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Byzantine-Robust Training



The Problem
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 The problem is hard to solve for one client
Clients do not know each other



Parallel SGD

Iteration k:
1. Server broadcasts x*¥




Iteration k:

1.
2.

Server broadcasts x*
Workers compute stochastic gradients

Parallel SGD
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Parallel SGD

Iteration k:

1. Server broadcasts x*

2. Workers compute stochastic gradients

3. Server averages the stochastic gradients and
makes an SGD step
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Parallel SGD Is Fragile

Iteration k:

1. Server broadcasts x*¥
2. Good workers compute stochastic gradients
3. Server averages the received vectors and

makes an SGD step

k k : :
D53 g; | = sz(aj ) fori €§ arbitrary bad
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The Refined Problem Formulation

min {f(fv) = é > fz-(fc)}

1€G

Good workers form the majority:
* G —good workers
B —Byzantines (see the page “Byzantine

fault” in Wikipedia)
 GU B=|n], |G]|=G, |B|=B
e B S5n, 0 < 1/2
* Byzantines are omniscient
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The Refined Problem Formulation

min { f(z) = = 3 fila)

rER4A )
1€G

Good workers form the majority:

* G —good workers

B —Byzantines (see the page “Byzantine
fault” in Wikipedia)

* GUB=In], |g|=6G, |B|=B

« B <én, 6< 1/,

* Byzantines are omniscient

e [ O
S S
file)  folz) =

On the heterogeneity:
) * Loss functions on good peers cannot be
arbitrary heterogeneous
* In this talk, we will assume that
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The Refined Problem Formulation

min 4 £(2) == = > fila)

rERA

Good workers form the majority:

* G —good workers

B —Byzantines (see the page “Byzantine
fault” in Wikipedia)

* GUB=In], |g|=6G, |B|=B

« B <én, 6< 1/,

* Byzantines are omniscient

e U OO -
& S
filz)  fa(z) * Il

Question: how to solve such problems? Vieg - fi=f

On the heterogeneity:
) * Loss functions on good peers cannot be
arbitrary heterogeneous
* In this talk, we will assume that

=

15



Robust Aggregation



“Middle-Seekers” Aggregators

Natural idea: replace the averaging with more robust aggregation rule!

S L. .

1 n
k k .
" =—-) 4 =) §" =RAgg (97,95,
1=1

Question: how to choose aggregator?

y In
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“Middle-Seekers” Aggregators

Geometric median (RFA): g — arg min E H g — gk HZ
Pillutla, K., Kakade, S. M., & Harchaoui, Z. (2019). Robust aggregation for d l
“/use federated learning. arXiv preprint arXiv:1912.13445. g 6
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L/

“Middle-Seekers” Aggregators

Geometric median (RFA):

Pillutla, K., Kakade, S. M., & Harchaoui, Z. (2019). Robust aggregation for
“/use federated learning. arXiv preprint arXiv:1912.13445.

Coordinate-wise median (CM):

Yin, D., Chen, Y., Kannan, R., & Bartlett, P. (2018, July). Byzantine-robust
mie distributed learning: Towards optimal statistical rates. /n International

Conference on Machine Learning (pp. 5650-5659). PMLR.

g" = arg mmdz lg = gllo
geR

& k
g" = arg min § ﬁHg g9; 11
geRI "~ :
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“Middle-Seekers” Aggregators

* Geometric median (RFA):

3 Pillutla, K., Kakade, S. M., & Harchaoui, Z. (2019). Robust aggregation for
“/use federated learning. arXiv preprint arXiv:1912.13445.

* Coordinate-wise median (CM):

Yin, D., Chen, Y., Kannan, R., & Bartlett, P. (2018, July). Byzantine-robust
mie distributed learning: Towards optimal statistical rates. /n International
Conference on Machine Learning (pp. 5650-5659). PMLR.

e Krum estimator:

Blanchard, P., El Mhamdi, E. M., Guerraoui, R., & Stainer, J. (2017, December).

