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Fully connected NN
with 3 hidden layers
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Fully connected NN
with 3 hidden layers

MNIST

executed on a good enough laptop
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Requires several minutes to train if
executed on a good enough laptop
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‘ Requires several years to train if
executed on top-of-the-line GPU server

It is mandatory to have efficient distributed algorithms
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arbitrary stages of the work




Faulty Workers

‘ Instead of one ,powerful“ machine, multiple machines are used

Some machines can fault to execute the communication protocol at
arbitrary stages of the work

It is iImportant to have fault-tolerant distributed methods
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Moshpit All-Reduce: Main Idea

‘ All-Reduce protocols are fragile: the fault of 1 worker affects all other workers
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Moshpit All-Reduce: Main Idea

‘ All-Reduce protocols are fragile: the fault of 1 worker affects all other workers

‘ The idea: execute All-Reduce in small groups
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Moshpit All-Reduce: Main Idea

. All-Reduce protocols are fragile: the fault of 1 worker affects all other workers

‘ The idea: execute All-Reduce in small groups

The fault of one peer affects only its group



* Moshpit All-Reduce: Ideal Case

Workers form d dimensional hypercube with M workers along each axis

First round Second round

______________________________________
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Moshpit All-Reduce: General Case

Algorithm 1 Moshpit All-Reduce (for ¢-th peer)

Input: parameters {6, } Y ‘=1, number of peers N, d,
M , number of iterations 7, peer index %

80 = 6, get_initial index (2) = (Li/Md_lj mod M)

C‘O := get_initial_index (i)
fort e 1. 1T do
DHT[C!™',t].add(address;) t t—d+1  t—d+2 t
Matchmaking () // wait for peers to assemble Cz " (Ci y G R C?j)
peers]t ;= DHT.get([C} 1, 1])
t — t—1 . . -
%, ; ‘E}Reduce(e (PEBTS,) Distributed Hash Table — an efficient
engfor (C [1:1,¢) /f same as eq. (1) decentralized data structure

Return 0]

jell,...d}
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Moshpit All-Reduce: Theoretical Properties

‘ If N = M and there are no faults, then Moshpit All-Reduce finds
an exact average after d steps
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Moshpit All-Reduce: Theoretical Properties

If N = M? and there are no faults, then Moshpit All-Reduce finds
an exact average after d steps

‘ Correctness: if all workers have a non-zero probability of successfully running a
communication round and the order of peers;is random, then all local vectors
converge to the global average with probability 1:
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If N = M? and there are no faults, then Moshpit All-Reduce finds
an exact average after d steps

‘ Correctness: if all workers have a non-zero probability of successfully running a
communication round and the order of peers;is random, then all local vectors
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Moshpit All-Reduce: Theoretical Properties

If N = M? and there are no faults, then Moshpit All-Reduce finds
an exact average after d steps

‘ Correctness: if all workers have a non-zero probability of successfully running a
communication round and the order of peers;is random, then all local vectors
converge to the global average with probability 1:

915__290

‘ Exponential convergence to the average: for a version of Moshpit All-Reduce with
random splitting into r groups at each step, we have
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Moshpit All-Reduce: Theoretical Properties
If N = M? and there are no faults, then Moshpit All-Reduce finds
an exact average after d steps
‘ Correctness: if all workers have a non-zero probability of successfully running a

communication round and the order of peers;is random, then all local vectors
converge to the global average with probability 1:

TS Y

‘ Exponential convergence to the average: for a version of Moshpit All-Reduce with
random splitting into r groups at each step, we have

2|5 I | = (5 ) 3 -
N & ! -\ N N2) N '

1=1

2

Vi — 0
t—00

2




35

Mean squared error

Moshpit All-Reduce: Experiments

‘ We verify the performance gains in a controlled setting

‘ With non-zero failure probability, All-Reduce takes too many retries!

‘ On the other hand, Gossip-based methods converge very slowly

Moshpit All-Reduce outperforms baselines with p > 0
and gets the average in two rounds with p =0

N=1024, p=0 N=1024, p=0.005 N=768, p=0.005
L +—¢—o—o oo | - kx_‘“:; S S . S S———— ‘f‘it'"_":':':’_'—'_'_'_’
] .‘ M“‘u —— All-Reduce 'ir‘:_‘:‘“ —— All-Reduce ““-.‘M_\ —— All-Reduce
1 v *‘*-\_“ —o— Gossip [ Sk —*— Gossip ~J{]—*— Gossip
z L —+— PushSum “~ —— PushSum —v— PushSum
o N | i Random grouwps | | | -=--- Random groups | |  -m=-- Random groups
13 ] \'1, | | == Moshpit Averaging | === Moshpit Averaging — == Moshpit Averaging
\ R Y | T—_——
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Iterations Iterations Iterations
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The Problem

min f(x)

rERM

‘ Function f(x) is available through stochastic gradients only

‘ Each worker has an access to the stochastic gradients of f(x)



