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The Problem
model parameters

# of parameters

# of workers/clients

𝑛 workers/clients

. . .

loss on the data accessible on worker 𝑖

Key features:
• The problem is hard to solve for one client
• Clients do not know each other
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Parallel SGD

. . .

Iteration 𝒌:
1. Server broadcasts 𝑥!
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makes an SGD step
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Parallel SGD Is Fragile

. . .

Iteration 𝒌:
1. Server broadcasts 𝑥! 
2. Good workers compute stochastic gradients
3. Server averages the received vectors and 

makes an SGD step

for 𝑖	 ∈ 𝒢 arbitrary bad
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The Refined Problem Formulation

. . .

*

Good	workers	form	the	majority:
• 𝒢 – good workers
• ℬ	– Byzantines (see the page “Byzantine 

fault” in Wikipedia)
• 𝒢 ⊔ 	ℬ = 𝑛 , 𝒢 = 𝐺, ℬ = 𝐵
• 𝐵	 ≤ 𝛿𝑛, 	𝛿 < 	 ⁄" #
• Byzantines are omniscient
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The Refined Problem Formulation

. . .

*

Good	workers	form	the	majority:
• 𝒢 – good workers
• ℬ	– Byzantines (see the page “Byzantine 

fault” in Wikipedia)
• 𝒢 ⊔ 	ℬ = 𝑛 , 𝒢 = 𝐺, ℬ = 𝐵
• 𝐵	 ≤ 𝛿𝑛, 	𝛿 < 	 ⁄" #
• Byzantines are omniscient

On	the	heterogeneity:
• Loss functions on good peers cannot be 

arbitrary heterogeneous
• In this talk, we will assume that

∀	𝑖	 ∈ 	𝒢	 → 	𝑓$	= 𝑓Question:	how	to	solve	such	problems?
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Robust Aggregation



“Middle-Seekers” Aggregators

Natural	idea:	replace	the	averaging	with	more	robust	aggregation	rule!

Question:	how	to	choose	aggregator?

17
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“Middle-Seekers” Aggregators

• Geometric	median	(RFA):
Pillutla,	K.,	Kakade,	S.	M.,	&	Harchaoui,	Z.	(2019).	Robust	aggregation	for	
federated	learning.	arXiv	preprint	arXiv:1912.13445.
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“Middle-Seekers” Aggregators

• Geometric	median	(RFA):
Pillutla,	K.,	Kakade,	S.	M.,	&	Harchaoui,	Z.	(2019).	Robust	aggregation	for	
federated	learning.	arXiv	preprint	arXiv:1912.13445.

• Coordinate-wise	median	(CM):
Yin,	D.,	Chen,	Y.,	Kannan,	R.,	&	Bartlett,	P.	(2018,	July).	Byzantine-robust	
distributed	learning:	Towards	optimal	statistical	rates.	In	International	
Conference	on	Machine	Learning	(pp.	5650-5659).	PMLR.
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“Middle-Seekers” Aggregators

• Geometric	median	(RFA):
Pillutla,	K.,	Kakade,	S.	M.,	&	Harchaoui,	Z.	(2019).	Robust	aggregation	for	
federated	learning.	arXiv	preprint	arXiv:1912.13445.

• Coordinate-wise	median	(CM):
Yin,	D.,	Chen,	Y.,	Kannan,	R.,	&	Bartlett,	P.	(2018,	July).	Byzantine-robust	
distributed	learning:	Towards	optimal	statistical	rates.	In	International	
Conference	on	Machine	Learning	(pp.	5650-5659).	PMLR.

