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Variational Inequality Problem

find x∗ ∈ Q ⊆ Rd such that 〈F (x∗), x − x∗〉 ≥ 0, ∀x ∈ Q (VIP-C)

• F : Q → Rd is L-Lipschitz operator: ∀x , y ∈ Q

‖F (x)− F (y)‖ ≤ L‖x − y‖ (1)

• F is monotone: ∀x , y ∈ Q

〈F (x)− F (y), x − y〉 ≥ 0 (2)
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Variational Inequality Problem: Examples

• Min-max problems:
min
u∈U

max
v∈V

f (u, v) (3)

If f is convex-concave, then (3) is equivalent to finding (u∗, v∗) ∈ U × V
such that ∀(u, v) ∈ U × V

〈∇uf (u∗, v∗), u − u∗〉 ≥ 0, −〈∇v f (u∗, v∗), v − v∗〉 ≥ 0,

which is equivalent to (VIP-C) with Q = U × V , x = (u>, v>)>, and

F (x) =

(
∇uf (u, v)
−∇v f (u, v)

)
These problems appear in various applications such as robust optimization
[Ben-Tal et al., 2009] and control [Hast et al., 2013], adversarial training
[Goodfellow et al., 2015, Madry et al., 2018] and generative adversarial
networks (GANs) [Goodfellow et al., 2014].
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Variational Inequality Problem: Examples

• Minimization problems:
min
x∈Q

f (x) (4)

If f is convex, then (4) is equivalent to finding a solution of (VIP-C) with

F (x) = ∇f (x)

Eduard Gorbunov Extragradient Method December 1, 2021 5 / 76



Last-Iterate Convergence of EG Cocoercivity Performance Estimation Problems and EG References

Variational Inequality Problem: Unconstrained Case

When Q = Rd (VIP-C) can be rewritten as

find x∗ ∈ Rd such that F (x∗) = 0 (VIP)

In this talk, we focus on (VIP) rather than (VIP-C)
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How to Solve VIP?

Naive approach – Gradient Descent (GD):

xk+1 = xk − γF (xk) (GD)

3 GD seems very natural and it is well-studied for minimization
7 GD does not converge for simple convex-concave min-max problems
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Non-Convergence of GD

Figure: Behavior of GD on the problem min
u∈R

max
v∈R

uv [Gidel et al., 2019]
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Popular Alternatives to GD

• Extragradient method (EG) [Korpelevich, 1976]

xk+1 = xk − γF (xk − γF (xk))

• Optimistic Gradient method (OG) [Popov, 1980]

xk+1 = xk − 2γF (xk) + γF (xk−1)

In this talk, we focus on EG and, in particular, on its convergence properties
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Measures of Convergence

• Restricted gap function: GapF (xK ) = max
y∈Rd :‖y−x∗‖≤R

〈F (y), xK − y〉, where

R ∼ ‖x0 − x∗‖ [Nesterov, 2007]
3 GapF (xK ) can be seen as a natural extension of optimization error for (VIP),

when F is monotone
7 It is unclear how to tightly estimate GapF (xK ) in practice and how to

generalize it to non-monotone case
• Squared norm of the operator: ‖F (xK )‖2

7 In general, it provides weaker guarantees than GapF (xK )
3 ‖F (xK )‖2 is easier to compute than GapF (xK )

In this talk, we focus on the guarantees for ‖F (xK )‖2
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Convergence Guarantees for EG

When F is monotone and L-Lipschitz the following results are known for EG:
• Averaged- and best-iterate guarantees:

• GapF (xK ) = O(1/K) for xK = 1
K+1

∑K
k=0 x

k [Nemirovski, 2004, Mokhtari et al.,
2019, Hsieh et al., 2019, Monteiro and Svaiter, 2010, Auslender and Teboulle,
2005]

• min
k=0,1,...,K

‖F (xk)‖2 = O(1/K)[Solodov and Svaiter, 1999, Ryu et al., 2019]

• Lower bounds for the last-iterate [Golowich et al., 2020]:
• GapF (xK ) = Ω(1/

√
K)

• ‖F (xK )‖2 = Ω(1/K)

• Upper bounds for the last-iterate [Golowich et al., 2020]: if additionally
the Jacobian ∇F (x) is Λ-Lipschitz, then
• GapF (xK ) = O(1/

√
K)

• ‖F (xK )‖2 = O(1/K)
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Convergence Guarantees for EG: Resolved Question

Q1: Is it possible to prove last-iterate ‖F (xK )‖2 = O(1/K) convergence rate
for EG when F is monotone and L-Lipschitz without additional assumptions?

