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Distributed VI problem

A lot of problems cannot be reduced to minimization, e.g., adversarial
training [1], generative adversarial networks (GANs) [2], hierarchical
reinforcement learning [3], adversarial examples games [4], problems
arising in game theory, control theory, and differential equations [5].
Such problems lead to min-max or, more generally, variational inequal-
ity (VI) problems [6] that have significant differences from minimization
ones (but include minimization) and require special consideration [7, 8].

Find x∗ ∈ Rd s.t. F (x∗) = 0, where F (x) :=
1

G

∑
i∈G

Fi(x),

• G is the set of good clients
• B is the set of Byzantine workers – the workers that can arbi-
trarily deviate from the prescribed protocol (maliciously or not) and
are assumed to be omniscient
• G ⊔ B = [n] is the set of clients participating in training

Robust Aggregation

Popular aggregation rules:

• Krum(x1, . . . , xn)
def
= argminxi∈{x1,...,xn}

∑
j∈Si

∥xj − xi∥2, where Si ⊆
{x1, . . . , xn} are n− |B| − 2 closest vectors to xi
• Robust Fed. Averaging: RFA(x1, . . . , xn)

def
= argminx∈Rd

∑n
i=1 ∥x− xi∥

• Coordinate-wise Median: [CM(x1, . . . , xn)]t
def
= argminu∈R

∑n
i=1 |u− [xi]t|

These defenses are vulnerable to Byzantine attacks [9, 10] and
do not satisfy the following definition.

Definition 1: (δ, c)-Robust Aggregator (modification of the definition from [11])

If a subset G ⊆ [n] of {x1, x2, . . . , xn} is s.t. |G| = G ≥ (1− δ)n for
δ < 0.5 and there exists σ ≥ 0 such that 1

G(G−1)

∑
i,l∈G E∥xi−xl∥2 ≤

σ2 where the expectation is taken w.r.t. the randomness of {xi}i∈G,
then x̂ = RAgg(x1, . . . , xn) is called (δ, c)-Robust Aggregator
((δ, c)-RAgg) if the following holds:

E
[
∥x̂− x∥2

]
≤ cδσ2, (1)

where x = 1
|G|

∑
i∈G xi. If additionally x̂ is computed without the

knowledge of σ2, we say that x̂ is (δ, c)-Agnostic Robust Aggrega-
tor ((δ, c)-ARAgg) and write x̂ = ARAgg(x1, . . . , xn).

One can robustify Krum, RFA, and CM using bucketing [11].

Algorithm 1 Bucketing: Robust Aggregation using bucketing [11]

1: Input: {x1, . . . , xn}, s ∈ N – bucket size, Aggr – aggregation rule
2: Sample random permutation π = (π(1), . . . , π(n)) of [n]

3: Compute yi =
1
s

∑min{si,n}
k=s(i−1)+1

xπ(k) for i = 1, . . . , ⌈n/s⌉
4: Return: x̂ = Aggr(y1, . . . , y⌈n/s⌉)

Existing Methods

Parallel SGDA / Parallel SEG:
✗ Permutation invariance
✗ Divergence with Byzantines
RDEG [12]:
✗ Permutation invariance
✗ Convergence with large batches in
homogeneous case
Why permutation non-invariance?
As [13] prove, any permutation-
invariant algorithm fails to converge
to any predefined accuracy even if
workers have homogeneous data!

Main Contriburion
• Methods with provably robust
aggregation. We propose new
methods SGDA-RA and SEG-RA –
variants of popular SGDA and SEG.
We prove that SGDA-RA and SEG-

RA work with any (δ, c)-robust ag-
gregation rule and converge to the
desired accuracy if the batchsize is
large enough.
• Client momentum. We add
client momentum to SGDA-RA and
propose Momentum SGDA-RA (M-
SGDA-RA). That breaks the permu-
tation invariance. In the case of star-
cocoercive quasi-strongly monotone
VIs, we prove the convergence to the
neighborhood of the solution; the
size of the neighborhood can be re-
duced via increasing batchsize only
– similarly to the results for RDEG,
SGDA-RA, and SEG-RA.
•Methods with random checks of
computations. For homogeneous
data case (ζ = 0), we propose a
version of SGDA and SEG with ran-
dom checks of computations (SGDA-
CC, SEG-CC and their restarted ver-
sions – R-SGDA-CC and R-SEG-CC).
We prove that the proposed meth-
ods converge to any accuracy of the
solution without any assumptions
on the batchsize. Moreover, when
the target accuracy of the solution
is small enough, the obtained con-
vergence rates for R-SGDA-CC and
R-SEG-CC are not worse than the
ones for distributed SGDA and SEG

derived in the case of no Byzantine
workers; see the comparison of the
convergence rates in Table 1.