• Krum	estimator:
Blanchard,	P.,	El	Mhamdi,	E.	M.,	Guerraoui,	R.,	&	Stainer,	J.	(2017,	December).	
Machine	learning	with	adversaries:	Byzantine	tolerant	gradient	descent.	In	
Proceedings	of	the	31st	International	Conference	on	Neural	Information	
Processing	Systems	(pp.	118-128).

indices of the closest 𝑛	– 𝐵	– 	2	workers to 𝑔
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Simple Example When “Middle-Seekers” Are Good

Let	𝑑 = 1, 𝒢	 = 	 1, 2, 3, 4 , ℬ = 5, 6 , 𝑔"! = 1.5, 𝑔#! = 2, 𝑔%! = 2.5, 𝑔&! = 3, and Byzantines are trying to shift 
the estimator via sending 𝑔'! = 𝑔(! = 1000. In this case,
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• Average of the good workers: 𝑔̅! = "
&
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• Average estimator: 𝑔! = "
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• Median: i𝑔! – any number from 2.5, 3 	

• Krum estimator: i𝑔! = 2	or 2.5
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Simple Example When “Middle-Seekers” Are Good

Let	𝑑 = 1, 𝒢	 = 	 1, 2, 3, 4 , ℬ = 5, 6 , 𝑔"! = 1.5, 𝑔#! = 2, 𝑔%! = 2.5, 𝑔&! = 3, and Byzantines are trying to shift 
the estimator via sending 𝑔'! = 𝑔(! = 1000. In this case,

• Average of the good workers: 𝑔̅! = "
&
∑$)"& 𝑔&! = 2.25

• Average estimator: 𝑔! = "
(
∑$)"( 𝑔$! = 335	

• Median: i𝑔! – any number from 2.5, 3 	

• Krum estimator: i𝑔! = 2	or 2.5

“Middle-seekers”	can	be	good	for	reducing	the	effect	of	outliers
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When “Middle-Seekers” Can Be Bad
Karimireddy,	S.	P.,	He,	L.,	&	Jaggi,	M.	(2021,	July).	Learning	from	history	for	byzantine	robust	
optimization.	In	International	Conference	on	Machine	Learning	(pp.	5311-5319).	PMLR.
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A Little Is Enough (ALIE) Attack
Baruch,	G.,	Baruch,	M.,	&	Goldberg,	Y.	(2019).	A	little	is	enough:	Circumventing	defenses	for	
distributed	learning.	Advances	in	Neural	Information	Processing	Systems,	32.

Byzantines send the following vectors: 
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A Little Is Enough (ALIE) Attack
Baruch,	G.,	Baruch,	M.,	&	Goldberg,	Y.	(2019).	A	little	is	enough:	Circumventing	defenses	for	
distributed	learning.	Advances	in	Neural	Information	Processing	Systems,	32.

• Byzantines choose 𝑧 such that they are close to the “boundary of the cloud”
• Since Byzantines are closer to the mean, “middle-seekers” will treat opposers as outliers

Byzantines send the following vectors: 

mean of the good workers coordinate-wise standard deviation of good workers
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The Result of ALIE Attack on the Training @ CIFAR10
Baruch,	G.,	Baruch,	M.,	&	Goldberg,	Y.	(2019).	A	little	is	enough:	Circumventing	defenses	for	
distributed	learning.	Advances	in	Neural	Information	Processing	Systems,	32.

“No	defense”	strategy	is	more	robust!	Formal	definition	of	robust	aggregation	is	required!
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Robust Aggregation Formalism
Karimireddy,	S.	P.,	He,	L.,	&	Jaggi,	M.	(2021,	July).	Learning	from	history	for	byzantine	robust	
optimization.	In	International	Conference	on	Machine	Learning	(pp.	5311-5319).	PMLR.

Let 𝑔"… , 𝑔* be random variables such that there exist a good subset 𝒢 ⊆ 𝑛  of size 𝐺 ≥ 1 − 𝛿 𝑛	 > 	 ⁄* # 
such that {𝑔$} $∈𝒢  are independent and for all fixed pairs of good workers 𝑖, 𝑗	 ∈ 	𝒢 we have

Let 𝑔̅ = "
-
∑$	∈	𝒢𝑔$. Then i𝑔 = RAgg(𝑔", … , 𝑔*) is called (𝛿, 𝑐)–robust aggregator if for some 𝑐 > 0  

Definition of (𝜹, 𝒄)–robust  aggregator
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Robust Aggregation Formalism
Karimireddy,	S.	P.,	He,	L.,	&	Jaggi,	M.	(2021,	July).	Learning	from	history	for	byzantine	robust	
optimization.	In	International	Conference	on	Machine	Learning	(pp.	5311-5319).	PMLR.

