Accelerated Zeroth-order Method for Non-Smooth Stochastic Convex Optimization Problem with Infinite Variance

Problem Setup

We consider stochastic non-smooth convex optimization problem $\min_{x \in \mathbb{R}^d} \left\{ f(x) \stackrel{\text{def}}{=} \mathbb{E}_{\xi \sim \mathcal{D}} \left[f(x,\xi) \right] \right\},$

- $f(x,\xi)$ is $M_2(\xi)$ -Lipschitz continuous in x w.r.t. Euclidean norm
- Samples ξ from unknown distribution \mathcal{D} are available
- Zeroth-order two point oracle: for any $x, y \in \mathbb{R}^d$ we can compute $f(x, \xi)$ and $f(y,\xi)$ with the same ξ
- Heavy-tailed noise: oracle noise has bounded α -th moment, i.e., $\exists \alpha \in (1,2], M_2 > 0$ such that $\mathbb{E}_{\xi}[M_2(\xi)^{\alpha}] \leq M_2^{\alpha}$.

Motivation

- Various applications in medicine, biology, and physics: objective function is only computable through numerical simulation or the result of a real experiment
- Bandit optimization problem: the goal is to minimize average regret based only on observations of losses
- Reinforcement learning: black-box models parameters optimization via final reward of episode
- Hyperparameters optimization in the machine and deep learning models

Contributions

- 1. We propose the batched optimal accelerated algorithm that with • accuracy ε
- problem dimension d
- batchsize B
- noise with bounded α -th moment

• with high probability (e.i. $\forall \beta \in [0, 1]$ probability of achieving accuracy ε greater than $1 - \beta$) finds solution for convex function f after

$$\sim \max\left(d^{\frac{1}{4}}/\varepsilon, \frac{1}{B}\left(\sqrt{d}/\varepsilon\right)^{\frac{\alpha}{\alpha-1}}\right)$$

 $\sim \left(\sqrt{d}/\varepsilon\right)^{\frac{\alpha}{\alpha-1}}$

successive iterations,

oracle calls,

and for μ -strongly convex f after

$$\sim \max\left(d^{\frac{1}{4}}/\left(\mu\varepsilon\right)^{\frac{1}{2}}, \frac{1}{B}\left(d/(\mu\varepsilon)\right)^{\frac{\alpha}{2(\alpha-1)}}\right) \\ \sim \left(d/(\mu\varepsilon)\right)^{\frac{\alpha}{2(\alpha-1)}}$$

successive iterations, oracle calls.

Here we omitted $\log \frac{1}{\varepsilon}$, $\log \frac{1}{\beta}$ factors.

2. We prove a new batching result for the heavy-tailed noise case.

Methodology

Below, we overview the main steps in the construction of the optimal method

- . Implicitly build close smooth approximation $\hat{f}(x)$ for f(x) based on Randomized Smoothing
- 2. Compute unbiased batched gradient estimation of $\hat{f}(x)$ via zeroth-order oracle
- 3. Minimize smoothed function $\hat{f}(x)$ via proper accelerated first-order algorithm
- 4. For μ -strongly convex functions we apply restart technique.

Nikita Kornilov^{1,2}, Ohad Shamir³, Aleksandr Lobanov^{1,4}, Darina Dvinskikh^{5,4}, Alexander Gasnikov^{1,4,2}, Innokentiy Shibaev^{1,6}, Eduard Gorbunov⁷, Samuel Horváth⁷ MIPT¹, Skoltech², Weizmann Institute of Science³, ISP RAS⁴, HSE University⁵, IITP RAS⁶, MBZUAI⁷

Randomized Smoothing [1]

Smooth approximation with parameter τ :

 $\hat{f}_{\tau}(x) \stackrel{\text{def}}{=} \mathbb{E}_{\mathbf{u},\xi}[f(x+\tau\mathbf{u},\xi)],$

where $\mathbf{u} \sim U(B_2^d)$ is sampled from the uniform distribution on the unit Euclidean ball B_2^d .

1. Function $\hat{f}_{\tau}(x)$ is convex, M_2 -Lipschitz , and satisfies $\sup_{x \in \mathbb{D}^d} |\hat{f}_{\tau}(x) - f(x)| \le \tau M_2.$

2. Function $\hat{f}_{\tau}(x)$ is differentiable with the following gradient

$$\nabla \hat{f}_{\tau}(x) = \mathbb{E}_{\mathbf{e}} \left[\frac{d}{\tau} f(x) \right]$$

where $\mathbf{e} \sim U(S_2^d)$ is uniformly distributed on unit Euclidean Sphere S_2^d .

Batched gradient estimation:

$$g^{B}(x, \{\xi_{i}\}_{i}, \{\mathbf{e}_{i}\}_{i}) = \frac{d}{2B\tau} \sum_{i=1}^{B} (f(x + \tau \mathbf{e}_{i}, \xi_{i}) - f(x - \tau \mathbf{e}_{i}, \xi_{i}))\mathbf{e}_{i}.$$
 (2)

In this setup, $g(x,\xi,\mathbf{e})$ has bounded (central) α -th moment (see [3]), i.e. $\mathbb{E}_{\xi,\mathbf{e}}[\|g(x,\xi,\mathbf{e})-\mathbb{E}_{\xi,\mathbf{e}}[g(x,\xi,\mathbf{e})]\|^{\alpha}] \leq \sigma^{\alpha} \stackrel{\text{def}}{=} (\sqrt{d}M_2/2^{\frac{1}{4}})^{\alpha}$. To have a tight estimate of the (central) α -th moment of the batched estimate, we derive the following lemma.