We will give a positive answer to this question further in this talk!
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Cocoercivity

Operator F : Rd → Rd is called `-cocoercive if for all x , y ∈ Rd

‖F (x)− F (y)‖2 ≤ `〈F (x)− F (y), x − y〉 (5)

• F is `-cocoercive =⇒ F is monotone and `-Lipschitz
• F is monotone and `-Lipschitz 6=⇒ F is `-cocoercive

• Counter-example: F corresponding to bilinear game min
u∈Rd1

max
v∈Rd2

x>Ay

• If F = ∇f , then monotonicity and `-Lipschitzness of F implies that F is
`-cocoercive

Operator F : Rd → Rd is called `-star-cocoercive if for all x ∈ Rd

‖F (x)‖2 ≤ `〈F (x), x − x∗〉, (6)

where x∗ is such that F (x∗) = 0
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GD Converges Under Star-Cocoercivity

Theorem 1 (Random-iterate convergence of GD)
Let F : Rd → Rd be `-star-cocoercive.Then for all K ≥ 0 we have

E‖F (x̂K )‖2 ≤ `‖x0 − x∗‖2

γ(K + 1)
, (7)

where x̂K is chosen uniformly at random from the set of iterates {x0, x1, . . . , xK}
produced by GD with 0 < γ ≤ 1/`.

... and the proof is trivial!
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GD Converges Under Star-Cocoercivity

Proof of Theorem 1
Using the update rule of (GD) we derive

‖xk+1 − x∗‖2 = ‖xk − γF (xk)− x∗‖2

= ‖xk − x∗‖2 − 2γ〈xk − x∗,F (xk)〉+ γ2‖F (xk)‖2
(6)
≤ ‖xk − x∗‖2 − γ

(
2
`
− γ
)
‖F (xk)‖2.

Rearranging the terms we get

γ

(
2
`
− γ
)
‖F (xk)‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2. (8)

It remains to average the above inequalitites for k = 0, 1, . . . ,K .
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GD Converges Under Cocoercivity

Theorem 2 (Last-iterate convergence of GD)
Let F : Rd → Rd be `-cocoercive.Then for all K ≥ 0 we have

‖F (xK )‖2 ≤ `‖x0 − x∗‖2

γ(K + 1)
, (9)

where xK is produced by GD with 0 < γ ≤ 1/`.

The proof is also simple and consist of two steps:
1 Derivation of ‖F (xk+1)‖ ≤ ‖F (xk)‖ using `-cocoercivity at xk and xk+1

2 Application of the above inequality to the previous result

Eduard Gorbunov Extragradient Method December 1, 2021 16 / 76



Last-Iterate Convergence of EG Cocoercivity Performance Estimation Problems and EG References

Idea: EG = GD with Special Operator

xk+1 = xk − γ2 F
(
xk − γ1F (xk)

)︸ ︷︷ ︸
FEG,γ1 (x

k )

= xk − γ2FEG,γ1(xk) (EG)

Key idea: if we manage to show that FEG,γ1(xk) is `-cocoercive with some ` > 0
for any monotone and L-Lipschitz F and for a reasonable choice of γ1,then we can
simply apply the results for GD and we will get the desired last-iterate O(1/K)
convergence rate.
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Useful Facts on Cocoercivity

Lemma 1 (Proposition 4.2 from Bauschke et al. [2011])
For any operator F : Rd → Rd the following are equivalent
(i) Id− 2

`F is non-expansive.
(ii) F is `-cocoercive.

Lemma 2
For any operator F : Rd → Rd and x∗ such that F (x∗) = 0 the following are
equivalent:
(i) Id− 2

`F is non-expansive arounda x∗.
(ii) F is `-star-cocoercive.

aOperator U : Rd → Rd is called non-expansive around x∗ if for all x ∈ Rd it
satisfies ‖U(x)− U(x∗)‖ ≤ ‖x − x∗‖.
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Warm-up: Proximal-Point Method

Consider a simpler for the analysis but much less practical method called Proximal
Point method (PP) [Martinet, 1970, Rockafellar, 1976]:

xk+1 = xk − γF (xk+1). (PP)

• xk+1 is defined implicitly for given xk and γ > 0
• Define operator FPP,γ : Rd → Rd such that ∀x ∈ Rd

FPP,γ(x) = F (y), where y = x − γF (y) (10)

• (PP) can be rewritten as GD for FPP,γ :

xk+1 = xk − γFPP,γ(xk)
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Warm-up: Proximal-Point Operator is Cocoercive

Theorem 3
Let F : Rd → Rd be monotone and γ > 0. Then, FPP,γ(x) is 2/γ-cocoercive.