Let 𝑔"… , 𝑔* be random variables such that there exist a good subset 𝒢 ⊆ 𝑛  of size 𝐺 ≥ 1 − 𝛿 𝑛	 > 	 ⁄* # 
such that {𝑔$} $∈𝒢  are independent and for all fixed pairs of good workers 𝑖, 𝑗	 ∈ 	𝒢 we have

Let 𝑔̅ = "
-
∑$	∈	𝒢𝑔$. Then i𝑔 = RAgg(𝑔", … , 𝑔*) is called (𝛿, 𝑐)–robust aggregator if for some 𝑐 > 0  

Definition of (𝜹, 𝒄)–robust  aggregator

• Medians and Krum estimators do not satisfy this definition
• Question: do such aggregators exist?
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Bucketing Fixes “Middle-Seekers”
Karimireddy,	S.	P.,	He,	L.,	&	Jaggi,	M.	(2022).	Byzantine-Robust	Learning	on	Heterogeneous	
Datasets	via	Bucketing.	In	International	Conference	on	Learning	Representations.

Bucketing takes 𝑔", … , 𝑔* , positive integer 𝑠, and aggregator Aggr as an input and returns
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Karimireddy,	S.	P.,	He,	L.,	&	Jaggi,	M.	(2022).	Byzantine-Robust	Learning	on	Heterogeneous	
Datasets	via	Bucketing.	In	International	Conference	on	Learning	Representations.

Bucketing takes 𝑔", … , 𝑔* , positive integer 𝑠, and aggregator Aggr as an input and returns

where and is a random permutation of [𝑛]
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Bucketing Fixes “Middle-Seekers”
Karimireddy,	S.	P.,	He,	L.,	&	Jaggi,	M.	(2022).	Byzantine-Robust	Learning	on	Heterogeneous	
Datasets	via	Bucketing.	In	International	Conference	on	Learning	Representations.

Bucketing takes 𝑔", … , 𝑔* , positive integer 𝑠, and aggregator Aggr as an input and returns

where and is a random permutation of [𝑛]

For any 𝛿 ≤ 	𝛿/01 and 𝑠 = |2!"#
2

• Krum ∘ Bucketing is (𝛿, 𝑐)–robust aggregator with 𝑐 = 	𝒪(1) and 𝛿/01 <	 ⁄" &
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Bucketing Fixes “Middle-Seekers”
Karimireddy,	S.	P.,	He,	L.,	&	Jaggi,	M.	(2022).	Byzantine-Robust	Learning	on	Heterogeneous	
Datasets	via	Bucketing.	In	International	Conference	on	Learning	Representations.

Bucketing takes 𝑔", … , 𝑔* , positive integer 𝑠, and aggregator Aggr as an input and returns

where and is a random permutation of [𝑛]

For any 𝛿 ≤ 	𝛿/01 and 𝑠 = |2!"#
2

• Krum ∘ Bucketing is (𝛿, 𝑐)–robust aggregator with 𝑐 = 	𝒪(1) and 𝛿/01 <	 ⁄" &
• RFA ∘ Bucketing is (𝛿, 𝑐)–robust aggregator with 𝑐 = 	𝒪(1) and 𝛿/01 <	 ⁄" #
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Bucketing Fixes “Middle-Seekers”
Karimireddy,	S.	P.,	He,	L.,	&	Jaggi,	M.	(2022).	Byzantine-Robust	Learning	on	Heterogeneous	
Datasets	via	Bucketing.	In	International	Conference	on	Learning	Representations.

Bucketing takes 𝑔", … , 𝑔* , positive integer 𝑠, and aggregator Aggr as an input and returns

where and is a random permutation of [𝑛]

For any 𝛿 ≤ 	𝛿/01 and 𝑠 = |2!"#
2

• Krum ∘ Bucketing is (𝛿, 𝑐)–robust aggregator with 𝑐 = 	𝒪(1) and 𝛿/01 <	 ⁄" &
• RFA ∘ Bucketing is (𝛿, 𝑐)–robust aggregator with 𝑐 = 	𝒪(1) and 𝛿/01 <	 ⁄" #
• CM ∘ Bucketing is (𝛿, 𝑐)–robust aggregator with 𝑐 = 	𝒪(𝑑) and 𝛿/01 <	 ⁄" #

Moreover, these estimators are agnostic to 𝝈𝟐!
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Partial Participation
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Parallel SGD

. . .

