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1. The Unconstrained Variational Inequality
Problem

Find x∗ such that:

F (x∗) = 1
n

n∑
i=1

Fi(x∗) = 0 (VIP)

• F, Fi : Rd → Rd ∀i ∈ [n] are operators.

Special Cases of VIP:

• For minimization problem minx f (x), we have F (x) = ∇f (x).
• For min-max optimization problem,

min
x1∈Rd1

max
x2∈Rd2

1
n

n∑
i=1

gi(x1, x2)

we have x = (x1; x2) and
Fi(x) = (∇x1gi(x1, x2); −∇x2gi(x1, x2)).

• These min-max problems are important for their applications in
Generative Adversarial Networks [1], Reinforcement Learning [2]
and Robust Learning [3] among others.
• Classes of non-monotone VIP considered in our work:

Structured Non-monotone VIP:

• µ-Quasi Strongly Monotone Problem (µ > 0) [4]
⟨F (x), x − x∗⟩ ≥ µ ∥x − x∗∥2

• Weak Minty Variational Inequality Problem (ρ > 0) [5]
⟨F (x), x − x∗⟩ ≥ −ρ ∥F (x)∥2

2. Main Contributions:

• Convergence guarantees of Stochastic Past Extragradient
Method (SPEG) without bounded variance assumption. We
use instead the Expected Residual (ER) condition and explain
its benefits. We show that ER holds for a large class of opera-
tors, e.g., whenever Fi are Lipschitz.

• Unified analysis for various sampling strategies, including
single-element, minibatch, and importance sampling.

• We can recover the best-known results for deterministic set-
tings from our analysis. This highlights the tightness of our
analysis.

• Convergence guarantees with constant (linear convergence to a
neighbourhood) and switching (exact convergence at a sublin-
ear rate) step-size choices for solving quasi-strongly monotone
VIP.

• Sublinear convergence guarantees for solving weak minty VIP
with ρ < 1

2L. This improves the restriction on ρ for stochastic
setting.
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3. Algorithms for solving VIP

• Stochastic Past Extragradient (SPEG)[6]:
x̂k = xk − γkg(x̂k−1)
xk+1 = xk − ωkg(x̂k) (SPEG)

Here, g(x) is an unbiased estimator of F (x). SPEG requires only one
oracle call per iteration in contrast to two oracle calls of Stochastic
Extragradient (SEG)[7]. This work focuses on convergence guaran-
tees of SPEG.

4. Assumption on Estimator

• In this work, we assume,

Expected Residual Condition:

E
[
∥(g(x) − g(x∗)) − (F (x) − F (x∗))∥2

]
≤ δ

2
∥x − x∗∥2 (ER)

• For unbiased estimator g(x) satisfying ER, we have

E
[
∥g(x)∥2

]
≤ δ∥x − x∗∥2 + ∥F (x)∥2 + 2σ2

∗ (⋆)

where σ2
∗ = E [∥g(x∗)∥2].

Bounded Variance:
E
[
∥g(x) − F (x)∥2

]
≤ σ2

Bounded Operator:
E
[
∥g(x)∥2

]
≤ σ2

Growth Condition:
E
[
∥g(x)∥2

]
≤ α ∥F (x)∥2 + σ2

⋆

ER

Fi are Li

Lipschitz
Expected Cocoercivity:

E
[
∥g(x) − g(x∗)∥2

]
≤ ℓF ⟨F (x), x − x∗⟩

• ER allows us to have the analysis of SPEG under arbitrary sampling
paradigm.
• Let Fi are Li lipschitz operators, then ER condition holds and we
can find the closed-form expressions of δ and σ2

∗ for various sampling
stategies.

Closed-form expressions:

⋄ τ - minibatch sampling:

δ = 2
nτ

n − τ

n − 1

n∑
i=1

L2
i and σ2

∗ = 1
nτ

n − τ

n − 1

n∑
i=1

∥Fi(x∗)∥2

⋄ Single-element sampling:

δ = 2
n2

n∑
i=1

L2
i

pi
and σ2

∗ = 1
n2

n∑
i=1

1
pi

∥Fi(x∗)∥2

where pi is probability of selecting i th element from [n]. For
uniform and importance sampling, we have pi = 1

n and pi =
Li∑

j=1 Lj
, respectively in the above equation.

