Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient Clipping

Eduard Gorbunov

MIPT and HSE

Marina Danilova

MIPT and ICS RAS

Alexander Gasnilov

MIPT and HSE

1. The Problem

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2$$
$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$

$$f(x) = \mathbf{E}_{\xi \sim \mathcal{D}} \left[f_{\xi}(x) \right]$$

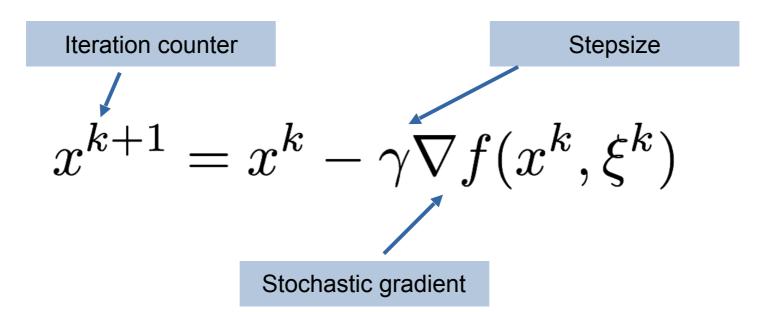
The most popular method? —— SGD

2. Motivational Example

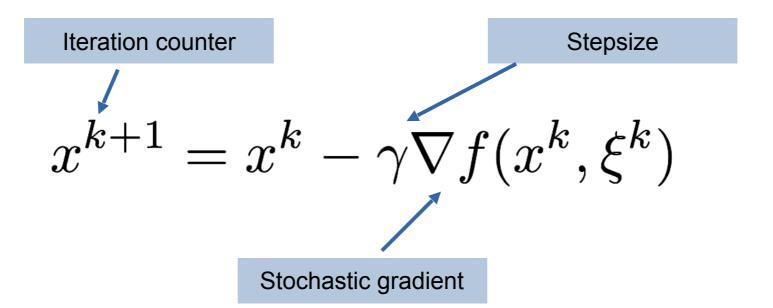
Stochastic gradient descent (SGD)

$$x^{k+1} = x^k - \gamma \nabla f(x^k, \xi^k)$$

Stochastic gradient descent (SGD)



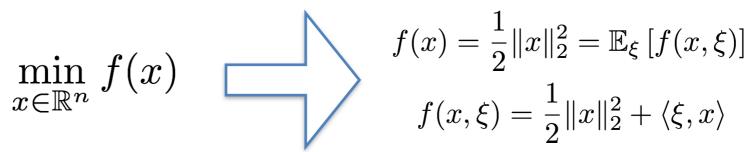
Stochastic gradient descent (SGD)



- $\mathbb{E}_{\xi}[\nabla f(x,\xi)] = \nabla f(x)$
- $\mathbb{E}_{\xi} \left[\left\| \nabla f(x, \xi) \nabla f(x) \right\|_{2}^{2} \right] \leq \sigma^{2}$

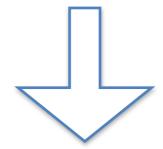
$$\min_{x \in \mathbb{R}^n} f(x)$$

$$\min_{x \in \mathbb{R}^n} f(x)$$



- ξ random vector with zero mean and bounded variance
- f(x) 1-strongly convex, L-smooth function
- $\nabla f(x,\xi) = x + \xi$ stochastic gradient

- ξ random vector with zero mean and bounded variance
- f(x) 1-strongly convex, L-smooth function
- $\nabla f(x,\xi) = x + \xi$ stochastic gradient



Convergence in Expectation

$$\mathbb{E}\left[\|x^k - x^*\|_2^2\right] \le (1 - \gamma\mu)^k \|x^0 - x^*\|_2^2 + \frac{\gamma\sigma^2}{\mu}$$

Convergence in Expectation

$$\mathbb{E}\left[\|x^k - x^*\|_2^2\right] \le (1 - \gamma\mu)^k \|x^0 - x^*\|_2^2 + \frac{\gamma\sigma^2}{\mu}$$

After k iterations of SGD (State-of the art theory)

Convergence in Expectation

$$\mathbb{E}\left[\|x^k - x^*\|_2^2\right] \le (1 - \gamma \mu)^k \|x^0 - x^*\|_2^2 + \frac{\gamma \sigma^2}{\mu}$$

$$f(x) = \frac{1}{2} \|x\|_2^2, \ f(x^*) = 0 \qquad \mu = 1 \qquad x^* = 0$$

$$\mathbb{E}\left[f(x^k) - f(x^*)\right] \le (1 - \gamma)^k \left(f(x^0) - f(x^*)\right) + \frac{\gamma \sigma^2}{2}$$

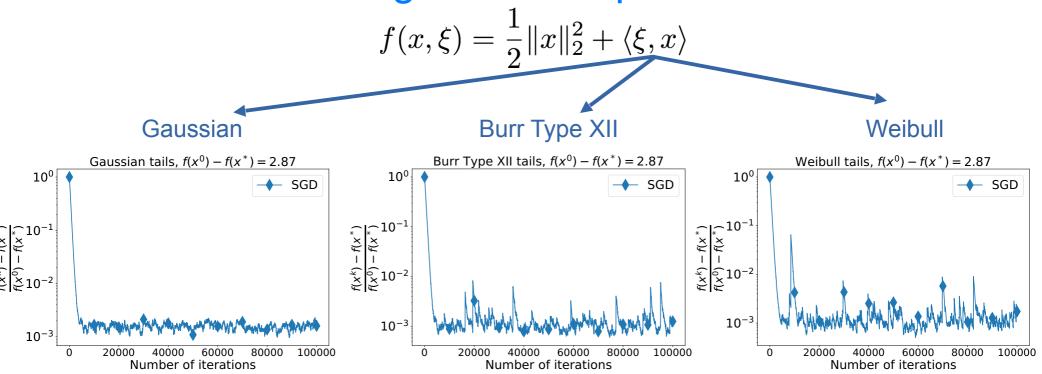
Convergence in Expectation

$$\mathbb{E}\left[\|x^k - x^*\|_2^2\right] \leq (1 - \gamma \mu)^k \|x^0 - x^*\|_2^2 + \frac{\gamma \sigma^2}{\mu}$$

$$f(x) = \frac{1}{2} \|x\|_2^2, \ f(x^*) = 0 \qquad \mu = 1 \qquad x^* = 0$$
 Our case