Iteration 𝒌:
1. Server broadcasts 𝑥! 
2. Workers compute stochastic gradients
3. Server averages the stochastic gradients and 

makes an SGD step
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Parallel SGD with Partial Participation of Clients

. . .

Iteration 𝒌:
1. Server broadcasts 𝑥! 
2. Sampled workers compute stochastic 

gradients
3. Server averages the stochastic gradients and 

makes an SGD step
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Parallel SGD with Partial Participation of Clients

. . .

Iteration 𝒌:
1. Server broadcasts 𝑥! 
2. Sampled workers compute stochastic 

gradients
3. Server averages the stochastic gradients and 

makes an SGD step Why is it used?

Clients sampling may 
speed up the training

Some clients may be 
unavailable at certain 
moments (poor 
connection, low battery, 
no free compute power)
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Byzantine-Robust Method

. . .

Iteration 𝒌:
1. Server broadcasts 𝑥! 
2. Workers send some vectors to the server
3. Server aggregates the received vectors and 

makes an SGD step
some aggregation rule
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Byzantine-Robust Method with Partial Participation

. . .

Iteration 𝒌:
1. Server broadcasts 𝑥! 
2. Sampled workers send some vectors to the 

server
3. Server aggregates the received vectors and 

makes an SGD step some aggregation rule sampled workers
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Byzantine-Robust Method with Partial Participation

. . .

Iteration 𝒌:
1. Server broadcasts 𝑥! 
2. Sampled workers send some vectors to the 

server
3. Server aggregates the received vectors and 

makes an SGD step some aggregation rule sampled workers

If the majority of sampled 
workers are honest, the 
method works
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Byzantine-Robust Method with Partial Participation

. . .

Iteration 𝒌:
1. Server broadcasts 𝑥! 
2. Sampled workers send some vectors to the 

server
3. Server aggregates the received vectors and 

makes an SGD step some aggregation rule sampled workers

If the majority of sampled 
workers are honest, the 
method works

If honest workers are not 
in majorty, the method 
can fail 

No robustness when honest workers are not in majority! 
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Byzantine-Robust Method with Partial Participation

. . .

Iteration 𝒌:
1. Server broadcasts 𝑥! 
2. Sampled workers send some vectors to the 

server
3. Server aggregates the received vectors and 

makes an SGD step some aggregation rule sampled workers

If the majority of sampled 
workers are honest, the 
method works

If honest workers are not 
in majorty, the method 
can fail 

No robustness when honest workers are not in majority! 

The worst situation: all sampled workers are Byzantines
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Ingredient 1: Clipping
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Clipping Operator
💡 Natural idea: make all updates bounded via clipping

Useful properties:

Boundeness
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Clipping Operator
💡 Natural idea: make all updates bounded via clipping

Useful properties:

Boundeness

Controlled bias
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Clipping Operator
💡 Natural idea: make all updates bounded via clipping

Useful properties:

Boundeness

Controlled bias

Direction is preserved
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Ingredient 2: Variance Reduction
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Why Variance Reduction?

💡 Natural idea: if the variance of good vectors gets smaller, it becomes progressively harder for Byzantines 
to shift the result of the aggregation from the true mean

– good workers

– Byzantines

• Large variance allows Byzantines to 
hide in noise and still create large bias

• Hard to detect outliers

• Small variance does not allow Byzantines 
to create large bias easily 

• Easy to detect outliers

Wu,	Z.,	Ling,	Q.,	Chen,	T.,	&	Giannakis,	G.	B.	(2020).	Federated	variance-reduced	stochastic	gradient	
descent	with	robustness	to	byzantine	attacks.	IEEE	Transactions	on	Signal	Processing,	68,	4583-4596.
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Byrd-SAGA: Byzantine-Robust SAGA
Wu,	Z.,	Ling,	Q.,	Chen,	T.,	&	Giannakis,	G.	B.	(2020).	Federated	variance-reduced	stochastic	gradient	
descent	with	robustness	to	byzantine	attacks.	IEEE	Transactions	on	Signal	Processing,	68,	4583-4596.