5. Results for Quasi Strongly Monotone VIP

Constant Stepsize:
Theorem
Let F be L-Lipschitz, µ-quasi strongly monotone, and let ER
hold. Choose step-sizes γk = ωk = ω such that

0 < ω ≤ min
{

µ

18δ
,

1
4L

}
for all k. Then the iterates produced by SPEG satisfy

R2
k ≤

(
1 − ωµ

2

)k

R2
0 + 24ωσ2

∗
µ

,

where R2
k := E [∥xk − x∗∥2 + ∥xk − x̂k−1∥2].

• For deterministic setting, δ = 0, σ2
∗ = 0 and SPEG converges to

the exact solution at a linear rate.
Switching Stepsize:

Theorem
Let F be L-Lipschitz, µ-quasi strongly monotone, and Assump-
tion ER hold. Let

γk = ωk :=

ω̄, if k ≤ k∗,
2k+1

(k+1)2
2
µ, if k > k∗,

where ω̄ := min {1/(4L), µ/(18δ)} and k∗ = ⌈4/(µω̄)⌉. Then for all
K ≥ k∗ the iterates produced by SPEG with the above step-sizes
satisfy

R2
K ≤

(
k∗

K

)2 R2
0

exp(2)
+ 192σ2

∗
µ2K

,

where R2
K := E [∥xK − x∗∥2 + ∥xK − x̂K−1∥2].

• For the first k∗ iterations, it uses constant step size to reach a
neighborhood of the solution, and then the method switches to the
decreasing O(1/k) step-size to converge to the exact solution.

6. Results for Weak Minty VIP

Theorem
Let F be L-Lipschitz and satisfy Weak Minty condition with
parameter ρ < 1/(2L). Let Assumption ER hold. Assume that
γk = γ, ωk = ω such that

max
{

2ρ,
1

2L

}
< γ <

1
L

, and 0 < ω < min
{

γ − 2ρ,
1

4L
− γ

4

}
.

Then, for all K ≥ 2 the iterates produced by mini-batched SPEG
with batch-size τ ≥ θ(ω, γ, K) satisfy

min
0≤k≤K−1

E
[
∥F (x̂k)∥2

]
≤ C∥x0 − x∗∥2

K − 1
,

where C = 48
ωγ(1−L(γ+4ω)).

• We recover the best-known results for SPEG in deterministic set-
ting [8, 9].
• We improve the restriction on ρ. Previous work by [8] assumes
ρ < 3

8L with bounded variance.

7. Comparison with Prior Work

setup method no bounded variance? single-call?

Quasi strongly
monotone

SEG[10] ✓ ✗

SPEG[11] ✗ ✓

SPEG
(This work) ✓ ✓

Weak minty

SEG+[5] ✗ ✗

OGDA+ [8] ✗ ✓

SPEG
(This work) ✓ ✓

8. Numerical Experiments

• We consider a quadratic strongly convex strongly concave problem
of the form minx maxy

1
n

∑n
i=1 fi(x, y) where

fi(x, y) := 1
2
x⊺Aix + x⊺Biy − 1

2
y⊺Ciy + a⊺

i x − c⊺i y. (■)

• Here, Ai, Bi, and Ci are generated such that the quadratic game is
strongly monotone and smooth. The vectors ai and ci are generated
from Nd(0, Id).
• On y-axis, we plot relative error i.e. ∥xk−x∗∥2

∥x0−x∗∥2.
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Figure: Comparison of SPEG using our proposed step-size against decreasing
step-size of [11] for solving (■). In the left plot, we use the switching step size,
while in the right plot, we implement SPEG with constant step size for the
interpolated model (σ2

∗ = 0).

Importance Sampling: Weak Minty VIP:
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Figure: In the left plot, we demonstrate the advantage of using importance
sampling over Uniform sampling for SPEG. In the second plot, we implement
SPEG with our proposed step-sizes for solving a Weak Minty VIP of the form
minx∈R maxy∈R

1
n

∑n
i=1 ξixy + ζi

2 (x2 − y2).

• Code to reproduce our result:https://github.com/isayantan/Single-
Call-Stochastic-Extragradient-Methods.
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