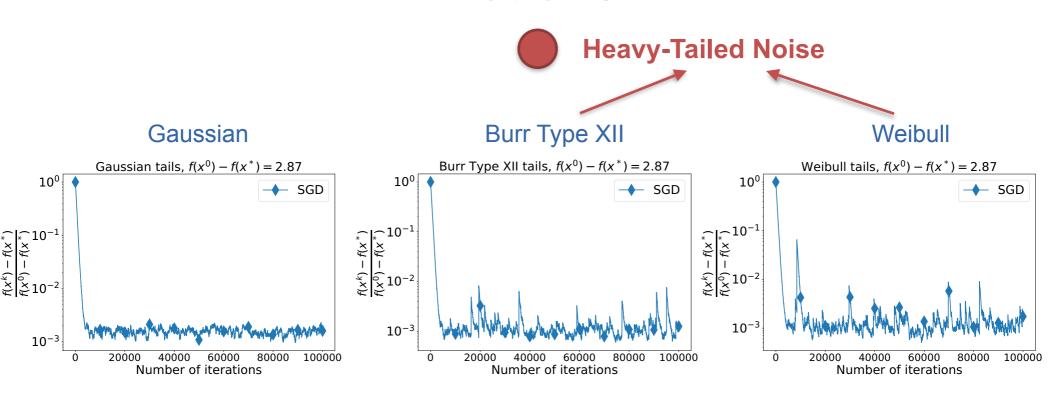
$$\mathbb{E}\left[f(x^k) - f(x^*)\right] \le (1 - \gamma)^k \left(f(x^0) - f(x^*)\right) + \frac{\gamma \sigma^2}{2}$$

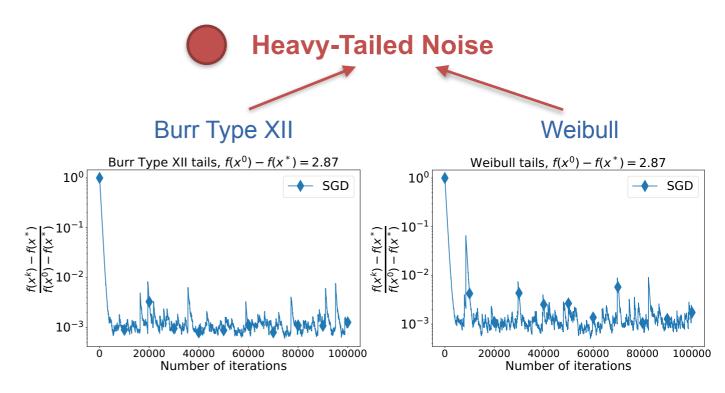
Convergence in Expectation

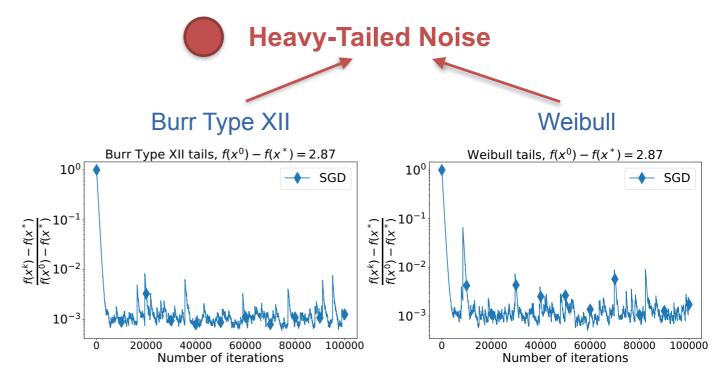


3 different distributions of ξ with the same σ

$$\mathbb{E}\left[f(x^k) - f(x^*)\right] \le (1 - \gamma)^k \left(f(x^0) - f(x^*)\right) + \frac{\gamma \sigma^2}{2}$$