Batching Lemma

For any sequence of i.i.d. random vectors $X_1, \ldots, X_B \in \mathbb{R}^d$ with $\mathbb{E}[X_i] = x$ and bounded α -th moment $\mathbb{E}[||X_i - x||_2^{\alpha}] \leq \sigma^{\alpha}, \alpha \in (1, 2]$ the next inequality holds

 $\mathbb{E} \left\| \frac{1}{B} \sum_{i=1}^{B} X_i - x \right\|^c$

Zeroth-order Algorithms

We use the Clipped Stochastic Similar Triangles Method (clipped-SSTM) from [2]. In order to cope with heavy-tailed noise it clips update vectors at a given level λ . **Algorithm 1** ZO-clipped-SSTM

Input: starting point x^0 , number of iterations K, batch size B, stepsize a > 0, smoothing parameter τ , clipping levels $\{\lambda_k\}_{k=0}^{K-1}$.

- 1: Set $y^0 = z^0 = x^0$ and parameters $a, L = \sqrt{dM_2/\tau}$ of Clipped-SSTM
- 2: for k = 0, ..., K 1 do
- Sample $\{\xi_i^k\}_{i=1}^B \sim \mathcal{D}$ and $\{\mathbf{e}_i^k\}_{i=1}^B \sim S_2^d$ independently.
- Compute $g^B(x^k, \xi^k, \mathbf{e}^k)$ as defined in (2).
- Perform a step of Clipped-SSTM with update vector g_k , clipping level λ_k and get points $x^{k+1}, y^{k+1}, z^{k+1}$

6: end for Output: y^K

R-ZO-clipped-SSTM call ZO-clipped-SSTM with starting point \hat{x}^t , which is the output from the previous round for K_t iterations.

(1) $(x + \tau \mathbf{e})\mathbf{e}$

$$\leq \frac{\sigma^{\alpha}}{B^{\alpha-1}}.$$

Algorithm 2 R-ZO-clipped-SSTM

$\{\lambda_k^1\}_{k=0}^{K_1-1}, ..., \{\lambda_k^N\}_{k=0}^{K_N-1}$

- $\hat{x}^0 = x^0.$
- 2: for t = 1, ..., N do
- 3: $\hat{x}^t = \text{ZO-clipped-SSTM}$
- 4: end for
- Output: \hat{x}^N

Deterministic noise:

We also allow deterministic absolutely bounded noise $\delta(x)$ with the following oracle

Convergence rate remains the same if

- convex.
- d dependency:

Open question: is the bound $(\sqrt{d}/\varepsilon)^{\overline{\alpha-1}}$ optimal in terms of the dependence on d? Numerical Experiments

ZO-SGD Methods ZO-SSTM are and constructed from SGD SSTM without and clipping via the same methodology as ZOclipped-SSTM.

The task was to minnon-smooth imize $= ||Ax - b||_2$ f(x)with heavy noise from symmetric Levy α stable distribution with $\alpha = 3/2.$

Methods without clipping fail to converge due to the heavy tails in the distribution of the noise, while ZO-clipped-SSTM succeeds.

Input: starting point x^0 , number of restarts N, number of steps $\{K_t\}_{t=1}^N$, batchsizes $\{B_t\}_{t=1}^N$, stepsizes $\{a_t\}_{t=1}^N$, smoothing parameters $\{\tau_t\}_{t=1}^N$, clipping levels

$$\left(\hat{x}^{t-1}, K_t, B_t, a_t, \tau_t, \{\lambda_k^t\}_{k=0}^{K_t-1}\right).$$

 $f_{\delta}(x,\xi) \stackrel{\text{def}}{=} f(x,\xi) + \delta(x), \quad |\delta(x)| \le \Delta.$

• $\Delta \leq \frac{\varepsilon^2}{M_2\sqrt{d}}$ for M_2 -Lipschitz convex functions and $\Delta \leq \frac{\mu^{1/2}\varepsilon^{3/2}}{\sqrt{d}M_2}$ for μ -strongly

• $\Delta \leq \frac{\varepsilon^2}{\sqrt{Ld}}$ for L-smooth convex functions and $\Delta \leq \frac{\mu^{1/2}\varepsilon}{\sqrt{Ld}}$ for μ -strongly convex.

References

[1] Alexander Gasnikov, Anton Novitskii, Vasilii Novitskii, Farshed Abdukhakimov, Dmitry Kamzolov, Aleksandr

- Stochastic optimization with heavy-tailed noise via accelerated gradient clipping.
- [3] Nikita Kornilov, Alexander Gasnikov, Pavel Dvurechensky, and Darina Dvinskikh.
 - Gradient free methods for non-smooth convex optimization with heavy tails on convex compact.

Beznosikov, Martin Takáč, Pavel Dvurechensky, and Bin Gu. The power of first-order smooth optimization for black-box non-smooth problems. arXiv preprint arXiv:2201.12289, 2022.

^[2] Eduard Gorbunov, Marina Danilova, and Alexander Gasnikov. Advances in Neural Information Processing Systems, 33:15042–15053, 2020.

arXiv preprint arXiv:2304.02442, 2023.