Proof of Theorem 3
In view of Lemma 1, it is enough to prove that Id− γFPP,γ is non-expansive.
Consider arbitrary x , y ∈ Rd and define x̂ and ŷ as follows:

x̂ = x − γF (x̂) = x − γFPP,γ(x), ŷ = y − γF (ŷ) = y − γFPP,γ(y).

Eduard Gorbunov Extragradient Method December 1, 2021 20 / 76



Last-Iterate Convergence of EG Cocoercivity Performance Estimation Problems and EG References

Warm-up: Proximal-Point Operator is Cocoercive

Proof of Theorem 3
Using this notation, we derive

‖x̂ − ŷ‖2 = ‖x − y‖2 − 2γ〈x − y ,F (x̂)− F (ŷ)〉+ γ2‖F (x̂)− F (ŷ)‖2

= ‖x − y‖2 − 2γ〈x̂ + γF (x̂)− ŷ − γF (ŷ),F (x̂)− F (ŷ)〉
+γ2‖F (x̂)− F (ŷ)‖2

= ‖x − y‖2 − 2γ〈x̂ − ŷ ,F (x̂)− F (ŷ)〉 − γ2‖F (x̂)− F (ŷ)‖2
(2)
≤ ‖x − y‖2 − γ2‖F (x̂)− F (ŷ)‖2

≤ ‖x − y‖2.

That is, Id− γFPP,γ is non-expansive, and, as a result, FPP,γ is 2/γ-cocoercive.
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Warm-up: Last-Iterate Convergence of PP

Applying Theorem 2, we derive last-iterate O(1/K) convergence rate for

xk+1 = xk − γFPP,2/`(x
k) (PP-γ-`)

Theorem 4
Let F : Rd → Rd be monotone, ` > 0 and 0 < γ ≤ 1/`. Then for all K ≥ 0 we
have

‖F (x̂K )‖2 ≤ `‖x0 − x∗‖2

γ(K + 1)
, (11)

where x̂K = xK − 2/`F (x̂K ) = xK − 2/`FPP,2/`(x̂
K ) and xK is produced by

(PP-γ-`).
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EG is “an Approximation” of PP

PP : xk+1 = xk − γF (xk+1) = xk − γFPP,γ(xk)

EG : xk+1 = xk − γF
(
xk − γF (xk)

)
= xk − γFEG,γ(xk)

• Informal explanation: gradient step xk − γF (xk) “approximates” the next
point xk+1

• Formal explanation: if F is L-Lipschitz and xk+1 is obtained via EG, then∥∥F (xk+1)− F
(
xk − γF (xk)

)∥∥ ≤ L‖xk+1 − xk − γF (xk)‖
= Lγ

∥∥F (xk − γF (xk)
)
− F (xk)

∥∥
≤ L2γ2‖F (xk)‖,

so, for the difference between update directions decreases quadratically in γ
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EG and Cocoercivity: Resolved Question

Q2: Is operator FEG,γ cocoercive when F is monotone and L-Lipschitz?

We give the following answer: in some cases it is true,
but in general it is not the case!
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EG and Cocoercivity: What We Obtained

Assume that F is monotone and L-Lipschitz and consider

xk+1 = xk − γ2 F
(
xk − γ1F (xk)

)︸ ︷︷ ︸
FEG,γ1 (x

k )

= xk − γ2FEG,γ1(xk)

3 If F is linear, i.e., for any α, β ∈ R and x , y ∈ Rd the operator satisfies
F (αx + βy) = αF (x) + βF (y), then operator FEG,γ1(x) with γ1 ≤ 1/L is
2/γ1-cocoercive =⇒ ‖FEG,γ1(xK )‖2 = O (1/K)

3 If F (x) = Ax + b for some A ∈ Rd×d , b ∈ Rd , then operator FEG,γ1(x) with
γ1 ≤ 1/L is 2/γ1-cocoercive =⇒ ‖FEG,γ1(xK )‖2 = O (1/K)

37 If F (x) is not necessarily affine but is star-monotone, i.e., 〈F (x), x − x∗〉 ≥ 0
for all x ∈ Rd , then operator FEG,γ1(x) with γ1 ≤ 1/L is 2/γ1-star-cocoercive
=⇒ min

k=0,1,...,K
‖FEG,γ1(xk)‖2 = O (1/K)

Proofs are relatively simple and based mainly on Lemmas 1 and 2
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EG and Cocoercivity: What Else We Obtained

