ for $i \in \mathcal{G} \cap S_k$ are computed independently

- end for
- 10: **if** $c_k = 1$ **then**
- 11: $g^{k+1} = \mathtt{ARAgg}\left(\{g_i^{k+1}\}_{i \in [n]}
 ight)$
- 12: **else**
- 13: $g^{k+1} = g^k + \mathtt{ARAgg}\left(\left\{\operatorname{clip}_{\lambda_{k+1}}\left(\mathcal{Q}\left(\widehat{\Delta}_i(x^{k+1}, x^k)\right)\right)\right\}_{i \in S_k}\right)$
- 14: end if
- 15: end for
- When $\alpha_k \equiv +\infty$ Byz-VR-MARINA-PP reduces to Byz-VR-MARINA
- Q is a compression operator
- Clipping level is proportional to $||x^{k+1}-x^k||$, which is the key to controlling the bias

6. Technical Preliminaries

Definition 2: Unbiased Compression

Operator $\mathcal{Q}: \mathbb{R}^d \to \mathbb{R}^d$ is called unbiased compressor/compression operator if there exists $\omega \geq 0$ such that for any $x \in \mathbb{R}^d$

$$\mathbb{E}\left[\mathcal{Q}(x)\right] = x, \quad \mathbb{E}\left[\|\mathcal{Q}(x) - x\|^2\right] \le \omega \|x\|^2. \tag{3}$$

- Bounded aggregator: $\mathsf{ARAgg}(x_1,\ldots,x_n) \leq F \max_{i \in [n]} \|x_i\|$
- Smoothness and lower-boundedness: $\forall x,y \in \mathbb{R}^d$ we have $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \|\nabla f_i(x) - \nabla f_i(y)\| \le L_i\|x - y\|$ for $i \in \mathcal{G}$ and $f_* = \inf_{x \in \mathbb{R}^d} f(x) > -\infty$
- ζ^2 -heterogeneity: $\frac{1}{G} \sum_{i \in \mathcal{G}} \|\nabla f_i(x) \nabla f(x)\|^2 \leq \zeta^2 \quad \forall x \in \mathbb{R}^d$
- Global Hessian variance assumption:
- $\frac{1}{G} \sum \|\nabla f_i(x) \nabla f_i(y)\|^2 \|\nabla f(x) \nabla f(y)\|^2 \le L_{\pm}^2 \|x y\|^2$
- Local Hessian variance assumption:
- $\frac{1}{G} \sum_{i=1}^{n} \mathbb{E} \|\widehat{\Delta}_{i}(x,y) \Delta_{i}(x,y)\|^{2} \leq \frac{\mathcal{L}_{\pm}^{2}}{b} \|x y\|^{2}$, where $\Delta_{i}(x,y) = 0$

 $\nabla f_i(x) - \nabla f_i(y)$ and $\widehat{\Delta}_i(x,y)$ is an unbiased mini-batched estimator of $\Delta_i(x,y)$ with batch size b

7. Convergence Results

Let the introduced assumptions hold and $\lambda_{k+1} = 2 \max_{i \in \mathcal{G}} L_i ||x^{k+1} - x^k||$. Assume that $0 < \gamma \leq \frac{1}{1+\sqrt{A}}$, where

$$A = \frac{4}{p} \left(\frac{80 p_{G} \mathcal{P}_{\mathcal{G}_{C}^{k}} (1 - \delta) n}{C^{2} (1 - \delta_{\max})^{2}} \omega + \frac{4}{p} (1 - p_{G}) + \frac{160}{p} p_{G} \mathcal{P}_{\mathcal{G}_{C}^{k}} c \delta_{\max} \omega \right) L^{2} + \frac{64}{p^{2}} (1 - p_{G}) F_{\mathcal{A}}^{2} \max_{i \in \mathcal{G}} L_{i}^{2}$$

$$+ \frac{4}{p} \left(\frac{8 p_{G} \mathcal{P}_{\mathcal{G}_{C}^{k}} (1 - \delta) n}{C^{2} (1 - \delta_{\max})^{2}} (10\omega + 1) + \frac{16}{p} p_{G} \mathcal{P}_{\mathcal{G}_{C}^{k}} c \delta_{\max} (10\omega + 1) \right) L_{\pm}^{2}$$

$$+ \frac{4}{p} \left(\frac{80 p_{G} \mathcal{P}_{\mathcal{G}_{C}^{k}} (1 - \delta) n}{p C^{2} (1 - \delta_{\max})^{2}} (\omega + 1) + \frac{160}{p} p_{G} \mathcal{P}_{\mathcal{G}_{C}^{k}} c \delta_{\max} (\omega + 1) \right) \frac{\mathcal{L}_{\pm}^{2}}{b},$$

where $p_G := \mathbb{P}\left\{G_C^k \ge (1 - \delta_{\max})C\right\}$ and $\mathcal{P}_{\mathcal{G}_C^k} := \mathbb{P}\left\{i \in \mathcal{G}_C^k \mid G_C^k \ge (1 - \delta_{\max}) C\right\}.$ Then for all $K \ge 0$ the point \widehat{x}^K chosen uniformly at random from the iterates x^0, x^1, \ldots, x^K produced by Byz-VR-MARINA-PP satisfies

$$\mathbb{E}\left[\|\nabla f(\widehat{x}^K)\|^2\right] \le \frac{2\Phi_0}{\gamma(K+1)} + \frac{48c\delta\zeta^2}{p},\tag{4}$$

where $\Phi_0 = f(x^0) - f_* + \frac{\gamma}{n} ||g^0 - \nabla f(x^0)||^2$ and $\mathbb{E}[\cdot]$ denotes the full expectation.