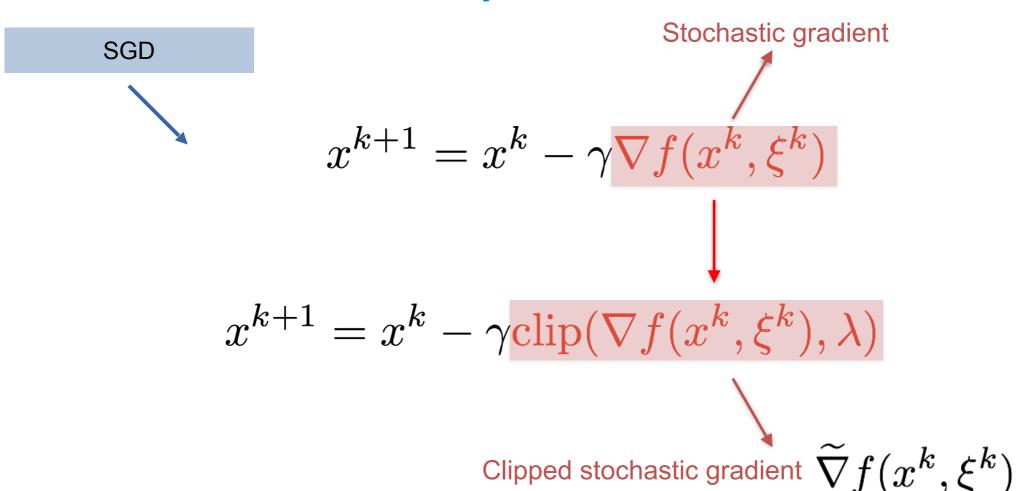


SGD

$$x^{k+1} = x^k - \gamma \nabla f(x^k, \xi^k)$$

big even if we are close to the solution

$$x^{k+1} = x^k - \gamma \nabla f(x^k, \xi^k)$$



SGD

$$x^{k+1} = x^k - \gamma \nabla f(x^k, \xi^k)$$

$$x^{k+1} = x^k - \gamma \operatorname{clip}(\nabla f(x^k, \xi^k), \lambda)$$

$$\operatorname{clip}(\nabla f(x, \xi), \lambda) = \begin{cases} \nabla f(x, \xi), & \text{if } ||\nabla f(x, \xi)||_2 \le \lambda, \\ \frac{\lambda}{||\nabla f(x, \xi)||_2} \nabla f(x, \xi), & \text{otherwise} \end{cases}$$

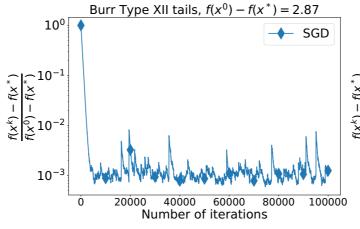
$$x^{k+1} = x^k - \gamma \nabla f(x^k, \xi^k)$$

clipped-SGD

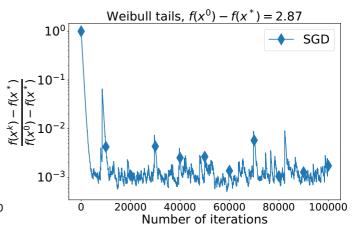
ed-SGD Clipping level
$$x^{k+1} = x^k - \gamma \mathrm{clip}(\nabla f(x^k, \xi^k), \lambda)$$

$$\operatorname{clip}(\nabla f(x,\xi),\lambda) = \begin{cases} \nabla f(x,\xi), & \text{if } \|\nabla f(x,\xi)\|_2 \le \lambda, \\ \frac{\lambda}{\|\nabla f(x,\xi)\|_2} \nabla f(x,\xi), & \text{otherwise} \end{cases}$$

SGD

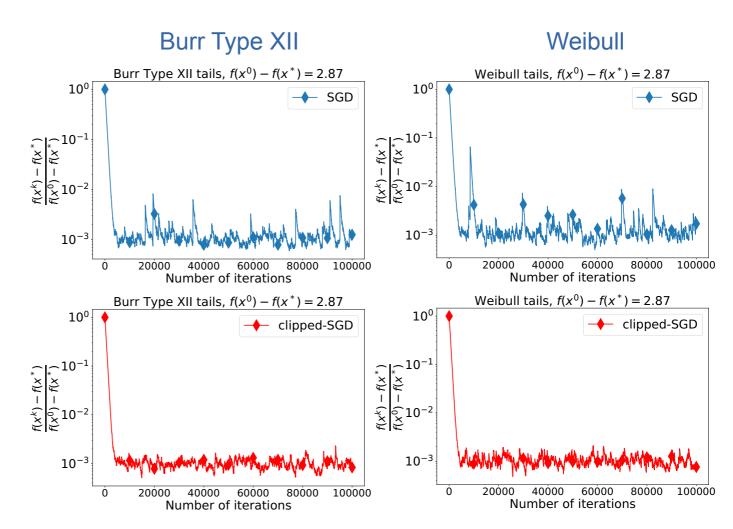


Weibull



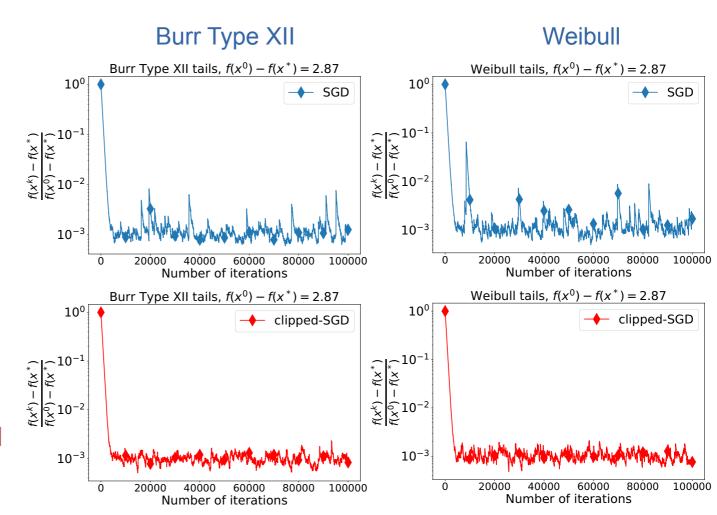
SGD

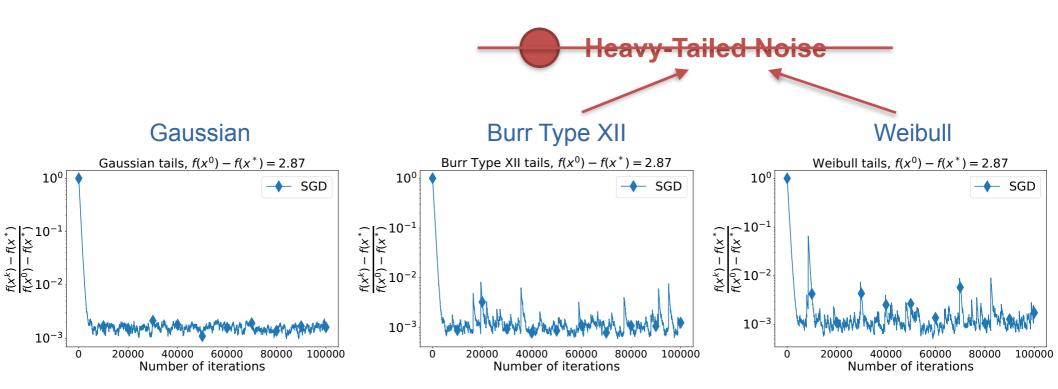
clipped-SGD



clipped-SGD

Small oscillations even for heavy-tailed distributions!