Finite-sum optimization:
# of samples in the dataset

loss on 𝑗-th sample
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Byrd-SAGA: Byzantine-Robust SAGA
Wu,	Z.,	Ling,	Q.,	Chen,	T.,	&	Giannakis,	G.	B.	(2020).	Federated	variance-reduced	stochastic	gradient	
descent	with	robustness	to	byzantine	attacks.	IEEE	Transactions	on	Signal	Processing,	68,	4583-4596.

Finite-sum optimization:
# of samples in the dataset

loss on 𝑗-th sample

Byrd-SAGA:

• Good workers compute 
SAGA-estimators

• Server uses geometric 
median aggregator
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Complexity of Byrd-SAGA
Wu,	Z.,	Ling,	Q.,	Chen,	T.,	&	Giannakis,	G.	B.	(2020).	Federated	variance-reduced	stochastic	gradient	
descent	with	robustness	to	byzantine	attacks.	IEEE	Transactions	on	Signal	Processing,	68,	4583-4596.

Assumptions:

• 𝜇–strong convexity of 𝑓:

• 𝐿–smoothness of 𝑓", … , 𝑓4:
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Complexity of Byrd-SAGA
Wu,	Z.,	Ling,	Q.,	Chen,	T.,	&	Giannakis,	G.	B.	(2020).	Federated	variance-reduced	stochastic	gradient	
descent	with	robustness	to	byzantine	attacks.	IEEE	Transactions	on	Signal	Processing,	68,	4583-4596.

Assumptions:

• 𝜇–strong convexity of 𝑓:

• 𝐿–smoothness of 𝑓", … , 𝑓4:

Theorem:
Let 𝛿 < 	 ⁄" # and the above assumptions hold. Then, there exists a choice of the stepsize 𝛾 such that the mini-
batched version of Byrd-SAGA (with batchsize 𝑏) produces 𝑥! satisfying 𝔼 𝑥! 	− 𝑥∗

#
≤ 	𝜀 after

iterations
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Reflecting on the Complexities

• Complexity of Byrd-SAGA 𝑏 = 1, 𝛿 > 0 :

• Complexity of Byrd-SAGA 𝑏 = 1, 𝛿 = 	0 :

• Complexity of SAGA 𝑏 = 1, 𝛿 = 	0 :
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Reflecting on the Complexities

• Complexity of Byrd-SAGA 𝑏 = 1, 𝛿 > 0 :

• Complexity of Byrd-SAGA 𝑏 = 1, 𝛿 = 	0 :

• Complexity of SAGA 𝑏 = 1, 𝛿 = 	0 :

The reason for such a dramatic deterioration in the complexity of Byrd-SAGA in comparison to SAGA: 

Analysis of SAGA/SVRG-based methods is very sensitive to unbiasedness!
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Biased VR: You Cannot “Break” What Is Already “Broken”!

Nguyen,	L.	M.,	Liu,	J.,	Scheinberg,	K.,	&	Takáč,	M.	(2017,	July).	SARAH:	A	novel	method	for	machine	
learning	problems	using	stochastic	recursive	gradient.	In	International	Conference	on	Machine	
Learning	(pp.	2613-2621).	PMLR.

Horváth,	S.,	Lei,	L.,	Richtárik,	P.,	&	Jordan,	M.	I.	(2022).	Adaptivity	of	stochastic	gradient	methods	for	
nonconvex	optimization.	SIAM	Journal	on	Mathematics	of	Data	Science,	4(2),	634-648.

Li,	Z.,	Bao,	H.,	Zhang,	X.,	&	Richtárik,	P.	(2021,	July).	PAGE:	A	simple	and	optimal	probabilistic	
gradient	estimator	for	nonconvex	optimization.	In	International	Conference	on	Machine	Learning	
(pp.	6286-6295).	PMLR.