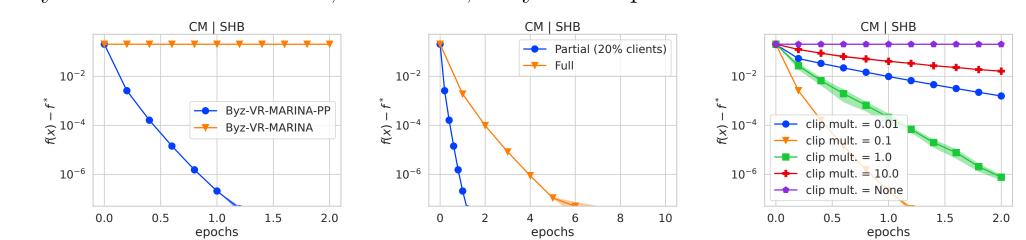
with rate $\mathcal{O}(1/K)$ • If C=1, then $p_G=\frac{G}{n}$ and $\mathcal{P}_{\mathcal{G}_C^k}=\frac{1}{G}$; if C=2, then $p_G=\frac{G(G-1)}{n(n-1)}$ and $\mathcal{P}_{\mathcal{G}_C^k}=\frac{2}{G}$; finally, if C=n, then $p_G=1$ and $\mathcal{P}_{\mathcal{G}_{C}^{k}}=1$

• When $\zeta = 0$ (homogeneous data) the method converges asymptotically to the exact solution

• Recommended value of $p = \min\{C/n, b/m, 1/(1+\omega)\}$

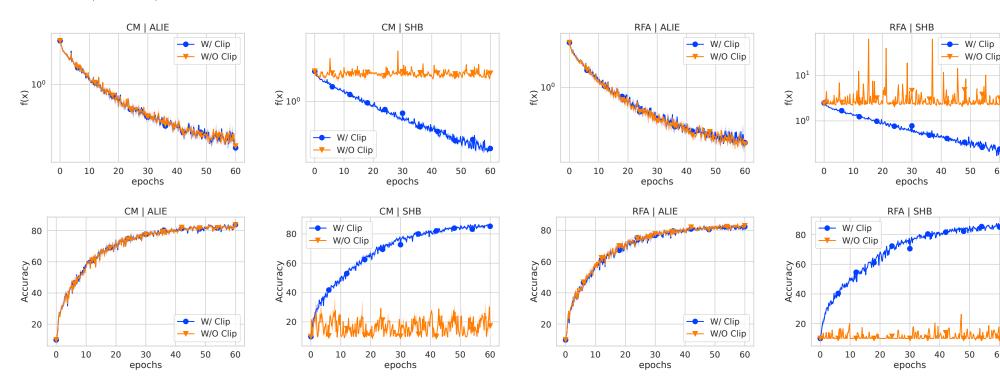
8. Experiments

- We consider a logistic regression model with ℓ_2 -regularization
- 15 good workers and 5 Byzantines; access to the entire dataset
- Aggregation: coordinate-wise median with bucketing
- Shift-back attack: if Byzantines form a majority during round k, then each Byzantine sends $x^0 - x^k$; otherwise, they follow protocol



Left: Linear convergence of Byz-VR-MARINA-PP with clipping versus non-convergence without clipping. Middle: Full versus partial participation. Right: Clipping multiplier α sensitivity.

- We consider a ResNet-18 model architecture with layer norm
- We consider the CIFAR 10 dataset with heterogeneous splits with 20 clients, 5 of which are Byzantines, and 4 clients are sampled in each step
- Attacks: we consider A Little is Enough (ALIE), Bit Flipping (BF), and Shift-Back (SHB) attacks
- Aggregation: we consider coordinate median (CM) and robust federated averaging (RFA) with bucketing



Training loss (top) and test accuracy (bottom) of 2 aggregation rules (CM, RFA) under 4 attacks (BF, LF, ALIE, SHB) on the CIFAR10 dataset under heterogeneous data split with 20 clients, 5 of which are malicious, 4 clients sampled per round.

References

gradient descent. NeurIPS 2017

- [1] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Byzantine-robust learning on heterogeneous datasets via bucketing. ICLR 2022. [2] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. NeurIPS 2014.
- stochastic recursive gradient. ICML 2017 [4] Samuel Horváth, Lihua Lei, Peter Richtárik, and Michael I. Jordan. Adaptivity of stochastic gradient methods for nonconvex optimization. SIAM Journal on Mathematics of Data Science, 2022.

[3] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. SARAH: A novel method for machine learning problems using

- [5] Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. PAGE: A simple and optimal probabilistic gradient estimator for nonconvex optimization. ICML 2021.
- [6] Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtárik. MARINA: Faster non-convex distributed learning with compression. ICML 2021. [7] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning with adversaries: Byzantine tolerant
- [8] Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses for distributed learning. NeurIPS 2019. [9] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall of empires: Breaking Byzantine-tolerant SGD by inner product manipulation.