Expectation

$$\mathbb{E}\left[f(x^N) - f(x^*)\right] \le \varepsilon$$

Expectation

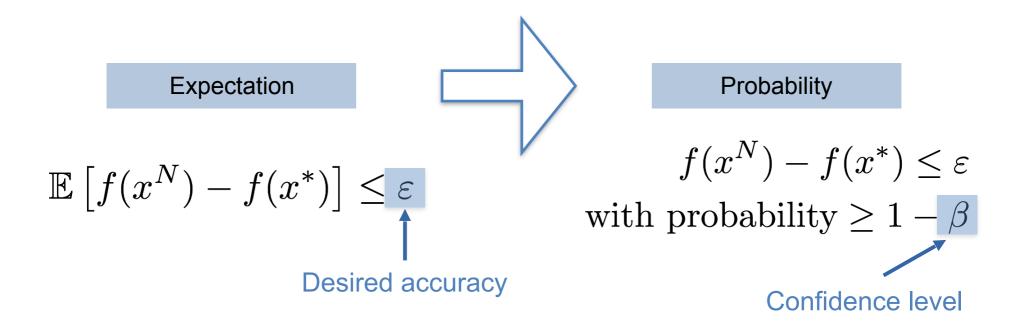
$$\mathbb{E}\left[f(x^N) - f(x^*)\right] \le \varepsilon$$

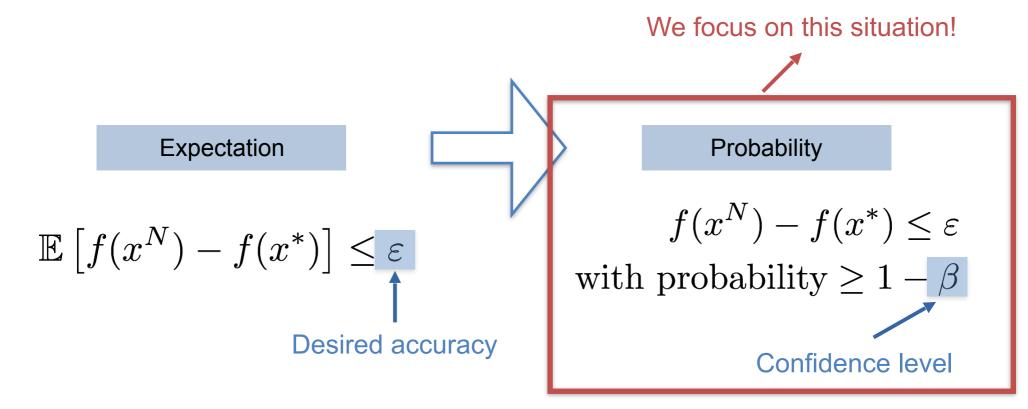
Expectation

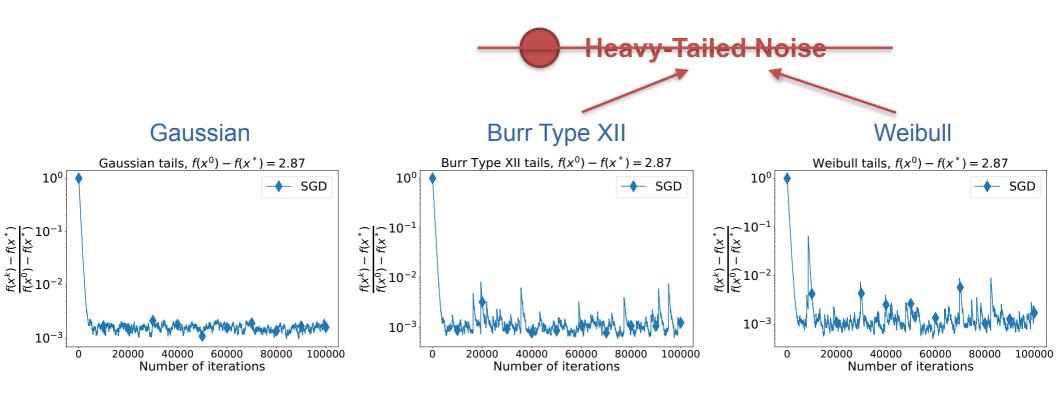
Probability

$$\mathbb{E}\left[f(x^N) - f(x^*)\right] \le \varepsilon$$

$$f(x^N) - f(x^*) \le \varepsilon$$
with probability $\ge 1 - \beta$







3. Key Assumptions

$$\min_{x \in \mathbb{R}^n} f(x)$$

- $f(x) = \mathbf{E}_{\xi \sim \mathcal{D}} \left[f_{\xi}(x) \right] \quad \text{expectation minimization}$
- $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle \text{convexity}$
- $\|\nabla f(x) \nabla f(y)\|_2 \le L\|x y\|_2 \quad \text{$-$L-smoothness}$
- $\mathbb{E}_{\xi}[
 abla f(x,\xi)] =
 abla f(x)$ unbiasedness
- $\mathbb{E}_{\xi}\left[\left\|\nabla f(x,\xi) \nabla f(x)\right\|_{2}^{2}\right] \leq \sigma^{2}$ boundedness of the variance