SARAH/Geom-SARAH/PAGE (1 node case):



57

Biased VR: You Cannot “Break” What Is Already “Broken”!
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Biased VR: You Cannot “Break” What Is Already “Broken”!

Nguyen,	L.	M.,	Liu,	J.,	Scheinberg,	K.,	&	Takáč,	M.	(2017,	July).	SARAH:	A	novel	method	for	machine	
learning	problems	using	stochastic	recursive	gradient.	In	International	Conference	on	Machine	
Learning	(pp.	2613-2621).	PMLR.

Horváth,	S.,	Lei,	L.,	Richtárik,	P.,	&	Jordan,	M.	I.	(2022).	Adaptivity	of	stochastic	gradient	methods	for	
nonconvex	optimization.	SIAM	Journal	on	Mathematics	of	Data	Science,	4(2),	634-648.

Li,	Z.,	Bao,	H.,	Zhang,	X.,	&	Richtárik,	P.	(2021,	July).	PAGE:	A	simple	and	optimal	probabilistic	
gradient	estimator	for	nonconvex	optimization.	In	International	Conference	on	Machine	Learning	
(pp.	6286-6295).	PMLR.

SARAH/Geom-SARAH/PAGE (1 node case):

𝐽!– indices in the mini-batch, |𝐽!| = 𝑏



59

Biased VR: You Cannot “Break” What Is Already “Broken”!

Nguyen,	L.	M.,	Liu,	J.,	Scheinberg,	K.,	&	Takáč,	M.	(2017,	July).	SARAH:	A	novel	method	for	machine	
learning	problems	using	stochastic	recursive	gradient.	In	International	Conference	on	Machine	
Learning	(pp.	2613-2621).	PMLR.

Horváth,	S.,	Lei,	L.,	Richtárik,	P.,	&	Jordan,	M.	I.	(2022).	Adaptivity	of	stochastic	gradient	methods	for	
nonconvex	optimization.	SIAM	Journal	on	Mathematics	of	Data	Science,	4(2),	634-648.

Li,	Z.,	Bao,	H.,	Zhang,	X.,	&	Richtárik,	P.	(2021,	July).	PAGE:	A	simple	and	optimal	probabilistic	
gradient	estimator	for	nonconvex	optimization.	In	International	Conference	on	Machine	Learning	
(pp.	6286-6295).	PMLR.

SARAH/Geom-SARAH/PAGE (1 node case):

𝐽!– indices in the mini-batch, |𝐽!| = 𝑏

𝑝	~	 ⁄6 4	– probability of 
computing the full gradient 



60

Biased VR: You Cannot “Break” What Is Already “Broken”!

Nguyen,	L.	M.,	Liu,	J.,	Scheinberg,	K.,	&	Takáč,	M.	(2017,	July).	SARAH:	A	novel	method	for	machine	
learning	problems	using	stochastic	recursive	gradient.	In	International	Conference	on	Machine	
Learning	(pp.	2613-2621).	PMLR.

Horváth,	S.,	Lei,	L.,	Richtárik,	P.,	&	Jordan,	M.	I.	(2022).	Adaptivity	of	stochastic	gradient	methods	for	
nonconvex	optimization.	SIAM	Journal	on	Mathematics	of	Data	Science,	4(2),	634-648.

Li,	Z.,	Bao,	H.,	Zhang,	X.,	&	Richtárik,	P.	(2021,	July).	PAGE:	A	simple	and	optimal	probabilistic	
gradient	estimator	for	nonconvex	optimization.	In	International	Conference	on	Machine	Learning	
(pp.	6286-6295).	PMLR.