= Machine learning with adversaries: Byzantine tolerant gradient descent. /n
Proceedings of the 31st International Conference on Neural Information
Processing Systems (pp. 118-128).

g" = arg mmdz lg = gllo
geR

~k k
g - =argmin » |lg— g1
geRdZ ;

indices of the closest n - B - 2 workers to g
20



Simple Example When “Middle-Seekers” Are Good

letd =1,G = {1,2,3,4},B = {5,6}, gf = 1.5,g§ = 2,g§ = 2.5,gf}C = 3, and Byzantines are trying to shift
the estimator via sending gé‘ = gé‘ = 1000. In this case,

21



Simple Example When “Middle-Seekers” Are Good

letd =1,6 = {1,2,3,4},B = {5,6},g% = 1.5,g5 = 2,g§ = 2.5, g¥ = 3, and Byzantines are trying to shift
the estimator via sending gé‘ = gé‘ = 1000. In this case,
* Average of the good workers: g~ = %Z;ngff = 2.25

* Average estimator: g = %Z?ﬂ gk =335

« Median: g% —any number from [2.5, 3]

« Krum estimator: §% = 2 or 2.5
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Simple Example When “Middle-Seekers” Are Good

letd =1,G = {1,2,3,4},B = {5,6},9% = 1.5,g% = 2, gé‘ = 2.5, g¥ = 3, and Byzantines are trying to shift
the estimator via sending gé‘ = gé‘ = 1000. In this case,

* Average of the good workers: g~ = %Z;ngff = 2.25

* Average estimator: g = %Z?ﬂ gk =335

« Median: g% —any number from [2.5, 3]

« Krum estimator: §% = 2 or 2.5

“Middle-seekers” can be good for reducing the effect of outliers
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When “Middle-Seekers” Can Be Bad

Karimireddy, S. P., He, L., & Jaggi, M. (2021, July). Learning from history for byzantine robust

‘,ﬂ optimization. /n International Conference on Machine Learning (pp. 5311-5319). PMLR.
1
100 1— median
1
- mean
X 804 class 1&2 i
> ignored
© 60-
= Aggr
O — M
< 40- —— RFA _ :
— Krum Figure 2: For fat-tailed
200 400 600 800 distributions, median
Iterations based aggregators
Figure 1: Failure of existing methods on imbalanced ~ ignore the tail. This
MNIST dataset. Only the head classes (class 1 and 2 here) ~ bias remains even if we

are learnt, and the rest 8 classes are ignored. See Sec. 7.1. have infinite samples.



A Little Is Enough (ALIE) Attack

Baruch, G., Baruch, M,, & Goldberg, Y. (2019). A little is enough: Circumventing defenses for
¥ distributed learning. Advances in Neural Information Processing Systems, 32.
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Byzantines send the following vectors: gf — UG — <0G
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Byzantines send the following vectors: gf — |,ug

A Little Is Enough (ALIE) Attack

Baruch, G., Baruch, M., & Goldberg, Y. (2019). A little is enough: Circumventing defenses for
¥ distributed learning. Advances in Neural Information Processing Systems, 32.
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mean of the good workers

coordinate-wise standard deviation of good workers

Byzantines choose z such that they are close to the “boundary of the cloud”
Since Byzantines are closer to the mean, “middle-seekers” will treat opposers as outliers
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The Result of ALIE Attack on the Training @ CIFAR10

Baruch, G., Baruch, M,, & Goldberg, Y. (2019). A little is enough: Circumventing defenses for
‘,ﬂ distributed learning. Advances in Neural Information Processing Systems, 32.
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“No defense” strategy is more robust! Formal definition of robust aggregation is required!
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Robust Aggregation Formalism

Karimireddy, S. P., He, L., & Jaggi, M. (2021, July). Learning from history for byzantine robust
‘Aﬂ optimization. /n International Conference on Machine Learning (pp. 5311-5319). PMLR.

Definition of (4, c)-robust aggregator

Let g4 ..., g, be random variables such that there exist a good subset G € [n] of size G = (1 — §)n > "/,
such that {g; }(ieg) are independent and for all fixed pairs of good workers i,j € G we have

n 2 2
E (1lgi — g41°] < o,
Let g = %Zieggi. Then g = RAgg(g4, ..., gn) is called (8, c)—robust aggregator if for some c > 0

e (19 —91I°] < cdo”
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Robust Aggregation Formalism

Karimireddy, S. P., He, L., & Jaggi, M. (2021, July). Learning from history for byzantine robust
‘«nﬂ optimization. /n International Conference on Machine Learning (pp. 5311-5319). PMLR.

