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Problem Setup

We consider stochastic non-smooth convex optimization problem

min
x∈Rd

{
f (x) def= Eξ∼D [f (x, ξ)]

}
,

f (x, ξ) is M2(ξ)-Lipschitz continuous in x w.r.t. Euclidean norm

Samples ξ from unknown distribution D are available

Zeroth-order two point oracle: for any x, y ∈ Rd we can compute f (x, ξ) and
f (y, ξ) with the same ξ

Heavy-tailed noise: oracle noise has bounded α-th moment, i.e.,

∃α ∈ (1, 2], M2 > 0 such that Eξ[M2(ξ)α] ≤ Mα
2 .

Motivation

Various applications in medicine, biology, and physics: objective function is only

computable through numerical simulation or the result of a real experiment

Bandit optimization problem: the goal is to minimize average regret based only

on observations of losses

Reinforcement learning: black-box models parameters optimization via final

reward of episode

Hyperparameters optimization in the machine and deep learning models

Contributions

1. We propose the batched optimal accelerated algorithm that with
accuracy ε
problem dimension d
batchsize B
noise with bounded α-th moment

with high probability (e.i. ∀β ∈ [0, 1] probability of achieving accuracy ε greater than 1 − β)

finds solution for convex function f after

∼ max
(

d
1
4/ε,

1
B

(√
d/ε

) α
α−1

)
successive iterations,

∼
(√

d/ε
) α

α−1
oracle calls,

and for µ-strongly convex f after

∼ max
(

d
1
4/ (µε)

1
2 ,

1
B

(d/(µε))
α

2(α−1)

)
successive iterations,

∼ (d/(µε))
α

2(α−1) oracle calls.

Here we omitted log 1
ε, log 1

β factors.

2. We prove a new batching result for the heavy-tailed noise case.

Methodology

Below, we overview the main steps in the construction of the optimal method

1. Implicitly build close smooth approximation f̂ (x) for f (x) based on Randomized

Smoothing

2. Compute unbiased batched gradient estimation of f̂ (x) via zeroth-order oracle
3. Minimize smoothed function f̂ (x) via proper accelerated first-order algorithm

4. For µ-strongly convex functions we apply restart technique.

Randomized Smoothing [1]

Smooth approximation with parameter τ :

f̂τ(x) def= Eu,ξ[f (x + τu, ξ)],

where u ∼ U(Bd
2) is sampled from the uniform distribution on the unit Euclidean

ball Bd
2 .

1. Function f̂τ(x) is convex, M2-Lipschitz , and satisfies

sup
x∈Rd

|f̂τ(x) − f (x)| ≤ τM2.

2. Function f̂τ(x) is differentiable with the following gradient

∇f̂τ(x) = Ee

[
d

τ
f (x + τe)e

]
, (1)

where e ∼ U(Sd
2 ) is uniformly distributed on unit Euclidean Sphere Sd

2 .

Batched gradient estimation:

gB(x, {ξi}i, {ei}i) = d

2Bτ

B∑
i=1

(f (x + τei, ξi) − f (x − τei, ξi))ei. (2)

In this setup, g(x, ξ, e) has bounded (central) α-th moment (see [3]), i.e.

Eξ,e[‖g(x, ξ, e) − Eξ,e[g(x, ξ, e)]‖α] ≤ σα def=
(√

dM2/2
1
4
)α
. To have a tight estimate

of the (central) α-th moment of the batched estimate, we derive the following

lemma.

Batching Lemma

For any sequence of i.i.d. random vectors X1, . . . , XB ∈ Rd with E[Xi] = x and

bounded α-th moment E[‖Xi − x‖α
2 ] ≤ σα, α ∈ (1, 2] the next inequality holds

E

∥∥∥∥∥ 1
B

B∑
i=1

Xi − x

∥∥∥∥∥
α

2

 ≤ σα

Bα−1.

Zeroth-order Algorithms

We use the Clipped Stochastic Similar Triangles Method (clipped-SSTM) from [2].

In order to cope with heavy-tailed noise it clips update vectors at a given level λ.

Algorithm 1 ZO-clipped-SSTM

Input: starting point x0, number of iterations K , batch size B, stepsize a > 0,
smoothing parameter τ , clipping levels {λk}K−1

k=0 .

1: Set y0 = z0 = x0 and parameters a, L =
√

dM2/τ of Clipped-SSTM

2: for k = 0, . . . , K − 1 do

3: Sample {ξk
i }B

i=1 ∼ D and {ek
i }B

i=1 ∼ Sd
2 independently.

4: Compute gB(xk, ξk, ek) as defined in (2).

5: Perform a step of Clipped-SSTM with update vector gk, clipping level λk and

get points xk+1, yk+1, zk+1

6: end for

Output: yK

R-ZO-clipped-SSTM call ZO-clipped-SSTM with starting point x̂t, which is the

output from the previous round for Kt iterations.

Algorithm 2 R-ZO-clipped-SSTM

Input: starting point x0, number of restarts N , number of steps {Kt}N
t=1, batch-

sizes {Bt}N
t=1, stepsizes {at}N

t=1, smoothing parameters {τt}N
t=1, clipping levels

{λ1
k}

K1−1
k=0 , ..., {λN

k }KN−1
k=0

1: x̂0 = x0.

2: for t = 1, . . . , N do

3: x̂t = ZO-clipped-SSTM
(

x̂t−1, Kt, Bt, at, τt, {λt
k}

Kt−1
k=0

)
.

4: end for

Output: x̂N

Deterministic noise:

We also allow deterministic absolutely bounded noise δ(x) with the following

oracle

fδ(x, ξ) def= f (x, ξ) + δ(x), |δ(x)| ≤ ∆.

Convergence rate remains the same if

∆ ≤ ε2

M2
√

d
for M2-Lipschitz convex functions and ∆ ≤ µ1/2ε3/2

√
dM2

for µ-strongly
convex,

∆ ≤ ε
3
2√
Ld

for L-smooth convex functions and ∆ ≤ µ1/2ε√
Ld

for µ-strongly convex.

d dependency:

Open question: is the bound
(√

d/ε
) α

α−1
optimal in terms of the dependence on d?

Numerical Experiments
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Methods ZO-SGD

and ZO-SSTM are

constructed from SGD

and SSTM without

clipping via the same

methodology as ZO-

clipped-SSTM.

The task was to min-

imize non-smooth

f(x) = ‖Ax − b‖2
with heavy noise from

symmetric Levy α-
stable distribution with

α = 3/2.

Methods without clipping fail to converge due to the heavy tails in the distribution

of the noise, while ZO-clipped-SSTM succeeds.
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