
Byzantine-Tolerant Methods for Distributed Variational Inequalities

Nazarii Tupitsa, Abdulla Jasem Almansoori, Yanlin Wu, Martin Takáč, Karthik Nandakumar, Samuel Horváth and Eduard Gorbunov
Mohamed bin Zayed University of Artificial Intelligence

Byzantine-Tolerant Methods for Distributed Variational Inequalities

Nazarii Tupitsa, Abdulla Jasem Almansoori, Yanlin Wu, Martin Takáč, Karthik Nandakumar, Samuel Horváth and Eduard Gorbunov
Mohamed bin Zayed University of Artificial Intelligence

Distributed VI problem

A lot of problems cannot be reduced to minimization, e.g., adversarial
training [1], generative adversarial networks (GANs) [2], hierarchical
reinforcement learning [3], adversarial examples games [4], problems
arising in game theory, control theory, and differential equations [5].
Such problems lead to min-max or, more generally, variational inequal-
ity (VI) problems [6] that have significant differences from minimization
ones (but include minimization) and require special consideration [7, 8].

Find x∗ ∈ Rd s.t. F (x∗) = 0, where F (x) :=
1

G

∑
i∈G

Fi(x),

• G is the set of good clients
• B is the set of Byzantine workers – the workers that can arbi-
trarily deviate from the prescribed protocol (maliciously or not) and
are assumed to be omniscient
• G ⊔ B = [n] is the set of clients participating in training

Robust Aggregation

Popular aggregation rules:

• Krum(x1, . . . , xn)
def
= argminxi∈{x1,...,xn}

∑
j∈Si

∥xj − xi∥2, where Si ⊆
{x1, . . . , xn} are n− |B| − 2 closest vectors to xi
• Robust Fed. Averaging: RFA(x1, . . . , xn)

def
= argminx∈Rd

∑n
i=1 ∥x− xi∥

• Coordinate-wise Median: [CM(x1, . . . , xn)]t
def
= argminu∈R

∑n
i=1 |u− [xi]t|

These defenses are vulnerable to Byzantine attacks [9, 10] and
do not satisfy the following definition.

Definition 1: (δ, c)-Robust Aggregator (modification of the definition from [11])

If a subset G ⊆ [n] of {x1, x2, . . . , xn} is s.t. |G| = G ≥ (1− δ)n for
δ < 0.5 and there exists σ ≥ 0 such that 1

G(G−1)

∑
i,l∈G E∥xi−xl∥2 ≤

σ2 where the expectation is taken w.r.t. the randomness of {xi}i∈G,
then x̂ = RAgg(x1, . . . , xn) is called (δ, c)-Robust Aggregator
((δ, c)-RAgg) if the following holds:

E
[
∥x̂− x∥2

]
≤ cδσ2, (1)

where x = 1
|G|

∑
i∈G xi. If additionally x̂ is computed without the

knowledge of σ2, we say that x̂ is (δ, c)-Agnostic Robust Aggrega-
tor ((δ, c)-ARAgg) and write x̂ = ARAgg(x1, . . . , xn).

One can robustify Krum, RFA, and CM using bucketing [11].

Algorithm 1 Bucketing: Robust Aggregation using bucketing [11]

1: Input: {x1, . . . , xn}, s ∈ N – bucket size, Aggr – aggregation rule
2: Sample random permutation π = (π(1), . . . , π(n)) of [n]

3: Compute yi =
1
s

∑min{si,n}
k=s(i−1)+1

xπ(k) for i = 1, . . . , ⌈n/s⌉
4: Return: x̂ = Aggr(y1, . . . , y⌈n/s⌉)

Existing Methods

Parallel SGDA / Parallel SEG:
✗ Permutation invariance
✗ Divergence with Byzantines
RDEG [12]:
✗ Permutation invariance
✗ Convergence with large batches in
homogeneous case
Why permutation non-invariance?
As [13] prove, any permutation-
invariant algorithm fails to converge
to any predefined accuracy even if
workers have homogeneous data!