Definition of (4, c)-robust aggregator

Let g4 ..., g, be random variables such that there exist a good subset G € [n] of size G = (1 — §)n > "/,
such that {g; }(ieg) are independent and for all fixed pairs of good workers i,j € G we have

n 2 2
E (1lgi — g41°] < o,
Let g = %Zieggi. Then g = RAgg(g4, ..., gn) is called (8, c)—robust aggregator if for some c > 0

e (19 —91I°] < cdo”

* Medians and Krum estimators do not satisfy this definition
* Question: do such aggregators exist?
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Bucketing Fixes “Middle-Seekers”

Karimireddy, S. P., He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous
‘Aﬂ Datasets via Bucketing. /n International Conference on Learning Representations.

Bucketing takes {g, ..., g»,}, positive integer s, and aggregator Aggr as an input and returns

g =Aggr(yi,...,Yrn/s)

30



Bucketing Fixes “Middle-Seekers”

Karimireddy, S. P., He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous
‘Aﬂ Datasets via Bucketing. /n International Conference on Learning Representations.

Bucketing takes {g, ..., g»,}, positive integer s, and aggregator Aggr as an input and returns

g =Aggr(yi,...,Yrn/s)

min{si,n}
where Y; = g Z Tr(k) and T = (7T(1), . ,w(n)) is a random permutation of [n]
k=s(i—1)+1
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Bucketing Fixes “Middle-Seekers”

Karimireddy, S. P., He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous
‘Aﬂ Datasets via Bucketing. /n International Conference on Learning Representations.

Bucketing takes {g, ..., g»,}, positive integer s, and aggregator Aggr as an input and returns

g =Aggr(yi,...,Yrn/s)

min{si,n}
where Y; = E Z Tr(k) and T = (7T(1), . ,w(n)) is a random permutation of [n]
k=s(i—1)+1

Forany 60 < Opaxand s = lSmaX/é‘J

« Krum o Bucketing is (8, ¢)-robust aggregator with c = O(1) and dppax < 4
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Bucketing Fixes “Middle-Seekers”

Karimireddy, S. P., He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous
‘Aﬂ Datasets via Bucketing. /n International Conference on Learning Representations.

Bucketing takes {g, ..., g»,}, positive integer s, and aggregator Aggr as an input and returns

g =Aggr(yi,...,Yrn/s)

min{si,n}

where Y; = — Z Tr(k) and T = (7T(1), . ,W(n)) is a random permutation of [n]
) k=s(i—1)4+1

Forany 60 < Opaxand s = lSmaX/é‘J
« Krum o Bucketing is (8, ¢)-robust aggregator with c = O(1) and dppax < 4

* RFA o Bucketing is (&, ¢)—robust aggregator with c = 0(1) and dppax < /5
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Bucketing Fixes “Middle-Seekers”

Karimireddy, S. P., He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous
‘Aﬂ Datasets via Bucketing. /n International Conference on Learning Representations.

Bucketing takes {g, ..., g»,}, positive integer s, and aggregator Aggr as an input and returns

g =Aggr(yi,...,Yrn/s)

min{si,n}

where Y; = — Z Tr(k) and T = (7T(1), . ,W(n)) is a random permutation of [n]
) k=s(i—1)4+1

Forany 6 < Opax and s = lSmaX/é‘J

« Krum o Bucketing is (8, ¢)-robust aggregator with c = O(1) and dppax < 4
* RFA o Bucketing is (&, ¢)—robust aggregator with c = 0(1) and dppax < /5

* CM o Bucketing is (8, c)-robust aggregator with ¢ = 0(d) and 6ppax < /5
21

Moreover, these estimators are agnostic to o »



Partial Participation



Parallel SGD

Iteration k:

1. Server broadcasts x*

2. Workers compute stochastic gradients

3. Server averages the stochastic gradients and
makes an SGD step

36




Parallel SGD with Partial Participation of Clients

Iteration k:

1. Server broadcasts x*

2. Sampled workers compute stochastic
gradients

3. Server averages the stochastic gradients and
makes an SGD step

ng
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Iteration k:
1.
2.