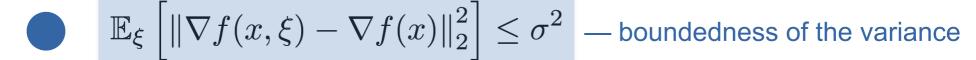
$$\min_{x \in \mathbb{R}^n} f(x)$$

$$f(x) = \mathbf{E}_{\xi \sim \mathcal{D}} \left[f_{\xi}(x) \right] \quad - \text{expectation minimization}$$

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle \quad - \text{convexity}$$

$$\|\nabla f(x) - \nabla f(y)\|_2 \leq L\|x - y\|_2 \quad \text{$-$L-smoothness}$$

$$\mathbb{E}_{\xi}[
abla f(x,\xi)] =
abla f(x)$$
 — unbiasedness



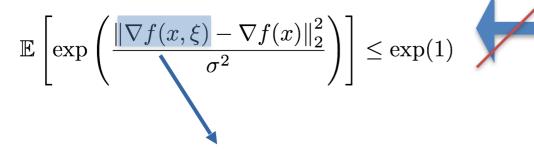
Light-tails assumption

$$\mathbb{E}\left[\exp\left(\frac{\left\|\nabla f(x,\xi) - \nabla f(x)\right\|_{2}^{2}}{\sigma^{2}}\right)\right] \leq \exp(1)$$

Heavy-tails assumption

$$\mathbb{E}_{\xi} \left[\left\| \nabla f(x, \xi) - \nabla f(x) \right\|_{2}^{2} \right] \leq \sigma^{2}$$

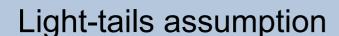
Light-tails assumption



Sub-Gaussian distribution

Heavy-tails assumption

$$\mathbb{E}_{\xi} \left[\left\| \nabla f(x, \xi) - \nabla f(x) \right\|_{2}^{2} \right] \leq \sigma^{2}$$



$$\mathbb{E}\left[\exp\left(\frac{\left\|\nabla f(x,\xi) - \nabla f(x)\right\|_{2}^{2}}{\sigma^{2}}\right)\right] \leq \exp(1)$$



Heavy-tails assumption

$$\mathbb{E}_{\xi} \left[\left\| \nabla f(x, \xi) - \nabla f(x) \right\|_{2}^{2} \right] \leq \sigma^{2}$$

Well understood

We focus on this situation!

3. Prior Works

Method	Complexity	Tails	Domain	Batchsizes
SGD	$O\left(\max\left\{\frac{LR_0^2}{\varepsilon}, \frac{\sigma^2R_0^2}{\varepsilon^2}\ln^2(\beta^{-1})\right\}\right)$	light	bounded	O(1)
SSTM	$O\left(\max\left\{\sqrt{rac{LR_0^2}{arepsilon}},rac{\sigma^2R_0^2}{arepsilon^2} ight\}\lnrac{LR_0^2}{arepsiloneta} ight)$	light	\mathbb{R}^n	from $O(\varepsilon^{-1/2})$ to $O(\varepsilon^{-3/2})$
AC-SA	$O\left(\max\left\{\sqrt{rac{LR_0^2}{arepsilon}},rac{\sigma^2R_0^2}{arepsilon^2}\ln(eta^{-1}) ight\} ight)$	light	arbitrary	O(1)
RSMD	$O\left(\max\left\{\frac{L\Theta^2}{\varepsilon}, \frac{\sigma^2\Theta^2}{\varepsilon^2}\right\} \ln(\beta^{-1})\right)$	heavy	bounded	O(1)

Heavy or light-tailed noise

How batchsizes grow during the optimization process

Method	Complexity	Tails	Domain	Batchsizes
SGD	$O\left(\max\left\{\frac{LR_0^2}{\varepsilon}, \frac{\sigma^2R_0^2}{\varepsilon^2}\ln^2(\beta^{-1})\right\}\right)$	light	bounded	O(1)
SSTM	$O\left(\max\left\{\sqrt{rac{LR_0^2}{arepsilon}},rac{\sigma^2R_0^2}{arepsilon^2} ight\}\lnrac{LR_0^2}{arepsiloneta} ight)$	light	\mathbb{R}^n	from $O(\varepsilon^{-1/2})$ to $O(\varepsilon^{-3/2})$
AC-SA	$O\left(\max\left\{\sqrt{\frac{LR_0^2}{arepsilon}}, \frac{\sigma^2R_0^2}{arepsilon^2}\ln(eta^{-1}) ight\} ight)$	light	arbitrary	O(1)
RSMD	$O\left(\max\left\{\frac{L_{\Theta^2}}{\varepsilon}, \frac{\sigma^2_{\Theta^2}}{\varepsilon^2}\right\} \ln(\beta^{-1})\right)$	heavy	bounded	O(1)

stochastic first-order oracle calls

Set where optimization problem is defined

Method	Complexity	Tails	Domain	Batchsizes
SGD	$O\left(\max\left\{rac{LR_0^2}{arepsilon},rac{\sigma^2R_0^2}{arepsilon^2}\ln^2(eta^{-1}) ight\} ight)$	light	bounded	O(1)
SSTM	$O\left(\max\left\{\sqrt{rac{LR_0^2}{arepsilon}},rac{\sigma^2R_0^2}{arepsilon^2} ight\}\lnrac{LR_0^2}{arepsiloneta} ight)$	light	\mathbb{R}^n	from $O(\varepsilon^{-1/2})$ to $O(\varepsilon^{-3/2})$
AC-SA	$O\left(\max\left\{\sqrt{rac{LR_0^2}{arepsilon}},rac{\sigma^2R_0^2}{arepsilon^2}\ln(eta^{-1}) ight\} ight)$	light	arbitrary	O(1)
RSMD	$O\left(\max\left\{\frac{L\Theta^2}{\varepsilon}, \frac{\sigma^2\Theta^2}{\varepsilon^2}\right\} \ln(\beta^{-1})\right)$	heavy	bounded	O(1)

