BYZANTINE-TOLERANT METHODS FOR DISTRIBUTED VARIATIONAL INEQUALITIES

P
MOHAMED BIN ZAYED

Nazaril Tupitsa, Abdulla Jasem Almansoori, Yanlin Wu, Martin Takac, Karthik Nandakumar, Samuel Horvath and Eduard Gorbunov ::c.:::';s

Mohamed bin Zayed University of Artificial Intelligence

Distributed VI problem

A lot of problems cannot be reduced to minimization, e.g., adversarial
training [1|, generative adversarial networks (GANs) [2], hierarchical
reinforcement learning [3|, adversarial examples games [4|, problems
arising in game theory, control theory, and differential equations [5].

)

Such problems lead to min-max or, more generally, variational inequal-
ity (VI) problems |6] that have significant differences from minimization
ones (but include minimization) and require special consideration |7, §|.

Find o* € R? st. F(z") = 0, where F(x) — éz F(x),
i€G
e ( is the set of good clients
e 5 is the set of Byzantine workers — the workers that can arbi-
trarily deviate from the prescribed protocol (maliciously or not) and
are assumed to be omniscient
e (LI B = |n| is the set of clients participating in training
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Robust Aggregation

Popular aggregation rules:

def : 9
S Tp) = ArgMiN, cr, 1Y s |2 — xif|7, where S; C

{x1,...,2,} are n — |B| — 2 closest vectors to x;

e Robust Fed. Averaging: RFA(zq,. .., 7,) 2 arg MmN, gd Y iy || — 24

e Coordinate-wise Median: [cM(z1,...,2,)], & argmin,ep 37 Ju — [2];]

These defenses are vulnerable to Byzantine attacks [9, 10] and

do not satisfy the following definition.

e Krum(zxq, ..

Definition 1: (4, c)-Robust Aggregator (modification of the definition from [11])

If a subset G C |n] of {x1,29,...,2,}isst. |G| =G > (1 —0)n for
0 < 0.5 and there exists o > 0 such that G(G%—D Z@',ZEQEH%_CUZHQ <

o where the expectation is taken w.r.t. the randomness of {x;}cg,
then ©¥ = RAgg(xy,...,x,) is called (9, c)-Robust Aggregator
((0, ¢)-RAgg) if the following holds:

E [|12 - 7] < cbo, )
where T = ﬁ > icg Ti- 1t additionally Z' is computed without the

knowledge of 0°, we say that 7 is (0, c)-Agnostic Robust Aggrega-
tor ((0, c)-ARAgg) and write x = ARAgg(x1,...,T,).

One can robustify Krum, RFA, and CM using bucketing [11].

Algorithm 1 Bucketing: Robust Aggregation using bucketing [11]

1 Input: {x1,...,2p}, s € N— bucket size, Aggr — aggregation rule
2. Sample random permutation 7 = (7(1),...,m(n)) of [n]

e fori =1, [nfs]

4+ Return: 7 = Aggr(yl, T WS])

3. Compute y; = %Z

Existing Methods

Parallel SGDA / Parallel SEG:

X Permutation invariance

X Divergence with Byzantines

RDEG [12]:

X Permutation invariance

X Convergence with large batches in
homogeneous case

Why permutation non-invariance?
As [18] prove, any permutation-
invariant algorithm fails to converge
to any predefined accuracy even 1if
workers have homogeneous data!

e Methods with provably robust
aggregation. We propose new
methods SGDA-RA and SEG-RA —
variants of popular SGDA and SEG.
We prove that SGDA-RA and SEG-
RA work with any (9, c¢)-robust ag-
oregation rule and converge to the
desired accuracy if the batchsize is
large enough.

e Client momentum. We add
client momentum to SGDA-RA and
propose Momentum SGDA-RA (M-
SGDA-RA). That breaks the permu-
tation invariance. In the case of star-
cocoercive quasi-strongly monotone
Vs, we prove the convergence to the
neighborhood of the solution; the
size of the neighborhood can be re-
duced via increasing batchsize only
— similarly to the results for RDEG,
SGDA-RA, and SEG-RA.

e Methods with random checks of
computations. For homogeneous
data case (¢ = 0), we propose a
version of SGDA and SEG with ran-
dom checks of computations (SGDA-
CC, SEG-CC and their restarted ver-
sions — R—SGDA-CC and R-SEG-CC).
We prove that the proposed meth-
ods converge to any accuracy of the
solution without any assumptions
on the batchsize. Moreover, when
the target accuracy of the solution
1s small enough, the obtained con-
vergence rates for R-SGDA-CC and
R-SEG-CC are not worse than the
ones for distributed SGDA and SEG
derived in the case of no Byzantine
workers; see the comparison of the
convergence rates in Table 1.

Methods with Robust Aggregation

Eellgi(z, &) — Fi(=)||" <o’ (2)

SGDA-RA: ! = 2! — yRAGa(g, ..., g'),

where g! = g;(x", €)Vie G, g =x%Vie B, and {g'};cg are
sampled independently:.
X Permutation non-invariance
Convergence with large batches in heterogeneous case
X Convergence with large batches in homogeneous case

M-SGDA-RA: it = ! — fyRAGG(mi, . 7mt )7

n
with m! = (1 — a)m! ™ + ag,
where g; = gi(x',&}), Vi € G and g} = * Vi € B and {g; }ieg
are sampled independently.
Permutation non-invariance
Convergence with large batches in heterogeneous case
X Convergence with large batches in homogeneous case

Methods with Checks of Computations

At each iteration of SGDA-CC, the server selects m workers
(uniformly at random) and requests them to check the com-
putations of other m workers from the previous iteration.

Let V; be the set of workers that verify /check computations, Ay
are active workers at iteration ¢, and V; N A; = &. Then, the
update of SGDA-CC can be written as

SGDA-CC: ' =z — g,
1
if g = — g;(x' &) is accepted,
’At’ ;At Z( Z)

where {g;(x', &) }ieg are sampled independently.
The acceptance (of the update) event occurs when the condition
1g" — gi(x', £€)|| < Co holds for the majority of workers. If g*
is rejected, then all workers re-sample g; (2!, €) until acceptance
is achieved. The rejection probability is bounded, as per |14].
X Permutation invariance
X Non applicable for heterogeneous case

Convergence with any batches in homogeneous case

R-SGDA-CC: restarted version of SGDA-CC
Additionally benefits of collaboration
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Rates and Comparison

Table 1: By the complexity, we mean the number of stochastic oracle calls needed
for a method to guarantee that E||x! — x*||> < & (for RDEG P{[|x! — z*|* <
e} > 1 — dppra, Orpee € (0, 1]). Column “BS” indicates the minimal batch-size used
for achieving the corresponding complexity. Notation: ¢, 0 are robust aggregator
parameters; @ = momentum parameter; J = ratio of inner and outer stepsize in
SEG-like methods; n = total numbers of peers; m = number of checking peers; G =
number of peers following the protocol; R = any upper bound on ||z" — z*||; pu =
quasi-strong monotonicity (QSM) parameter; ¢ = star-cocoercivity (SC) parameter;
L = Lipschitzness (Lip) parameter; o> = bound on the variance. The definition z!
can vary; see corresponding theorems for the exact formulas.
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