Parallel SGD with Partial Participation of Clients

Server broadcasts x*
Sampled workers compute stochastic

3
1
k+1:xk_%§zgf
1=1

Why is it used?

gradients
Server averages the stochastic gradients and
makes an SGD step

Clients sampling may
speed up the training

Some clients may be
unavailable at certain
moments (poor
connection, low battery,
no free compute power)

38




Byzantine-Robust Method

Iteration k: (eos |
1. Server broadcasts x* oo | L 2
Y1k ~
2. Workers send some vectors to the server r == T =X — 7 Agg({gvj }zé[n])

e

3. Server aggregates the received vectors and
I B

makes an SGD step

some aggregation rule

39



Byzantine-Robust Method with Partial Participation

Iteration k:
1. Server broadcasts x* L
k+1 k
2. Sampled workers send some vectors to the T = T =" — v - Agg {gz }'Sk,)
server / /r
3. Server aggregates the received vectors and

some aggregation rule sampled workers
makes an SGD step gereg p

40



Iteration k:
1.
2.

3.

Byzantine-Robust Method with Partial Participation

Server broadcasts x¥
Sampled workers send some vectors to the

k
2" P =2 — . Age({gFYs,)

7

some aggregation rule sampled workers

server
Server aggregates the received vectors and
makes an SGD step

If the majority of sampled
workers are honest, the
method works

41



Byzantine-Robust Method with Partial Participation

No robustness when honest workers are not in majority!

k T —
r" o gt = ot — oy Agg({g }s,)

7

some aggregation rule sampled workers

Iteration k:

1. Server broadcasts x*

2. Sampled workers send some vectors to the
server

3. Server aggregates the received vectors and
makes an SGD step

If the majority of sampled
workers are honest, the
method works

If honest workers are not
@ in majorty, the method
can fail

42



Byzantine-Robust Method with Partial Participation

No robustness when honest workers are not in majority!

Iteration k: \
1. Server broadcasts x* L
k+1 _ _k k-
2.  Sampled workers send some vectors to the T = T =X —7 'ﬁygg({gi }Esk_:)
server / /
3. Server aggregates the received vectors and

some aggregation rule sampled workers
makes an SGD step SEIEE .
If the majority of sampled
workers are honest, the
method works

If honest workers are not
@ in majorty, the method
can fail

Folgl] o ol ol

The worst situation: all sampled workers are Byzantines
43



Ingredient 1: Clipping



Clipping Operator

. Natural idea: make all updates bounded via clipping

min{l,ﬁ}x, it © £ 0

clip(x, \) =
0, otherwise

Useful properties:

Boundeness |clip(x, V|| < A

45



Clipping Operator

. Natural idea: make all updates bounded via clipping

clip(x, \) =

min{l,ﬁ}x, it © £ 0

0, otherwise

Useful properties:

Boundeness |clip(x, V|| < A

Controlled bias |clip(z, A) — z|| < (1 — min {1,

A

||

IE
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Clipping Operator

. Natural idea: make all updates bounded via clipping

min{l,ﬁ}x, it © £ 0

0, otherwise

clip(x, \) =

Useful properties:

Boundeness
Controlled bias

Direction is preserved

Iclip(z, M) < A

|clip(z, A) — z|| < (1 — min {1,

A

||

IE

47



Ingredient 2: Variance Reduction



Why Variance Reduction?

Wu, Z,, Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient
/um descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.

. Natural idea: if the variance of good vectors gets smaller, it becomes progressively harder for Byzantines
to shift the result of the aggregation from the true mean

® — good workers o
[
® :
Byzantines ...‘ °,
o 00%0 _ ©
P o
® O
e % e —
o® @ o S
@
o o
® O
e © ©o ® @
¢ O
@
* Large variance allows Byzantines to * Small variance does not allow Byzantines
hide in noise and still create large bias to create large bias easily

 Hard to detect outliers e Easy to detect outliers 49



Byrd-SAGA: Byzantine-Robust SAGA

Wu, Z,, Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient
descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.

AAAAA

Finite-sum optimization:

min
rcER4

f(z) :

1

m

fi(x)

# of samples in the dataset

loss on j-th sample
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Byrd-SAGA: Byzantine-Robust SAGA

AAAAA

Finite-sum optimization:

Byrd-SAGA:

Good workers compute
SAGA-estimators
Server uses geometric
median aggregator

Wu, Z,, Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient
descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.