 $R_{
m 0}$ — initial distance to the optimum

Method	Complexity	Tails	Domain	Batchsizes
SGD	$O\left(\max\left\{\frac{LR_0^2}{\varepsilon}, \frac{\sigma^2R_0^2}{\varepsilon^2}\ln^2(\beta^{-1})\right\}\right)$	light	bounded	O(1)
SSTM	$O\left(\max\left\{\sqrt{rac{LR_0^2}{arepsilon}},rac{\sigma^2R_0^2}{arepsilon^2} ight\}\lnrac{LR_0^2}{arepsiloneta} ight)$	light	\mathbb{R}^n	from $O(\varepsilon^{-1/2})$ to $O(\varepsilon^{-3/2})$
AC-SA	$O\left(\max\left\{\sqrt{\frac{LR_0^2}{\varepsilon}}, \frac{\sigma^2R_0^2}{\varepsilon^2}\ln(\beta^{-1})\right\}\right)$	light	arbitrary	O(1)
RSMD	$O\left(\max\left\{\frac{L\Theta^2}{\varepsilon}, \frac{\sigma^2\Theta^2}{\varepsilon^2}\right\} \ln(\beta^{-1})\right)$	heavy	bounded	O(1)

— a diameter of the set where the optimization problem is defined

Method	Complexity	Tails	Domain	Batchsizes
SGD	$O\left(\max\left\{rac{LR_0^2}{arepsilon},rac{\sigma^2R_0^2}{arepsilon^2}\ln^2(oldsymbol{eta}^{-1}) ight\} ight)$	light	bounded	O(1)
SSTM	$O\left(\max\left\{\sqrt{rac{LR_0^2}{arepsilon}},rac{\sigma^2R_0^2}{arepsilon^2} ight\}\lnrac{LR_0^2}{arepsiloneta} ight)$	light	\mathbb{R}^n	from $O(\varepsilon^{-1/2})$ to $O(\varepsilon^{-3/2})$
AC-SA	$O\left(\max\left\{\sqrt{\frac{LR_0^2}{arepsilon}}, \frac{\sigma^2R_0^2}{arepsilon^2}\ln(eta^{-1}) ight\} ight)$	light	arbitrary	O(1)
RSMD	$O\left(\max\left\{\frac{L_{\Theta^2}}{\varepsilon}, \frac{\sigma^2_{\Theta^2}}{\varepsilon^2}\right\} \ln(\beta^{-1})\right)$	heavy	bounded	O(1)

$$\operatorname{Prob}\left\{f(x^N) - f(x^*) \leq \varepsilon\right\} \geq 1 - \beta$$

$$\operatorname{Desired\ accuracy} \quad \operatorname{Confidence\ level}$$

Method	Complexity	Tails	Domain	Batchsizes
SGD	$O\left(\max\left\{\frac{LR_0^2}{\varepsilon}, \frac{\sigma^2R_0^2}{\varepsilon^2}\ln^2(\beta^{-1})\right\}\right)$	light	bounded	O(1)
SSTM	$O\left(\max\left\{\sqrt{rac{LR_0^2}{arepsilon}},rac{\sigma^2R_0^2}{arepsilon^2} ight\}\lnrac{LR_0^2}{arepsiloneta} ight)$	light	\mathbb{R}^n	from $O(\varepsilon^{-1/2})$ to $O(\varepsilon^{-3/2})$
AC-SA	$O\left(\max\left\{\sqrt{\frac{LR_0^2}{arepsilon}}, \frac{\sigma^2R_0^2}{arepsilon^2}\ln(eta^{-1}) ight\} ight)$	light	arbitrary	O(1)
RSMD	$O\left(\max\left\{\frac{L\Theta^2}{\varepsilon}, \frac{\sigma^2\Theta^2}{\varepsilon^2}\right\}\ln(\beta^{-1})\right)$	heavy	bounded	O(1)

Acceleration

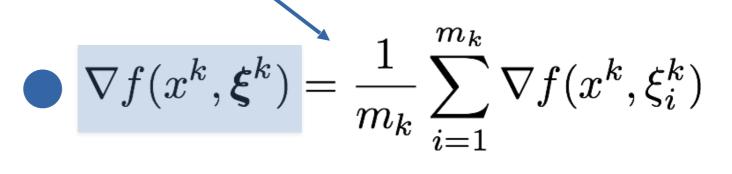
4. Main Result

Stochastic Gradient Descent SGD

$$x^{k+1} = x^k - \gamma \nabla f(x^k, \boldsymbol{\xi}^k)$$

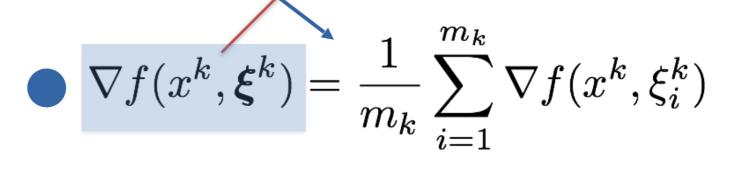
Stochastic Gradient Descent SGD

$$x^{k+1} = x^k - \gamma \nabla f(x^k, \boldsymbol{\xi}^k)$$



Clipped Stochastic Gradient Descent clipped-SGD

$$x^{k+1} = x^k - \gamma \widetilde{\nabla} f(x^k, \boldsymbol{\xi}^k)$$



Clipped Stochastic Gradient Descent clipped-SGD

$$\widetilde{\nabla} f(x^k, \boldsymbol{\xi}^k) = \operatorname{clip}(\nabla f(x^k, \boldsymbol{\xi}^k), \lambda)$$