Assume that F is monotone and L-Lipschitz and consider

xk+1 = xk − γ2 F
(
xk − γ1F (xk)

)︸ ︷︷ ︸
FEG,γ1 (x

k )

= xk − γ2FEG,γ1(xk)

7 For all L > 0 and γ1 ∈ (0, 1/L] there exists a monotone and L-Lipschitz
operator F such that operator FEG,γ1(x) is non-cocoercive

The proof of this fact was obtained via numerical solutions of so-called
Performance Estimation Problems (PEP)
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Performance Estimation Problems

• A powerful technique for deriving tight convergence guarantees, obtaining
proofs and even designing new optimal methods

• First works: [Drori and Teboulle, 2014, Kim and Fessler, 2016, Lessard et al.,
2016]

• Some later works: Taylor et al. [2017a,b], De Klerk et al. [2017], Ryu et al.
[2020], Taylor and Bach [2019]

• For those who are interested in this topic, my biased personal recomendation:
read papers and slides by Adrien Taylor https://www.di.ens.fr/~ataylor
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Performance Estimation Problem and Expansiveness

• In view of Lemma 1, it is sufficient to show that for any L > 0 and any
γ1, γ2 > 0 there exists a monotone and L-Lipschitz operator F such that
Id− γ2FEG,γ1 is not non-expansive

• In other words, our goal is to show that for all L, γ1, γ2 > 0 the quantity

ρEG(L, γ1, γ2) = max
‖x̂ − ŷ‖2

‖x − y‖2
(12)

s.t. F is mon. & L-Lip.,
x , y ∈ Rd , x 6= y ,

x̂ = x − γ2F (x − γ1F (x)),

ŷ = y − γ2F (y − γ1F (y))

is bigger than 1, i.e., ρEG(L, γ1, γ2) > 1.
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PEP for Expansiveness

• Problem (15) is hard to solve since it is infinitely dimensional
• Let us try to come up with an equivalent finite-deminsional formulation.

Naive idea №1: consider the following problem

max
‖x − γ2xF2 − y + γ2yF2‖2

‖x − y‖2
(13)

s.t. F is mon. & L-Lip., x , y ∈ Rd , x 6= y ,

xF2 = F (x − γ1xF1), xF1 = F (x),

yF2 = F (y − γ1yF1), yF1 = F (y)

• It is equivalent to (12) but the new problem is finite-dimensional. However, it
is stil unclear how to check that there exists a monotone and L-Lipschitz
operator F such that
F (x) = xF1 ,F (y) = yF1 ,F (x − γ1xF1) = xF2 ,F (y − γ1yF1) = yF2
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PEP for Expansiveness

• Naive idea №2: consider the following problem

max
‖x − γ2xF2 − y + γ2yF2‖2

‖x − y‖2
(14)

s.t. ‖z1 − z ′1‖2 ≤ L2‖z − z ′‖2,
〈z1 − z ′1, z − z ′〉 ≥ 0,
for each two pairs (z , z1), (z ′, z ′1)

from {(x , xF1), (y , yF1), (x − γ1xF1 , xF2), (y − γ1yF1 , yF2)}

• Bad news: problem (14) is not equivalent to (13) [Ryu et al., 2020]: feasible
set in (14) contains some points that are not feasible for (13), i.e., some
feasible points for (14) cannot be interpolated by any monotone and
L-Lipschitz operator.

Eduard Gorbunov Extragradient Method December 1, 2021 30 / 76



Last-Iterate Convergence of EG Cocoercivity Performance Estimation Problems and EG References

PEP for Expansiveness

• Good news: one can circumvent this issue if we focus on a different
problem. Let us try to show that for any ` > 0 and any γ1, γ2 > 0 there
exists a `-cocoercive operator F such that Id− γFEG,γ1 is not non-expansive.

• In other words, our goal is to show that for all `, γ1, γ2 > 0 the quantity

ρEG(`, γ1, γ2) = max
‖x̂ − ŷ‖2

‖x − y‖2
(15)

s.t. F is `-cocoercive,
x , y ∈ Rd , x 6= y ,

x̂ = x − γ2F (x − γ1F (x)),

ŷ = y − γ2F (y − γ1F (y))

is bigger than 1, i.e., ρEG(`, γ1, γ2) > 1.
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PEP for Expansiveness

• Consider an equivalent finite-dimensional problem:

max
‖x − γ2xF2 − y + γ2yF2‖2

‖x − y‖2
(16)

s.t. F is `-cocoercive, x , y ∈ Rd , x 6= y ,

xF2 = F (x − γ1xF1), xF1 = F (x),

yF2 = F (y − γ1yF1), yF1 = F (y).