\
. 1 — # of samples in the dataset
min { f(z) = = f;() }
x€R4 | 4 .
J=1 ) loss on j-th sample
pFHl — gk _ gk

98

( m
o= Vi (@) = Vi, (855 )+ 21ij( k), ifieg,
T T 7=

§" =RFA(gy, .-

St if2€eB

k+1 __ ﬁj? lf] #.]’Lk?
qb’i,j ) gk

= Vieg
) lf]:]zk
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Complexity of Byrd-SAGA

Wu, Z,, Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient
‘Aﬂ descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.

Assumptions:
* u-strong convexity of f: fly) > flz)+(Vf(z),y —x) + %Hy —z||* Va,y € RY

 Lesmoothness of fy . fui  ||Vf;(y) = V@) < Ly —al| Va,y € RYj € [m

52



Complexity of Byrd-SAGA

Wu, Z,, Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient
‘,ﬂ descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.
y g 8

Assumptions:

* u—strong convexity of f: fly) > f(x) +(Vf(x),y —x) + %Hy —z||* Vz,y¢€ R
* L-smoothness of fi, ..., fm: IVfi(y) = V@) < Llly—=| Vo,yeR?j € [m]
Theorem:

Let § < 1/, and the above assumptions hold. Then, there exists a choice of the stepsize y such that the mini-
2
batched version of Byrd-SAGA (with batchsize b) produces x* satisfying E [”xk — X" ] < ¢ after

m?212 1
O l —_— iterations
RA—20)2 Ce)

53



Reflecting on the Complexities

* Complexity of Byrd-SAGA (b =1, 6 > 0):

* Complexity of Byrd-SAGA (b =1, 6§ = 0):

* Complexity of SAGA (b =1, 6§ = 0):

m?L? 1
] n
: <(1 —20)u2 ° 6>

m? L? 1
(’)( ; log—>

1 3

o( (et
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Reflecting on the Complexities

Complexity of Byrd-SAGA (b =1, 6§ > 0):

Complexity of Byrd-SAGA (b =1, 6§ = 0):

Complexity of SAGA (b =1, § = 0):

m? L? 1
] n
: ((1 —20)u2 ° 6>

2.2 1
@, <m — log —>
v 3

o( (st

The reason for such a dramatic deterioration in the complexity of Byrd-SAGA in comparison to SAGA:

k(0" # V f(2")

Analysis of SAGA/SVRG-based methods is very sensitive to unbiasedness!
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Biased VR: You Cannot “Break” What Is Already “Broken”!

SARAH/Geom-SARAH/PAGE (1 node case):

Nguyen, L. M,, Liu, J., Scheinberg, K., & Taka¢, M. (2017, July). SARAH: A novel method for machine
learning problems using stochastic recursive gradient. In International Conference on Machine

Learning (pp. 2613-2621). PMLR.

Horvath, S., Lei, L., Richtarik, P., & Jordan, M. I. (2022). Adaptivity of stochastic gradient methods for
nonconvex optimization. SIAM Journal on Mathematics of Data Science, 4(2), 634-648.

Li, Z., Bao, H., Zhang, X., & Richtarik, P. (2021, July). PAGE: A simple and optimal probabilistic
gradient estimator for nonconvex optimization. In International Conference on Machine Learning 56
(pp- 6286-6295). PMLR.




Biased VR: You Cannot “Break” What Is Already “Broken”!

SARAH/Geom-SARAH/PAGE (1 node case):

Vf(xh), with prob. p

g = gk_l—k% ZJ (ij(a:k)—ij(:ck_l)), with prob. 1 —p
J€JK

ﬁ Nguyen, L. M,, Liu, J., Scheinberg, K., & Taka¢, M. (2017, July). SARAH: A novel method for machine
‘Aﬂ learning problems using stochastic recursive gradient. In International Conference on Machine

Learning (pp. 2613-2621). PMLR.

ﬁ Horvath, S., Lei, L., Richtarik, P., & Jordan, M. I. (2022). Adaptivity of stochastic gradient methods for
¥ wm honconvex optimization. SIAM Journal on Mathematics of Data Science, 4(2), 634-648.

ﬁ Li, Z., Bao, H., Zhang, X., & Richtarik, P. (2021, July). PAGE: A simple and optimal probabilistic
A wn gradient estimator for nonconvex optimization. In International Conference on Machine Learning 57
(pp. 6286-6295). PMLR.




Biased VR: You Cannot “Break” What Is Already “Broken”!