Main Contriburion
• Methods with provably robust
aggregation. We propose new
methods SGDA-RA and SEG-RA –
variants of popular SGDA and SEG.
We prove that SGDA-RA and SEG-

RA work with any (δ, c)-robust ag-
gregation rule and converge to the
desired accuracy if the batchsize is
large enough.
• Client momentum. We add
client momentum to SGDA-RA and
propose Momentum SGDA-RA (M-
SGDA-RA). That breaks the permu-
tation invariance. In the case of star-
cocoercive quasi-strongly monotone
VIs, we prove the convergence to the
neighborhood of the solution; the
size of the neighborhood can be re-
duced via increasing batchsize only
– similarly to the results for RDEG,
SGDA-RA, and SEG-RA.
•Methods with random checks of
computations. For homogeneous
data case (ζ = 0), we propose a
version of SGDA and SEG with ran-
dom checks of computations (SGDA-
CC, SEG-CC and their restarted ver-
sions – R-SGDA-CC and R-SEG-CC).
We prove that the proposed meth-
ods converge to any accuracy of the
solution without any assumptions
on the batchsize. Moreover, when
the target accuracy of the solution
is small enough, the obtained con-
vergence rates for R-SGDA-CC and
R-SEG-CC are not worse than the
ones for distributed SGDA and SEG

derived in the case of no Byzantine
workers; see the comparison of the
convergence rates in Table 1.

Methods with Robust Aggregation

Eξigi(x, ξi) = Fi(x) Eξi∥gi(x, ξi)− Fi(x)∥2 ≤ σ2. (2)

SGDA-RA: xt+1 = xt − γRAgg(gt
1, . . . , g

t
n),

where gt
i = gi(x

t, ξti) ∀ i ∈ G, gt
i = ∗ ∀ i ∈ B, and {gt

i}i∈G are
sampled independently.
✗ Permutation non-invariance
✓ Convergence with large batches in heterogeneous case
✗ Convergence with large batches in homogeneous case

M-SGDA-RA: xt+1 = xt − γRAgg(mt
1, . . . ,m

t
n),

with mt
i = (1− α)mt−1

i + αgt
i,

where gt
i = gi(x

t, ξti), ∀i ∈ G and gt
i = ∗ ∀ i ∈ B and {gt

ξi
}i∈G

are sampled independently.
✓ Permutation non-invariance
✓ Convergence with large batches in heterogeneous case
✗ Convergence with large batches in homogeneous case

Methods with Checks of Computations

Key idea of the checks

At each iteration of SGDA-CC, the server selects m workers
(uniformly at random) and requests them to check the com-
putations of other m workers from the previous iteration.

Let Vt be the set of workers that verify/check computations, At

are active workers at iteration t, and Vt ∩ At = ∅. Then, the
update of SGDA-CC can be written as

SGDA-CC: xt+1 = xt − γgt,

if gt =
1

|At|
∑
i∈At

gi(x
t, ξti) is accepted,

where {gi(xt, ξti)}i∈G are sampled independently.
The acceptance (of the update) event occurs when the condition
∥gt − gi(x

t, ξti)∥ ≤ Cσ holds for the majority of workers. If gt

is rejected, then all workers re-sample gi(x
t, ξti) until acceptance

is achieved. The rejection probability is bounded, as per [14].
✗ Permutation invariance
✗ Non applicable for heterogeneous case
✓ Convergence with any batches in homogeneous case

R-SGDA-CC: restarted version of SGDA-CC
✓ Additionally benefits of collaboration

Rates and Comparison

Table 1: By the complexity, we mean the number of stochastic oracle calls needed
for a method to guarantee that E∥xT − x∗∥2 ≤ ε (for RDEG P{∥xT − x∗∥2 ≤
ε} ≥ 1 − δRDEG, δRDEG ∈ (0, 1]). Column “BS” indicates the minimal batch-size used
for achieving the corresponding complexity. Notation: c, δ are robust aggregator
parameters; α = momentum parameter; β = ratio of inner and outer stepsize in
SEG-like methods; n = total numbers of peers; m = number of checking peers; G =
number of peers following the protocol; R = any upper bound on ∥x0 − x∗∥; µ =
quasi-strong monotonicity (QSM) parameter; ℓ = star-cocoercivity (SC) parameter;
L = Lipschitzness (Lip) parameter; σ2 = bound on the variance. The definition xT

can vary; see corresponding theorems for the exact formulas.