• Next, for all α > 0 the following equivalence holds:

F is `-cocoercive ⇐⇒
(
α−1Id

)
◦ F ◦ (αId) is `-cocoercive.
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PEP for Expansiveness

• Therefore, in problem (16) one can apply the change of variables

x := α−1x , y := α−1y , xF1 := α−1xF1 , yF1 := α−1yF1 ,

xF2 := α−1xF2 , yF2 := α−1yF2 , F :=
(
α−1Id

)
◦ F ◦ (αId) ,

where α = ‖x − y‖, and get another equivalent problem

max ‖x − γ2xF2 − y + γ2yF2‖2 (17)
s.t. F is `-cocoercive, x , y ∈ Rd , ‖x − y‖ = 1,

xF2 = F (x − γ1xF1), xF1 = F (x),

yF2 = F (y − γ1yF1), yF1 = F (y).
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PEP for Expansiveness

• Proposition 2 from Ryu et al. [2020] implies that (17) is equivalent to

max ‖x − γ2xF2 − y + γ2yF2‖2 (18)
s.t. x , y , xF1 , yF1 , xF2 , yF2 ∈ Rd , ‖x − y‖2 = 1,

`〈xF1 − xF2 , γ1xF1〉 ≥ ‖xF1 − xF2‖2,
`〈xF1 − yF1 , x − y〉 ≥ ‖xF1 − yF1‖2,
`〈xF1 − yF2 , x − y + γ1yF1〉 ≥ ‖xF1 − yF2‖2,
`〈xF2 − yF1 , x − γ1xF1 − y〉 ≥ ‖xF2 − yF1‖2,
`〈xF2 − yF2 , x − γ1xF1 − y + γ1yF1〉 ≥ ‖xF2 − yF2‖2,
`〈yF1 − yF2 , γ1yF1〉 ≥ ‖yF1 − yF2‖2.

The problem is linear in terms of the pairwise inner products of
x , y , xF1 , yF1 , xF2 , yF2

Eduard Gorbunov Extragradient Method December 1, 2021 34 / 76



Last-Iterate Convergence of EG Cocoercivity Performance Estimation Problems and EG References

PEP for Expansiveness

• Consider a Grammian representation of (x>, y>, x>F1
, y>F1

, x>F2
, y>F2

)>:

G =


x>

y>

x>F1

y>F1

x>F2

y>F2

 ·
(
x y xF1 yF1 xF2 yF2

)

• One can easily show that for all d ≥ 6

G ∈ S6
+ ⇐⇒ ∃ x , y , xF1 , yF1 , xF2 , yF2 ∈ Rd : G is Gram matrix for them
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PEP for Expansiveness

• Therefore, problem (18) is equivalent to the following SDP problem:

max Tr(M0G) (19)
s.t. G ∈ S6

+,

Tr(MiG) ≥ 0, i = 1, 2, . . . , 6,
Tr(M7G) = 1,

where M0, . . . ,M7 are some symmetric matrices.

Eduard Gorbunov Extragradient Method December 1, 2021 36 / 76



Last-Iterate Convergence of EG Cocoercivity Performance Estimation Problems and EG References

PEP for Expansiveness: M0

M0 =


1 −1 0 0 −γ2 γ2
−1 1 0 0 γ2 −γ2
0 0 0 0 0 0
0 0 0 0 0 0
−γ2 γ2 0 0 γ2

2 −γ2
2

γ2 −γ2 0 0 −γ2
2 γ2

2
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PEP for Expansiveness: M1

M1 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 `γ1 − 1 0 1− `γ1

2 0
0 0 0 0 0 0
0 0 1− `γ1

2 0 −1 0
0 0 0 0 0 0
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PEP for Expansiveness: M2

M2 =


0 0 `

2 − `
2 0 0

0 0 − `
2

`
2 0 0

`
2 − `

2 −1 1 0 0
− `

2
`
2 1 −1 0 0

0 0 0 0 0 0
0 0 0 0 0 0
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PEP for Expansiveness: M3

M3 =



0 0 `
2 0 0 − `

2
0 0 − `

2 0 0 `
2

`
2 − `

2 −1 `γ1
2 0 1

0 0 `γ1
2 0 0 − `γ1

2
0 0 0 0 0 0
− `

2
`
2 1 − `γ1

2 0 −1
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PEP for Expansiveness: M4

