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Variational Inequalities: Improved Analysis under Weaker Conditions

1. The Unconstrained Variational Inequality
Problem

Find 2™ such that:
» Fi(z*) =0 (VIP)

e [F,: RY - R? Vi € [n] are operators.
Special Cases of VIP:

=V [f(z).

e or minimization problem min, f(x), we have F'(x)
e For min-max optimization problem

min max — E gz 5131,5132
21 ERN 15€R% n:

we have x = (x1; x9) and

Fi(x) = (Vi,9i(71, T2); —Vi,9i(11, 12)).

e These min-max problems are important for their applications in
Generative Adversarial Networks [1], Reinforcement Learning |2

and Robust Learning 3] among others.
e (Classes of non-monotone VIP considered in our work:

Structured Non-monotone VIP:

e ;-Quasi Strongly Monotone Problem (g > 0) [4]

(F(z),z —a*) > pllo — 2|
e Weak Minty Variational Inequality Problem (p > 0) [5]
(F(z),z —a*) > —p || F(x)|

2. Main Contributions:

e Convergence guarantees of Stochastic Past Extragradient
Method (SPEG) without bounded variance assumption. We
use instead the Expected Residual (ER) condition and explain
its benefits. We show that ER holds for a large class of opera-
tors, e.g., whenever F; are Lipschitz.

e Unified analysis for various sampling strategies, including
single-element, minibatch, and importance sampling.

e We can recover the best-known results for deterministic set-
tings from our analysis. This highlights the tightness of our
analysis.

e Convergence guarantees with constant (linear convergence to a
neighbourhood) and switching (exact convergence at a sublin-
ear rate) step-size choices for solving quasi-strongly monotone

VIP.

e Sublinear Convergence cuarantees for solving weak minty VIP
with p < 57. This improves the restriction on p for stochastic
setting.
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3. Algorithms for solving VIP

e Stochastic Past Extragradient (SPEG)|6]:

Ty = xp — Yrg(Tr-1)

Lkl = Tk — wkg(:?:k) (SPEG)
Here, g(x) is an unbiased estimator of F'(x). SPEG requires only one
oracle call per iteration in contrast to two oracle calls of Stochastic
Extragradient (SEG)|7]. This work focuses on convergence guaran-

tees of SPEG.

4. Assumption on Estimator

e In this work, we assume,

Expected Residual Condition:

e For unbiased estimator g(z) satisfying ER, we have
E [Hg(w)\ﬁ] <dllz — 2|+ IF@)* +207 (%)
where o = E [||g(z")]|°].

Bounded Operator:
E|[lg()’] <o’
v
Bounded Variance:
E|[lg(x) - F(2)|*] < 0?
v
Growth Condition:
E|lg(x)|| < a||F()|*+ 0
v
*

w—

Expected Cocoercivity:

F; are L;
92| < L (F(x),2 - 27)

Lipschitz E {H g(x) —
e ER allows us to have the analysis of SPEG under arbitrary sampling

paradigm.
e Let F; are L; lipschitz operators, then ER condition holds and we

can find the closed-form expressions of § and ¢ for various sampling
stategies.

Closed-form expressions:

¢ 7- minibatch sampling:

5:271 ZLZ and azzln ZHF

ntn — 1 4

o Single—element samplmg.

n L2

Z and O'* Z—HF

lez lez

where p; is probability of selecting ¢ th element from [n]. For

uniform and importance sampling, we have p; = % and p; =

) L I respectively in the above equation.

5. Results for Quasi Strongly Monotone VIP

Constant Stepsize:

Let F' be L-Lipschitz, p-quasi strongly monotone, and let ER

hold. Choose step-sizes v = w; = w such that
1 N
0 <w < mi
w < min {185’ 4L,>

for all k. Then the iterates produced by SPEG satisty

k 2

W 5 24wo;

f¥<(——>R ,
kS 5 0T 7

llze = @*|1* + lloe — S]]

where R? = E

e For deterministic setting, 6 = 0,02 = 0 and SPEG converges to
the exact solution at a linear rate.
Switching Stepsize:

Let F' be L-Lipschitz, p-quasi strongly monotone, and Assump-

tion ER hold. Let
@, it k< k*.
Ve = Wi = ok11 9 . o
(kT—%Qﬁ, lf ]C > ]C .

where w = min {!/4r),"/186)} and k* = [4/(uw)]. Then for all
K > k* the iterates produced by SPEG with the above step-sizes

satisty :
K\~ R: 19202
B =\K) exp(2) " K

- where Ri =E[||lrx — o*||* + ||lzx — Zx_1||*].

e For the first £* iterations, it uses constant step size to reach a
neighborhood of the solution, and then the method switches to the
decreasing O(1/k) step-size to converge to the exact solution.

6. Results for Weak Minty VIP

Let F' be L-Lipschitz and satisfy Weak Minty condition with

parameter p < 1/@20). Let Assumption ER hold. Assume that
Vi = 7Y, Wi = w such that

1 1 , 1 v
max{Zp,QL} <y < = and0<w<mm{fy—2,0,———}.

L’ 41, 4
Then, for all K > 2 the iterates produced by mini-batched SPEG
with batch-size T > 0(w, v, K) satisfy
Cllzo — 2|7

K—-1 "~

2
min B[ F(@)|F] <

where C' = wv(l—éé(gvﬂw))‘

e We recover the best-known results for SPEG in deterministic set-
ting |8, 9].

o We improve the restriction on p. Previous work by [8] assumes
p <31 Wlth bounded variance.

7. Comparison with Prior Work
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8. Numerical Experiments

e We consider a quadratic strongly convex strongly concave problem
of the form min, max, + > | fi(z,y) where

1 1
filz,y) = §xTAZ-x + 2T By — inC’Z-y +alx—cly. (M)

e Here, A;, B;, and C}; are generated such that the quadratic game is
strongly monotone and smooth. The vectors a; and ¢; are generated

from Nd(O, [d)

e On y-axis, we plot relative error i.e.

nstant stepsize (Theorem 4.1)
creasing stepsize (Hsieh et al. 2019)

————

10° E —»— Constant Stepsize (Theorem 4.1) —_—
] : —H- Decreasing Stepsize (Theorem 4.4) 10-3 ——
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Figure: Comparison of SPEG using our proposed step-size against decreasing
step-size of [11] for solving (-) In the left plot, we use the switching step size,
while in the right plot, we implement SPEG with constant step size for the
interpolated model (o2 = 0).

Importance Sampling: Weak Minty VIP:
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Figure: In the left plot, we demonstrate the advantage of using importance
sampling over Uniform sampling for SPEG. In the second plot, we implement
SPEG with our proposed step-sizes for solving a Weak Minty VIP of the form

MingeRr MaX,ecr % Z?’:l Eixy + %(xQ — 7).

e Code to reproduce our result:https://github.com /isayantan /Single-
Call-Stochastic-Extragradient-Methods.
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