Setup Method Complexity BS

(SC),
(QSM)

SGDA-RA ℓ
µ + 1

cδn
cδσ2

µ2ε

M-SGDA-RA ℓ
µα2 +

1
cδαn

cδσ2

α2µ2ε

SGDA-CC ℓ
µ + σ2

µ2nε
+ σ2n2

µ2mε
+ σ2n2

µ2m
√
ε

1

R-SGDA-CC ℓ
µ + σ2

nµε +
n2σ

m
√
µε 1

(Lip),
(QSM)

SEG-RA L
βµ + 1

βcδG + 1
β

cδσ2

βµ2ε

SEG-CC L
µ + 1

β + σ2

β2µ2nε
+ σ2n2

βµ2mε
+ σ2n2

β2µ2m
√
ε

1

R-SEG-CC L
µ + σ2

nµε +
n2σ

m
√
µε 1

(Lip),
(QSM)

RDEG L
µ

σ2µ2R2

L4ε2

• RDEG is only for homogeneous case (ζ = 0)

0 10 20 30 40 50
Epochs

10
1E

rr
or

Adversarial MNIST Error, attack = IPM

strategy
SGDA-CC
SGDA-RA
M-SGDA-RA
RDEG

References

[1] Ian J Goodfellow, Jonathon Shlens, and
Christian Szegedy. “Explaining and har-
nessing adversarial examples”. In: Inter-
national Conference on Learning Rep-
resentations (2015).

[2] Ian Goodfellow et al. “Generative Ad-
versarial Nets”. In: Advances in Neu-
ral Information Processing Systems 27
(2014).

[3] Greg Wayne and LF Abbott. “Hierar-
chical control using networks trained with
higher-level forward models”. In: Neural
computation 26.10 (2014), pp. 2163–2193.

[4] Joey Bose et al. “Adversarial example
games”. In: Advances in neural infor-
mation processing systems 33 (2020),
pp. 8921–8934.

[5] Francisco Facchinei and Jong-Shi Pang.
Finite-dimensional variational inequal-
ities and complementarity problems.
Springer, 2003.

[6] Gauthier Gidel et al. “A Variational In-
equality Perspective on Generative Adver-
sarial Networks”. In: International Con-
ference on Learning Representations.
2018.

[7] Patrick T Harker and Jong-Shi Pang.
“Finite-dimensional variational inequality
and nonlinear complementarity problems:
a survey of theory, algorithms and appli-
cations”. In: Mathematical programming
48.1-3 (1990), pp. 161–220.

[8] Ernest K Ryu and Wotao Yin. Large-
Scale Convex Optimization: Algorithms
& Analyses via Monotone Operators.
Cambridge University Press, 2022.

[9] Moran Baruch, Gilad Baruch, and Yoav
Goldberg. A Little Is Enough: Cir-
cumventing Defenses For Distributed

Learning. 2019. arXiv: 1902 . 06156

[cs.LG].

[10] Cong Xie, Sanmi Koyejo, and In-
dranil Gupta. Fall of Empires: Breaking
Byzantine-tolerant SGD by Inner Prod-
uct Manipulation. 2019. arXiv: 1903 .

03936 [cs.LG].

[11] Sai Praneeth Karimireddy, Lie He, and
Martin Jaggi. “Byzantine-Robust Learn-
ing on Heterogeneous Datasets via Buck-
eting”. In: International Conference on
Learning Representations. 2022.

[12] Arman Adibi et al. “Distributed sta-
tistical min-max learning in the presence
of Byzantine agents”. In: 2022 IEEE 61st
Conference on Decision and Control
(CDC). IEEE. 2022, pp. 4179–4184.

[13] Sai Praneeth Karimireddy, Lie He, and
Martin Jaggi. “Learning from history for
byzantine robust optimization”. In: Inter-
national Conference on Machine Learn-
ing. PMLR. 2021, pp. 5311–5319.

[14] Eduard Gorbunov et al. “Secure dis-
tributed training at scale”. In: Interna-
tional Conference on Machine Learn-
ing. PMLR. 2022, pp. 7679–7739.