M4 =



0 0 0 − `
2

`
2 0

0 0 0 `
2 − `

2 0
0 0 0 `γ1

2 − `γ1
2 0

− `
2

`
2

`γ1
2 −1 1 0

`
2 − `

2 − `γ1
2 1 −1 0

0 0 0 0 0 0



Eduard Gorbunov Extragradient Method December 1, 2021 41 / 76



Last-Iterate Convergence of EG Cocoercivity Performance Estimation Problems and EG References

PEP for Expansiveness: M5

M5 =



0 0 0 0 `
2 − `

2
0 0 0 0 − `

2
`
2

0 0 0 0 − `γ1
2

`γ1
2

0 0 0 0 `γ1
2 − `γ1

2
`
2 − `

2 − `γ1
2

`γ1
2 −1 1

− `
2

`
2

`γ1
2 − `γ1

2 1 −1
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PEP for Expansiveness: M6

M6 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 `γ1 − 1 0 1− `γ1

2
0 0 0 0 0 0
0 0 0 1− `γ1

2 0 −1
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PEP for Expansiveness: M7

M7 =


1 −1 0 0 0 0
−1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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FEG,γ1 is Not Cocoercive: Numerical Proof
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2 = 1 0.1

Figure: Numerical estimation of ρEG(`, γ1, γ2) defined in (15) for ` = 1 and different
γ1, γ2.
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FEG,γ1 is Not Cocoercive?

3 We obtained the answer numerically for different choices of γ1 and γ2

7 It is not a rigorous proof: probably, for smaller stepsize FEG,γ1 is cocoercive,
but we cannot check it because of the numerical inaccuracies

Analytical example is required
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How to Construct Analytical Example?

• Try to solve the problem symbolicaly after some simplifications of the problem
3 Ryu et al. [2020] use this trick and obtained quite impressive results that are

almost impossible to obtain by hands
7 Unfortunately, this approach does not always work and it did not help us to

get the example
• Try to solve the problem numerically for different parameters γ1, γ2 and ` to

guess the dependencies using visualization
3 Gu and Yang [2019] successfuly applied this technique to derive worst-case

examples for PP
7 It is hard to visualize d-dimensional examples with d ≥ 3
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Low-Dimensional Examples: Trace Heuristic

Instead of solving

max Tr(M0G)

s.t. G ∈ S6
+,

Tr(MiG) ≥ 0, i = 1, 2, . . . , 6,
Tr(M7G) = 1,

which gives us 5-dimensional examples of G, we consider another problem [Taylor
et al., 2017a]:

min Tr(G)

s.t. G ∈ S6
+,

Tr(M0G) ≥ 1.0005,
Tr(MiG) ≥ 0, i = 1, 2, . . . , 6,
Tr(M7G) = 1.
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Low-Dimensional Examples: Trace Heuristic

min Tr(G)

s.t. G ∈ S6
+,

Tr(M0G) ≥ 1.0005,
Tr(MiG) ≥ 0, i = 1, 2, . . . , 6, Tr(M7G) = 1

• It gives low-rank solutions (a heuristic)
• This shows non-2/γ2-cocoercivity of FEG,γ1 : we ensure this via the constraint

Tr(M0G) ≥ a = 1.0005 > 1
• In theory, any a > 1 can be used but due to the inevitability of the numerical

errors in practice we used a = 1.0005
• We obtained solutions of rank 3, i.e., 3-dimensional examples

7 Unfortunately, visualizations did not help to construct an analytical example
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Low-Dimensional Examples: Log-Det Heuristic

To overcome this issue, we consider another problem with so called Log-det
heurisctic [Fazel et al., 2003]:

min log det (G + δI) (20)
s.t. G ∈ S6

+,

Tr(M0G) ≥ 1.0005,
Tr(MiG) ≥ 0, i = 1, 2, . . . , 6,
Tr(M7G) = 1,

where δ > 0 is some small positive regularization parameter. For simplicity we
used γ2 = γ1 in some interval and ` = 1.

