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MNIST Fully connected NN 
with 3 hidden layers

Requires several minutes to train if 
executed on a good enough laptop

Common Crawl

Books Corpus

Wikipedia

GPT-3

Requires several years to train if 
executed on top-of-the-line GPU server

It is mandatory to have efficient distributed algorithms 
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Faulty Workers

Instead of one „powerful“ machine, multiple machines are used

Some machines can fault to execute the communication protocol at 
arbitrary stages of the work

It is important to have fault-tolerant distributed methods
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Communication

With Parameter-Server (PS):

Without PS via All-Reduce:

Without PS via gossip:

Simple and widely applicable approach

Not scalable: for large number of 
participants the communication is a 
bottleneck

Scalable approach

Not robust to faults

Devices send and 
receive full vectors

Scalable approach

Inevitable dependence on mixing 
matrix and graph structure

Devices send and 
receive full vectors

Mixing matrix defines the communication pattern
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Moshpit All-Reduce: Main Idea

All-Reduce protocols are fragile: the fault of 1 worker affects all other workers

The idea: execute All-Reduce in small groups

The fault of one peer affects only its group
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Moshpit All-Reduce: Ideal Case

Workers form d dimensional hypercube with M workers along each axis 

d = 2, M = 3
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Moshpit All-Reduce: General Case

Distributed Hash Table — an efficient 
decentralized data structure
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Moshpit All-Reduce: Experiments

We verify the performance gains in a controlled setting

With non-zero failure probability, All-Reduce takes too many retries!

On the other hand, Gossip-based methods converge very slowly

Moshpit All-Reduce outperforms baselines with p > 0
and gets the average in two rounds with p = 0



  

3. Moshpit SGD



  

37
The Problem

Function f(x) is available through stochastic gradients only

Each worker has an access to the stochastic gradients of f(x)
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Moshpit SGD

Number of active workers 
at iteration k+1
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Moshpit SGD

Local-SGD with Moshpit All-Reduce instead of averaging

Number of active workers 
at iteration k+1
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Assumptions

Averaging quality:

Function f is μ-strongly convex
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Moshpit SGD: Complexity

Moshpit SGD finds such that after

iterations 
when μ > 0

iterations 
when μ = 0

If , then

the complexity of Moshpit SGD matches the complexity of centralized Local-SGD
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Moshpit SGD: ResNet-50 on Imagenet

We evaluate and several baselines in two environments 

(16 nodes with 1xV100 and 64 workers with 81 different GPUs)

Comparable to All-Reduce in terms of iterations, faster in terms of time

Decentralized methods run faster, but achieve worse results



  

53
Moshpit SGD: ALBERT on BookCorpus

Baseline: All-Reduce on 8 V100

Moshpit SGD: 66 preemptible GPUs

Cost of spot instances are much smaller, yet we converge 1.5x faster



  

4. Conclusion 



  

Built-in fault tolerance, convergence similar to standard methods
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We propose a simple method for communication-efficient distributed training

Summary
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