SARAH/Geom-SARAH/PAGE (1 node case):

Vf(xh), with prob. p

g = gk_l—ké ZJ (Vfi(@®) =V fi(z51)), with prob. 1 —p
7€k

Ji—indices in the mini-batch, || = b

ﬁ Nguyen, L. M,, Liu, J., Scheinberg, K., & Taka¢, M. (2017, July). SARAH: A novel method for machine
‘Aﬂ learning problems using stochastic recursive gradient. In International Conference on Machine

Learning (pp. 2613-2621). PMLR.

ﬁ Horvath, S., Lei, L., Richtarik, P., & Jordan, M. I. (2022). Adaptivity of stochastic gradient methods for
¥ wm honconvex optimization. SIAM Journal on Mathematics of Data Science, 4(2), 634-648.

ﬁ Li, Z., Bao, H., Zhang, X., & Richtarik, P. (2021, July). PAGE: A simple and optimal probabilistic
A wn gradient estimator for nonconvex optimization. In International Conference on Machine Learning 58
(pp. 6286-6295). PMLR.




Biased VR: You Cannot “Break” What Is Already “Broken”!

SARAH/Geom-SARAH/PAGE (1 node case):

Vf(x"),
g 2

(Vfi(zF) = V("))

p ~ b/, — probability of
computing the full gradient
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Biased VR: You Cannot “Break” What Is Already “Broken”!

SARAH/Geom-SARAH/PAGE (1 node case):

k+1 __ .k k p ~ P/m — probability of
computing the full gradient

Vf(xh), with prob. |p

TV T e 2, (VAEY - V@), with prob. 1p
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Byz-PAGE

=gk _agh GF — ARAger(dt,. .., g")

E. Gorbunov, S. Horvath, P. Richtarik, G. Gidel. Variance Reduction is an Antidote to Byzantines: Better Rates, Weaker
“Zuoe  Assumptions and Communication Compression as a Cherry on the Top (ICLR 2023)
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Byz-PAGE

(6, c)—-robust aggregator agnostic to the variance, e.g., Krum/RFA/CM o Bucketing

AN

X

E. Gorbunov, S. Horvath, P. Richtarik, G. Gidel. Variance Reduction is an Antidote to Byzantines: Better Rates, Weaker
“nobe  Assumptions and Communication Compression as a Cherry on the Top (ICLR 2023)
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Byz-PAGE

(6, c)—-robust aggregator agnostic to the variance, e.g., Krum/RFA/CM o Bucketing

ij_l_l

=" — 75" g° = ARAggr(gy, ..., gy
V f(z"), with prob. p |
9i = Vg1 + % > (ij(:zzk) — ij(:lzk_l)) . with prob. 1 —p Viceg

J€Jk

Geom-SARAH/PAGE—estimator

The method achieves theoretical SOTA rates but uses full participation of clients

E. Gorbunov, S. Horvath, P. Richtarik, G. Gidel. Variance Reduction is an Antidote to Byzantines: Better Rates, Weaker 63
“Zuoe  Assumptions and Communication Compression as a Cherry on the Top (ICLR 2023)



New Method



. Key idea: clip gradient differences with

k—l—l

\

(V ik,

g" +

New Method: Byz-PAGE-PP

k—1||

Ay ~ ||z — 2

clip <11)

Z (ij(xlC

JjEJk

) — vfj(xkl))a)\k:>

)

with prob. p

with prob. 1 —p

Vieg
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. Key idea: clip gradient differences with |\ ~ ||:ElC — X

Pl —

7

\

g* +

(‘7fkctk+1);

New Method: Byz-PAGE-PP

k—lH

with prob. p

clip <

JjEJk

(ARAgg ({gF ™ }ics,

gt =S
g" + ARAgg | < clip
\

Sk - subset of sampled clients

)

5o (V") = V), A

JEJK

)).