3 We obtained solutions of rank 2, i.e., we obtained x , y , xF1 , yF1 , xF2 , yF2 in R2

3 We observed that x = −y for all tested values of γ1
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Low-Dimensional Examples: Log-Det Heuristic

7 However, numerical solutions were not consistent enough to guess the right
dependencies

3 To overcome this issue, we
• rotated x , y , xF1 , yF1 , xF2 , yF2 in such a way that x = (−1/2, 0)>, y = (1/2, 0)>,
• plotted the components of xF1 , yF1 , xF2 , yF2 for different γ1

3 Although the resulting dependencies were not perfect, the obtained plots
helped us to sequentially construct the needed example:

x =

(
− 1

2
0

)
, y =

( 1
2
0

)
, xF1 =

(
− 1

2γ1
1

2γ1

)
, yF1 =

(
− 1−γ1`

2γ1
1+γ1`
2γ1

)
,

xF2 =

(
− 1−γ1`

2γ1
1

2γ1

)
, yF2 =

(
− 1−γ1`

2γ1
1−γ2

1`
2

2γ1

)
(21)

• Required several days of playing with plots to get the needed insights
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Non-Cocoercivity of FEG,γ1: Four Observations
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Observation 4: xF1[2] xF2[2], when xF1[2] > 0 (in almost all cases)
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xF2[2]
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Non-Cocoercivity of FEG,γ1: Four Observations

Mimicking the observed dependencies, we assumed that

xF2 [1] = yF2 [1],

yF1 [1] = xF2 [1] and xF1 [1] < yF1 [1] < 0,
0 < xF1 [2] < yF1 [2],

xF1 [2] = xF2 [2]
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Non-Cocoercivity of FEG,γ1: Handling Four Observations

After that, we plugged them in the interpolation conditions from (18), and
obtained the following inequalities:

yF1 [1] ≤ (1− γ1)xF1 [1],

yF1 [2] ≤ yF2 [2]

1− γ1
,

yF1 [2] ≤ (1 + γ1)xF2 [2],

xF2 [2] ≤ yF2 [2]

1− γ2
1
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Non-Cocoercivity of FEG,γ1: Making Some Assumptions

To fulfill these constraints, we simply assumed that they hold as equalities and got:

xF2 [2] = xF1 [2] =
yF2 [2]

1− γ2
1
, yF1 [2] =

yF2 [2]

1− γ1
,

yF1 [1] = xF2 [1] = yF2 [1] = (1− γ1)xF1 [1].
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Non-Cocoercivity of FEG,γ1: Making More Assumptions

• Using these dependencies in the remaining interpolation conditions, we
derived

xF1 [1] + γ1(xF1 [1])2 +
γ1(yF2 [2])2

(1− γ2
1)2 ≤ 0.

• After that, we assumed that

yF2 [2] = −xF1 [1](1− γ2
1).

• Together with previous inequality it gives

xF1 [1] + 2γ1(xF1 [1])2 ≤ 0.

• Next, we chose xF1 [1] = −1/2γ1 and put it in all previously derived
dependencies.

• Finally, we generalized the example to the case of non-unit ` using
“physical-dimension” arguments and got (21).
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FEG,γ1 is Not Cocoercive!

Putting all together we derive the following result:

Theorem 5
For all ` > 0 and γ1 ∈ (0, 1/`] there exists `-cocoercive operator F such that
F (x) = xF1 ,F (y) = yF1 ,F (x − γ1xF1) = xF2 ,F (y − γ1yF1) = yF2 for
x , y , xF1 , yF1 , xF2 , yF2 defined in (21) and

‖x − γ2F (x − γ1F (x))− y + γ2F (y − γ1F (y))‖ > 1 = ‖x − y‖ (22)

for all γ2 > 0, i.e., FEG,γ1 = F (Id− γ1F ) is non-cocoercive.
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EG and Cocoercivity: Preliminary Conclusions

• Now we know that one cannot apply analysis of GD to prove last-iterate
O(1/K) convergence for EG

• We observed another significant difference between PP and EG: FPP,γ is
cocoercive and FEG,γ is not

• But does it mean that it is impossible to prove O(1/K) convergence rate for
EG in the considered setup (F is monotone and L-Lipschitz)? No, it does not!
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Last-Iterate O(1/K) Rate for EG

We consider the problem

max ‖F (xK )‖2 (23)
s.t. F is monotone and L-Lipschitz, x0 ∈ Rd ,

‖x0 − x∗‖2 ≤ 1,
xk+1 = xk − γ2F

(
xk − γ1F (xk)

)
, k = 0, 1, . . . ,K − 1

• Using similar steps as in the previous example, we construct a special SDP
using the definitions of monotonicity (2) and (1) as interpolation conditions

• The resulting SDP gives just an upper bound for the value of (23) (see
Proposition 3 from Ryu et al. [2020])

• Nevertheless, we solved the resulting SDP using PESTO [Taylor et al., 2017a]
for L = 1, γ1 = γ2 = 1/2L, and various values of K .
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Last-Iterate O(1/K) Rate for EG: Numerical Estimation