Methods with Robust Aggregation

Eξigi(x, ξi) = Fi(x) Eξi∥gi(x, ξi)− Fi(x)∥2 ≤ σ2. (2)

SGDA-RA: xt+1 = xt − γRAgg(gt
1, . . . , g

t
n),

where gt
i = gi(x

t, ξti) ∀ i ∈ G, gt
i = ∗ ∀ i ∈ B, and {gt

i}i∈G are
sampled independently.
✗ Permutation non-invariance
✓ Convergence with large batches in heterogeneous case
✗ Convergence with large batches in homogeneous case

M-SGDA-RA: xt+1 = xt − γRAgg(mt
1, . . . ,m

t
n),

with mt
i = (1− α)mt−1

i + αgt
i,

where gt
i = gi(x

t, ξti), ∀i ∈ G and gt
i = ∗ ∀ i ∈ B and {gt

ξi
}i∈G

are sampled independently.
✓ Permutation non-invariance
✓ Convergence with large batches in heterogeneous case
✗ Convergence with large batches in homogeneous case

Methods with Checks of Computations

Key idea of the checks

At each iteration of SGDA-CC, the server selects m workers
(uniformly at random) and requests them to check the com-
putations of other m workers from the previous iteration.

Let Vt be the set of workers that verify/check computations, At

are active workers at iteration t, and Vt ∩ At = ∅. Then, the
update of SGDA-CC can be written as

SGDA-CC: xt+1 = xt − γgt,

if gt =
1

|At|
∑
i∈At

gi(x
t, ξti) is accepted,

where {gi(xt, ξti)}i∈G are sampled independently.
The acceptance (of the update) event occurs when the condition
∥gt − gi(x

t, ξti)∥ ≤ Cσ holds for the majority of workers. If gt

is rejected, then all workers re-sample gi(x
t, ξti) until acceptance

is achieved. The rejection probability is bounded, as per [14].
✗ Permutation invariance
✗ Non applicable for heterogeneous case
✓ Convergence with any batches in homogeneous case

R-SGDA-CC: restarted version of SGDA-CC
✓ Additionally benefits of collaboration

Rates and Comparison

Table 1: By the complexity, we mean the number of stochastic oracle calls needed
for a method to guarantee that E∥xT − x∗∥2 ≤ ε (for RDEG P{∥xT − x∗∥2 ≤
ε} ≥ 1 − δRDEG, δRDEG ∈ (0, 1]). Column “BS” indicates the minimal batch-size used
for achieving the corresponding complexity. Notation: c, δ are robust aggregator
parameters; α = momentum parameter; β = ratio of inner and outer stepsize in
SEG-like methods; n = total numbers of peers; m = number of checking peers; G =
number of peers following the protocol; R = any upper bound on ∥x0 − x∗∥; µ =
quasi-strong monotonicity (QSM) parameter; ℓ = star-cocoercivity (SC) parameter;
L = Lipschitzness (Lip) parameter; σ2 = bound on the variance. The definition xT

can vary; see corresponding theorems for the exact formulas.

Setup Method Complexity BS

(SC),
(QSM)

SGDA-RA ℓ
µ + 1

cδn
cδσ2

µ2ε

M-SGDA-RA ℓ
µα2 +

1
cδαn

cδσ2

α2µ2ε

SGDA-CC ℓ
µ + σ2

µ2nε
+ σ2n2

µ2mε
+ σ2n2

µ2m
√
ε

1

R-SGDA-CC ℓ
µ + σ2

nµε +
n2σ

m
√
µε 1

(Lip),
(QSM)

SEG-RA L
βµ + 1

βcδG + 1
β

cδσ2

βµ2ε

SEG-CC L
µ + 1

β + σ2

β2µ2nε
+ σ2n2

βµ2mε
+ σ2n2

β2µ2m
√
ε

1

R-SEG-CC L
µ + σ2

nµε +
n2σ

m
√
µε 1

(Lip),
(QSM)

RDEG L
µ

σ2µ2R2

L4ε2

• RDEG is only for homogeneous case (ζ = 0)
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