% > (Vfi(@*) = Vf(@*1), )\k> ,  with prob. 1 —p

Vieg

with prob. p,

> . with prob. 1 —p
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New Method: Byz-PAGE-PP

. Key idea: clip gradient differences with |\ ~ ||:ElC — xk_1||

sz( b1y, with prob. p
k+1 Vi €
9 = g* +|clip <i > (Vfi(@*) - ij(:zs’“)),kk> . with prob. 1—p /
L JEJk
(ARAgg ({g; " }idsy) » with prob. p,

9k+1:< k : 1 (kY (k=1
9"+ ARAgg | qclip | ; Z; (V™) = V(™)) Ax

> . with prob. 1 —p
5

| /\

— 51‘9&
‘ C', with prob. p, max{l’ 5171}
Sy - subset of sampled clients |Sk| — C ith b. 1

, W1 probo. — P

<C
C

I/\
I/\
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New Method: Byz-PAGE-PP

. Key idea: clip gradient differences with |\ ~ ||:ElC — xk_1||

sz( b1y, with prob. p
k+1 Vi €
9 = g* +|clip <i > (Vfi(@*) - ij(:zs’“)),kk> . with prob. 1—p /
L JEJk
(ARAgg ({g; " }idsy) » with prob. p,

9k+1:< k : 1 (kY (k=1
9"+ ARAgg | qclip | ; Z; (V™) = V(™)) Ax

> . with prob. 1 —p
5

| /\

— 51‘9&
‘ C', with prob. p, max{l’ 5171}
Sy - subset of sampled clients |Sk| — C ith b. 1

, W1 probo. — P

<C
C

I/\
I/\

pFl — gk gk

68



Complexity of Byz-PAGE-PP (Simplified)

Assumptions:
* fislower-bounded:

* L-smoothness of f1, ..., fin:

fo = inf f(z)> —oo

vaj(y)_vfj<x)” SL”y—LEH \V/CE,yERd,jE [m]
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Complexity of Byz-PAGE-PP (Simplified)

Assumptions:

« fislower-bounded: f« = inf f(z) > —o0

xeRa
* L-smoothness of fj, ..., fiu: IVfi(y) = V(@) <Llly—=z| Vo,ye R j € [m]
Theorem 1:

Let the above assumptions hold and ARAggr be (6, c)—robust aggregator. Then, there exists a choice of the
2
stepsize y such that Byz-PAGE produces £* satisfying E [”Vf()?k)” ] < &2 after
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Complexity of Byz-PAGE-PP (Simplified)

Assumptions:

« fislower-bounded: f« = inf f(z) > —o0

xeRa
* L-smoothness of fj, ..., fiu: IVfi(y) = V(@) <Llly—=z| Vo,ye R j € [m]
Theorem 1:

Let the above assumptions hold and ARAggr be (6, c)—robust aggregator. Then, there exists a choice of the
2
stepsize y such that Byz-PAGE produces £* satisfying E [”Vf()?k)” ] < &2 after

( (1 T \/ R (L) <1PG;21+Fi>> LU0 - f)
g2

\ /

iterations
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Complexity of Byz-PAGE-PP (Simplified)

Assumptions:

« fislower-bounded: f« = inf f(z) > —o0

xeRa
* L-smoothness of fj, ..., fiu: IVfi(y) = V(@) <Llly—=z| Vo,ye R j € [m]
Theorem 1:

Let the above assumptions hold and ARAggr be (6, c)—robust aggregator. Then, there exists a choice of the
2
stepsize y such that Byz-PAGE produces £* satisfying E [”Vf()?k)” ] < &2 after

pGGP k c | F2
( (1 T ngC (é T ?6) +5 pGp(;Jr A)> L(f(2") - f*)\
=2

\ /

iterations

pa = Prob{Gg, > q(1 —9)C}
Par =Prob{i € G5 | G¢ > (1—-46)C}

F 4 - aggregation-dependent constant
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Byz-PAGE-PP:

Byz-PAGE:

O

\

Byz-PAGE vs Byz-PAGE-PP

( (1 o (k) + (”’Gié“Ff‘)> L) - 1)
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Byz-PAGE vs Byz-PAGE-PP
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Byz-PAGE-PP: @,

\ /

Byz-PAGE: O

Matching results when all clients participate



Byz-PAGE vs Byz-PAGE-PP

(1250 (1) + ) g - 1)

Byz-PAGE-PP: @,

\ /

Byz-PAGE: O

Matching results when all clients participate

When p; = 1 (C is large enough) and ¢ = p/C, complexities are the same,
while Byz-PAGE-PP uses only C < n workers at each step (on average) > provable benefits of PP!
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Numerical Results: Logistic Regression