$$x^{k+1} = x^k - \gamma \widetilde{\nabla} f(x^k, \boldsymbol{\xi}^k)$$

Stochastic Similar Triangles Method SSTM

$$x^{k+1} = (A_k y^k + \alpha_{k+1} z^k) / A_{k+1}$$

$$z^{k+1} = z^k - \alpha_{k+1} \nabla f(x^{k+1}, \boldsymbol{\xi}^k)$$

$$y^{k+1} = (A_k y^k + \alpha_{k+1} z^{k+1}) / A_{k+1}$$

Stochastic Similar Triangles Method SSTM

$$x^{k+1} = (A_k y^k + \alpha_{k+1} z^k) / A_{k+1}$$

$$z^{k+1} = z^k - \alpha_{k+1} \nabla f(x^{k+1}, \boldsymbol{\xi}^k)$$

$$y^{k+1} = (A_k y^k + \alpha_{k+1} z^{k+1}) / A_{k+1}$$

Stochastic Similar Triangles Method SSTM

Parameters $A_0=lpha_0=0 \ A_{k+1}=A_k+lpha_{k+1}$ $lpha_{k+1}=rac{k+2}{2L}$ $x^{k+1}=\left(A_ky^k+lpha_{k+1}z^k
ight)/A_{k+1}$

$$x^{k+1} = (A_k y^k + \alpha_{k+1} z^k) / A_{k+1}$$

$$z^{k+1} = z^k - \alpha_{k+1} \nabla f(x^{k+1}, \boldsymbol{\xi}^k)$$

$$y^{k+1} = (A_k y^k + \alpha_{k+1} z^{k+1}) / A_{k+1}$$

Clipped Stochastic Similar Triangles Method clipped-SSTM

Parameters
$$A_0=lpha_0=0 \ A_{k+1}=A_k+lpha_{k+1}$$
 $lpha_{k+1}=rac{k+2}{2aL}$ Clipping $x^{k+1}=\left(A_ky^k+lpha_{k+1}z^k
ight)/A_{k+1}$ $z^{k+1}=z^k-lpha_{k+1}\widetilde{
abla}f(x^{k+1},oldsymbol{\xi}^k)$ $y^{k+1}=\left(A_ky^k+lpha_{k+1}z^{k+1}
ight)/A_{k+1}$

New method!

Clipped Stochastic Similar Triangles Method clipped-SSTM

$$A_0 = \alpha_0 = 0$$

 $A_{k+1} = A_k + \alpha_{k+1}$ $\alpha_{k+1} = \frac{k+2}{2aL}$

$$x^{k+1} = (A_k y^k + \alpha_{k+1} z^k) / A_{k+1}$$

$$z^{k+1} = z^k - \alpha_{k+1} \widetilde{\nabla} f(x^{k+1}, \boldsymbol{\xi}^k)$$

$$y^{k+1} = (A_k y^k + \alpha_{k+1} z^{k+1}) / A_{k+1}$$

$$\widetilde{\nabla} f(x^{k+1}, \boldsymbol{\xi}^k) = \operatorname{clip}\left(\nabla f(x^{k+1}, \boldsymbol{\xi}^k), \lambda_{k+1}\right)$$

$$\lambda_{k+1} = \frac{B}{\alpha_{k+1}}$$

$$\lambda_{k+1} = rac{E}{lpha_{k}}$$

High-probability convergence

Heavy-tailed noise

		↓		
clipped-SGD [This work]	$O\left(\max\left\{\frac{LR_0^2}{\varepsilon}, \frac{\sigma^2R_0^2}{\varepsilon^2}\right\}\ln(\beta^{-1})\right)$	heavy	\mathbb{R}^n	$\widetilde{O}(arepsilon^{-1})$
clipped-SSTM [This work]	$O\left(\frac{\sigma^2 R_0^2}{\varepsilon^2} \ln \frac{\sigma R_0}{\varepsilon \beta}\right), \sigma^2 \text{ is big}$	heavy	\mathbb{R}^n	O(1)
clipped-SSTM [This work]	$O\left(\max\left\{rac{LR_0^2}{arepsilon},rac{\sigma^2R_0^2}{arepsilon^2} ight\}\lnrac{LR_0^2}{arepsiloneta} ight)$	heavy	\mathbb{R}^n	from $O(1)$ to $O(\varepsilon^{-1})$
clipped-SSTM [This work]	$O\left(\max\left\{\sqrt{rac{LR_0^2}{arepsilon}},rac{\sigma^2R_0^2}{arepsilon^2} ight\}\lnrac{LR_0^2}{arepsiloneta} ight)$	heavy	\mathbb{R}^n	from $O(\varepsilon^{-1/2})$ to $O(\varepsilon^{-3/2})$

Nearly optimal

Unbounded

6. Experiments

Clipped-SSTM and Clipped-SGD Logistic Regression

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{r} \sum_{i=1}^r \underbrace{\log(1 + \exp(-y_i \cdot (Ax)_i))}_{f_i(x)}$$

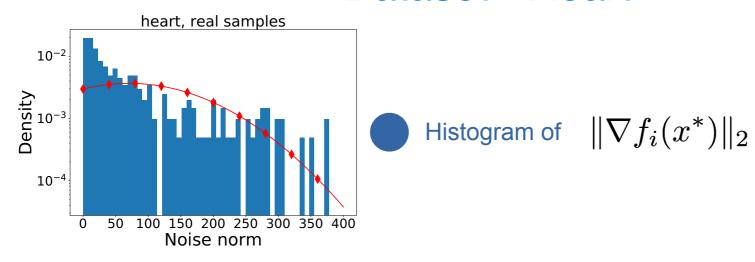
$A \in \mathbb{R}^{r \times n}$ — matrix of instances