SARAH/Geom-SARAH/PAGE (1 node case):

𝐽!– indices in the mini-batch, |𝐽!| = 𝑏

𝑝	~	 ⁄6 4	– probability of 
computing the full gradient 

Estimator is biased from the beginning!
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Byz-PAGE

E.	Gorbunov,	S.	Horváth,	P.	Richtárik,	G.	Gidel.	Variance	Reduction	is	an	Antidote	to	Byzantines:	Better	Rates,	Weaker	
Assumptions	and	Communication	Compression	as	a	Cherry	on	the	Top		(ICLR	2023)
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(𝛿, 𝑐)–robust aggregator agnostic to the variance, e.g., Krum/RFA/CM ∘ Bucketing
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Byz-PAGE

(𝛿, 𝑐)–robust aggregator agnostic to the variance, e.g., Krum/RFA/CM ∘ Bucketing

Geom-SARAH/PAGE–estimator 

E.	Gorbunov,	S.	Horváth,	P.	Richtárik,	G.	Gidel.	Variance	Reduction	is	an	Antidote	to	Byzantines:	Better	Rates,	Weaker	
Assumptions	and	Communication	Compression	as	a	Cherry	on	the	Top		(ICLR	2023)

The method achieves theoretical SOTA rates but uses full participation of clients
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Complexity of Byz-PAGE-PP (Simplified)
Assumptions:

• 𝑓 is lower-bounded:

• 𝐿–smoothness of 𝑓", … , 𝑓4:

Theorem 1:
Let the above assumptions hold and ARAggr be (𝛿, 𝑐)–robust aggregator. Then, there exists a choice of the 
stepsize 𝛾 such that Byz-PAGE produces i𝑥! satisfying 𝔼 ∇𝑓(i𝑥!) # ≤	𝜀# after

iterations

𝐹𝒜 - aggregation-dependent constant
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Byz-PAGE vs Byz-PAGE-PP

Byz-PAGE-PP:

Byz-PAGE:

Matching results when all clients participate

When 𝑝- = 1 (𝐶 is large enough) and 𝑐𝛿 ≥ ⁄𝑝 𝐶, complexities are the same, 
while Byz-PAGE-PP uses only 𝐶 ≤ 𝑛 workers at each step (on average) à provable benefits of PP! 
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Numerical Results: Logistic Regression

• We tested the proposed method on 
the logistic regression tasks

• In this experiment, we have 15 good 
workers and 5 Byzantines

• Shift-back attack (SHB): when 
Byzantines form a majority they send 
𝑥8 − 𝑥!

• Aggregation rule: coordinate-wise 
median (CM) with Bucketing

• Each round we sample 4 clients
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Numerical Results: Benefits of PP

• The method benefits from partial 
participation
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Numerical Results: Sensivity to Clipping Level

• We also tested our method with 
different clipping multipliers 𝜆: 
𝜆! = 𝜆 𝑥! − 𝑥!9"  

• The method converges for different 
clipping values, though the speed 
depends on 𝜆
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Heuristic Extension
🤔 How to adjust any Byzantine-robust method to the case of Partial Participation?

💡 Clip differences!

✓ We recommend to use 𝜆! = 𝜆 𝑥! − 𝑥!9"  and tune 𝜆 in practice
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Numerical Results: Neural Network Training

• We follow the setup from (Karimireddy et al., 2021) and train a certain NN on MNIST 
(LeCun and Cortes, 1998)

• In this experiment, we have 15 good workers and 5 Byzantines

• Attacks: A Little is Enough (ALIE) (Baruch et al., 2019), Bit Flipping (BF), Label Flipping (LF), 
Shift-Back (SHB)

• Aggregation rules: coordinate-wise median (CM), geometric median (RFA) with bucketing

• Each round we sample 4 clients

• Optimization method: Robust Momentum SGD (Karimireddy et al., 2021)

Karimireddy,	S.	P.,	He,	L.,	Jaggi,	M.	Learning	from	history	for	byzantine	robust	optimization	(ICML	2021)
LeCun,	Y.	and	Cortes,	C.	The	MNIST	database	of	handwritten	digits	(http://yann.lecun.com/exdb/mnist/,	1998)
Baruch, G., Baruch, M., Goldberg, Y. A Little is Enough: Circumventing defenses for distributed learning (NeurIPS 2019)

http://yann.lecun.com/exdb/mnist/
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Concluding Remarks
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In the Paper We Also Have

• Analysis of the version with compression (Byz-VR-MARINA-PP)

• Analysis under bounded heterogeneity

• Non-uniform sampling of stochastic gradients

• Analysis taking into account data-similarity

Thank you!