We tested the proposed method on
the logistic regression tasks

In this experiment, we have 15 good
workers and 5 Byzantines

Shift-back attack (SHB): when

Byzantines form a majority they send

x9 — xk

Aggregation rule: coordinate-wise
median (CM) with Bucketing

Each round we sample 4 clients

CM | SHB
g w G w Y

102
"I‘ —e— Byz-VR-MARINA-PP
3?10—4 —¥— Byz-VR-MARINA
=

106

0.0 0.5 1.0 1.5 2.0
epochs
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Numerical Results: Benefits of PP

CM | SHB
—&— Partial (20% clients)
—¥— Full
1072
[
* The method benefits from partial 1 10-4
participation =
107°
0 2 4 6 8 10

epochs
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Numerical Results: Sensivity to Clipping Level

CM | SHB
*—o—o—o—0—0—0—0—9

* We also tested our method with
different clipping multipliers A:

e = 2k — x|

™ 10~4 —@— clip mult. = 0.01
* The method converges for different = —%¥— clip mult. = 0.1
clipping values, though the speed —— clip mult. = 1.0
depends on A 107  —#— clip mult. = 10.0
—e— clip mult. = None
N
0.0 0.5 1.0 1:9 2.0

epochs
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Heuristic Extension

@ How to adjust any Byzantine-robust method to the case of Partial Participation?

" =2 — v Agg({gf}ie[n])
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Heuristic Extension

2 How to adjust any Byzantine-robust method to the case of Partial Participation?

2" =" — v Agg({g5 Viem)

. Clip differences!

PPl — gk gk

gk — gk_l + Agg ({Chp(gi‘C _ gk_lv Ak)heﬁ%)
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Heuristic Extension

@ How to adjust any Byzantine-robust method to the case of Partial Participation?

k+1

X = 2" — Y Agg({gf}%[n])

. | Clip differences!

k+1

2" =2t — 4"

9" =g + Agg ({

clip(gy — "', \e)
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@ How to adjust any Byzantine-robust method to the case of Partial Participation?

" = 2" — v - Agg({g; Fiem)

. | Clip differences!

Heuristic Extension

k+1

$k+1

=" —g"

9" =g" " + Agg ({Clip(gf — " )

V. We recommend to use

= 2 =

and tune A in practice
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Numerical Results: Neural Network Training

* We follow the setup from (Karimireddy et al., 2021) and train a certain NN on MINIST
(LeCun and Cortes, 1998)

* In this experiment, we have 15 good workers and 5 Byzantines

e Attacks: A Little is Enough (ALIE) (Baruch et al., 2019), Bit Flipping (BF), Label Flipping (LF),
Shift-Back (SHB)

* Aggregation rules: coordinate-wise median (CM), geometric median (RFA) with bucketing
* Each round we sample 4 clients

e Optimization method: Robust Momentum SGD (Karimireddy et al., 2021)

Karimireddy, S. P, He, L., Jaggi, M. Learning from history for byzantine robust optimization (ICML 2021)
LeCun, Y. and Cortes, C. The MNIST database of handwritten digits (http://vann.lecun.com/exdb/mnist/, 1998)
Baruch, G., Baruch, M., Goldberg, Y. A Little is Enough: Circumventing defenses for distributed learning (Neur|PS 2019)
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Numerical Results: Neural Network Training
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—e— W/ Clip
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epochs
RFA | LF
—e— W/ Clip

—¥— W/O Clip

epochs

Clipping does not spoil the convergence

10°

fix)

107!
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f(x)

1071

CM | ALIE

—e— W/ Clip
—¥— W/O Clip

2 3 4

epochs

RFA | ALIE

—e— W/ Clip
—¥— W/O Clip

Clipping helps when Byzantine workers form majority (see SHB attack)

CM | SHB

10°
x
=
1071 .
—e— W/ Clip
—¥— W/O Clip
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epochs
RFA | SHB
10°
x
-
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—e— W/ Clip
—¥— W/O Clip
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Numerical Results: Neural Network Training
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Clipping does not spoil the convergence

Clipping helps when Byzantine workers form majority (see SHB attack)
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Concluding Remarks



In the Paper We Also Have

Analysis of the version with compression (Byz-VR-MARINA-PP)
Analysis under bounded heterogeneity
Non-uniform sampling of stochastic gradients

Analysis taking into account data-similarity

Thank youl!
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