Moshpit SGD

T — gk, it k+1mod 7 #0
Moshpit All-Reduce;.p (7; —7gf), ifk+1mod7 =0

T~

Number of active workers
at iteration k+1
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Moshpit SGD

T — gk, if k+1modT#£0
Moshpit All-Reduce;.p (7; —7gf), ifk+1mod7 =0

NN

Number of active workers
at iteration k+1

Local-SGD with Moshpit All-Reduce instead of averaging
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' Homogeneity:
‘ Bounded variance:

‘ Effect of peers'’
vanishing is bounded:

Assumptions
filx) = folx) = ... = fn(z) = f(x)
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‘ Homogeneity:

‘ Bounded variance:

‘ Effect of peers'’

vanishing is bounded:

Ny = | Pyl

Assumptions

filz) = folx) = ...

N1

1€ 5,41

2
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Assumptions

‘ Function fis y-strongly convex



Assumptions

‘ Function fis u-strongly convex

‘ Averaging quality:
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Moshpit SGD: Complexity

Moshpit SGD finds ' such that [F. [f(j}) — f(g;*)} < g after
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Moshpit SGD finds ' such that [F. [f(j}) — f(g;*)} < g after
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> Moshpit SGD: Complexity

Moshpit SGD finds ' such that [F. [f(j}) — f(g;*)} < g after

2 2 /0 . —1)a2 4 52
O ((1 L + o2t [ i =+ \/L ((T D™ + 6aq)) iterations

—Opot) o (1= Opy1) pe (1 — (5%1)2 [2e when >0

LR? R3 ((53%2 + 0'2/7’Lmin) R; \/L ((T —1)o* + 53(1) iterations
T 5 + 372 when y =0

O

3 3

If Opw1 < 1/2) Npin = Q(N), 52 O (O‘Z/Nmin) ,(53q = O((r — 1)o?) , then

pv,2 T
the complexity of Moshpit SGD matches the complexity of centralized Local-SGD
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Moshpit SGD: ResNet-50 on Imagenet

‘ We evaluate and several baselines in two environments
‘ (16 nodes with 1xV100 and 64 workers with 81 different GPUS)
‘ Comparable to All-Reduce in terms of iterations, faster in terms of time

‘ Decentralized methods run faster, but achieve worse results

Re) S ooy S
07 0F O o
3,75%' S e e 575%" i
g_? s }:\'\{"\’,"F" ] E
=] =1
3 i 31
g SO% /7 === AR-SGD, homog. | g 5091 ——-- AR-SGD, homog.
g || [ldar=| | AD-PSGD, homog. g2 || |7 || AD-PSGD, homog.
% ----- SGP, homog. % ----- SGP, homog.
> 550, ===z Moshpit SGD, homog. Z 9501 8 i Moshpit SGD, homog.
% ——— AD-PSGD, heterog. g_ ——— AD-PSGD, heterog.
= _ —— SGP, heterog. = —— SGP, heterog.
0% | - —— Moshpit SGD, heterog. 0% 1 & . —— Moshpit SGD, heterog.
Oh 4h 8h 12h 16h 20h 24h 28h 32h 0 15 30 45 60 75 90 105 120 135 150

Time (hours) Epochs
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Moshpit SGD: ALBERT on BookCorpus

‘ Baseline: All-Reduce on 8 V100
‘ Moshpit SGD: 66 preemptible GPUs

‘ Cost of spot instances are much smaller, yet we converge 1.5x faster

— == AR-SGD, homog.
10+ \‘ —— Moshpit SGD, heterog.
2 81|
4
=10]
=
= O
=
=
e
2-

Oh 30h 60h 90h 120h 150h 180h
Time (hours)
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Summary

. We propose a simple method for communication-efficient distributed training

‘ Built-in fault tolerance, convergence similar to standard methods
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Some of My Recent Works

EG, Marina Danilova, Innokentiy Shibaev, Pavel Dvurechensky, Alexander Gasnikov
Near-Optimal High Probability Complexity Bounds for Non-Smooth Stochastic Optimization
with Heavy-Tailed Noise

arXiv:2106.05958

EG*, Alexander Borzunov*, Michael Diskin, Max Ryabinin
Secure Distributed Training at Scale
arXiv:2106.11257

llyas Fatkhullin, Igor Sokolov, EG, Zhize Li, Peter Richtéarik
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback
arXiv:2110.03294

EG, Nicolas Loizou, Gauthier Gidel

Extragradient Method: O(1/K) Last-Iterate Convergence for Monotone Variational Inequalities
and Connections With Cocoercivity

arXiv:2110.04261

EG, Hugo Berard, Gauthier Gidel, Nicolas Loizou
Stochastic Extragradient: General Analysis and Improved Rates
arXiv:2111.08611
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