 $y \in \{0,1\}^m$ — vector of labels

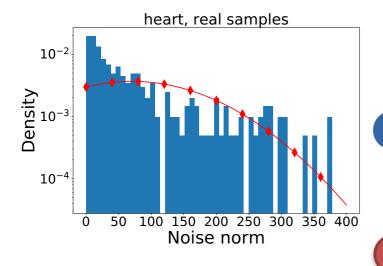
Datasets from LIBSVM:

	heart	australian
Size	270	690
Dimension	13	13

Data analysis Dataset - Heart



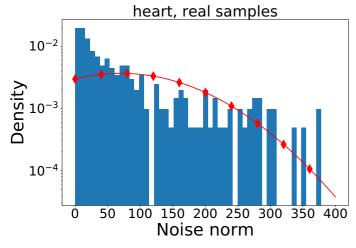
Data analysis Dataset - Heart

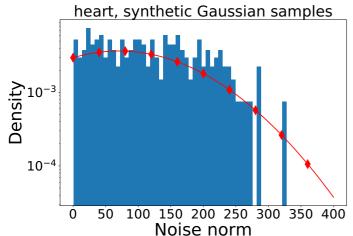


Histogram of $\|
abla f_i(x^*) \|_2$

Red lines correspond to probability density function of normal distribution with empirically estimated mean and variance

Data analysis Dataset - Heart

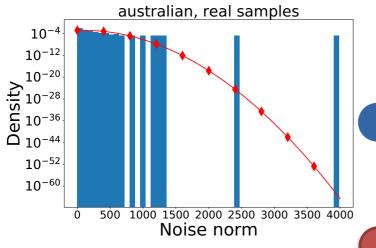


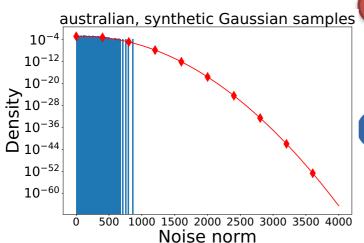


Histogram of $\|
abla f_i(x^*)\|_2$

- Red lines correspond to probability density function of normal distribution with empirically estimated mean and variance
- Histogram of synthetic Gaussian samples with mean and variance estimated via empirical mean and variance of real samples

Data analysis Dataset - Australian

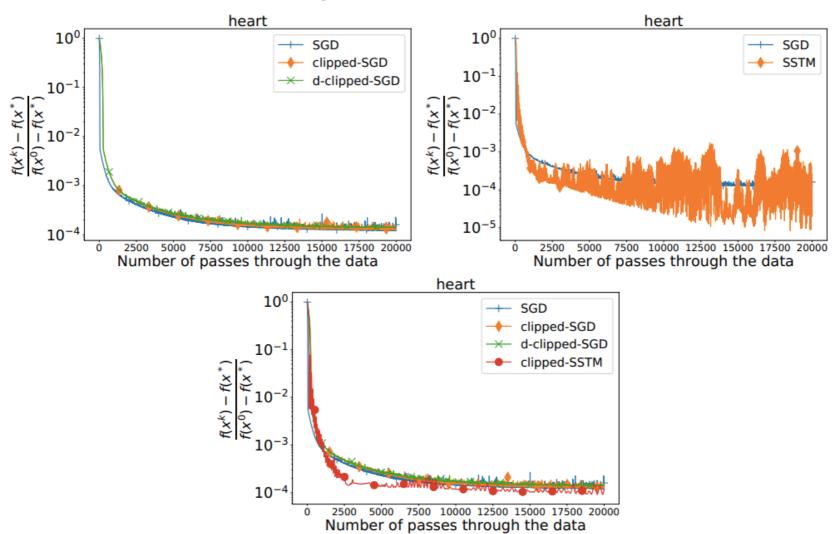




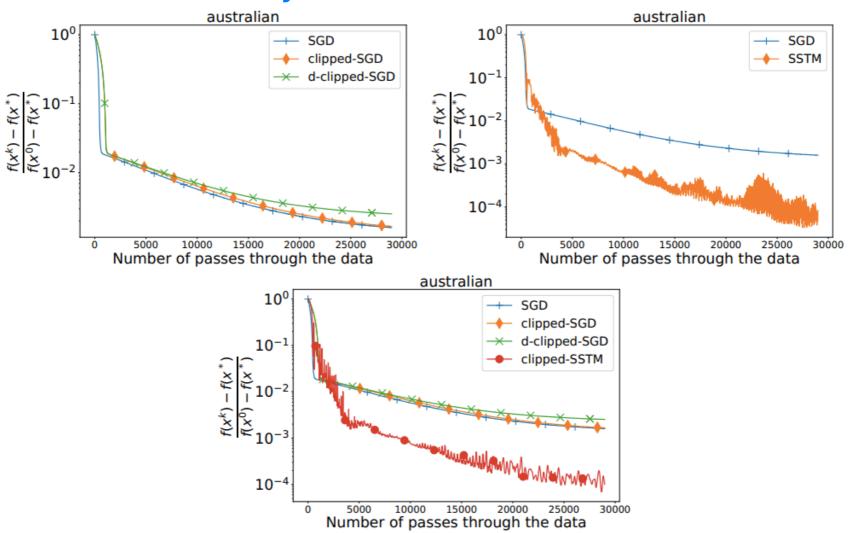
Red lines correspond to probability density function of normal distribution with empirically estimated mean and variance

Histogram of synthetic Gaussian samples with mean and variance estimated via empirical mean and variance of real samples

Trajectories - Heart



Trajectories - Australian



More details you could find in our work:

Gorbunov, Eduard, **Marina Danilova**, and Alexander Gasnikov. "**Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient Clipping**." *arXiv preprint arXiv:2005.10785* (2020).

- strongly convex case
- more experiments

Thank you for your attention!

The End