0 10 20 30 40 50
k

10 1

100

||F
(x

k )|
|2

Worst-case ||F(xk)||2 for EG, L = 1, 1 = 2 = = 1
2L

PEP answer
16L2||x0 x * ||2

3k

Figure: Comparison of the worst-case rate of EG obtained via solving PEP and the
guessed upper-bound 16L2‖x0−x∗‖2/k. Vertical axis is shown in logarithmic scale and after
iteration k = 20 the curves are almost parallel, i.e., PEP answer and 16L2‖x0−x∗‖2/k differ
almost by a constant factor. In view of Proposition 3 from Ryu et al. [2020], PEP may
give the answer that is not tight for the class of monotone and Lipschitz operators.
However, in this particular case, it turns out to be quite tight.
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The Recipe for Deriving the Proof

Using standard duality theory for SDP [De Klerk, 2006] one can show that the
solution of the dual problem to the SDP obtained from (23) gives the proof of
convergence.

The recipe [De Klerk et al., 2017]:
• Solve the dual problem numerically for different parameters of the problem
• Guess the analytical form of the dual solution
• Sum up the constraints of the primal problem with weights corresponding to

the solution of the dual problem
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Example of the Proof [De Klerk et al., 2017]
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Last-Iterate O(1/K) Rate for EG

• However, guessing the dependencies is not always an easy task: the
dependencies on the parameters of the problem like L, γ1, γ2 might be quite
tricky

• To simplify the process of guessing the proof, we consider a simpler problem:

∆EG(L, γ1, γ2) = max ‖F (x1)‖2 − ‖F (x0)‖2 (24)
s.t. F is monotone and L-Lipschitz, x0 ∈ Rd ,

‖x0 − x∗‖2 ≤ 1,
x1 = x0 − γ2F

(
x0 − γ1F (x0)

)
with γ1 = γ2 = γ
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Last-Iterate O(1/K) Rate for EG

• In the numerical tests, we observed that ∆EG(L, γ1, γ2) ≈ 0 for all tested
pairs of L and γ

• Moreover, the dual variables λ1, λ2, λ3 that correspond to the constraints

0 ≤ 1
γ
〈F (xk)− F (xk+1), xk − xk+1〉,

0 ≤ 1
γ
〈F (xk − γF (xk))− F (xk+1), xk − γF (xk)− xk+1〉,

‖F (xk − γF (xk))− F (xk+1)‖2 ≤ L2‖xk − γF (xk)− xk+1‖2

are always close to the constants 2, 1/2, and 3/2
• Although λ2 and λ3 were sometimes slightly smaller, e.g., sometimes we had
λ2 ≈ 3/5 and λ3 ≈ 13/20, we simplified these dependencies and simply summed
up the corresponding inequalities with weights λ1 = 2, λ2 = 1/2 and λ3 = 3/2
respectively

• After that it was just needed to rearrange the terms and apply Young’s
inequality to some inner products.
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Last-Iterate O(1/K) Rate for EG

Theorem 6
Let F : Rd → Rd be monotone and L-Lipschitz, 0 < γ ≤ 1/

√
2L. Then for all

k ≥ 0 the iterates produced by (EG) satisfy ‖F (xk+1)‖ ≤ ‖F (xk)‖.

Using this result, it is quite trivial to derive last-iterate O(1/K) rate.

Theorem 7
Let F : Rd → Rd be monotone and L-Lipschitz. Then for all K ≥ 0

‖F (xK )‖2 ≤ ‖x0 − x∗‖2

γ2(1− L2γ2)(K + 1)
, (25)

where xK is produced by (EG) with stepsize 0 < γ ≤ 1/
√

2L. Moreover,

GapF (xK ) = max
y∈Rd :‖y−x∗‖≤‖x0−x∗‖

〈F (y), xK − y〉 ≤ 2‖x0 − x∗‖2

γ
√

1− L2γ2
√
K + 1

. (26)
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On Our Failures Towards the Proof

The proof that I presented was not the first idea of what we tried to obtain. Here
are some of the claims that we tried to prove first:
• We tried to show that ‖FEG,γ1(xk+1)‖ ≤ ‖FEG,γ1(xk)‖ for a reasonable

choice of γ1 and γ2

7 Perhaps, surprisingly, but this is not true even for L-cocoercive F : we observed
this phenomenon via PEP

• We also tried to show that ‖F (xk+1)‖ ≤ ‖F (xk)‖ when γ2 < γ1

7 Again, via PEP we oberved that this is not true even for L-cocoercive F

The usage of PEP helped us to save a lot of time from trying to prove the claims
that do not hold in general!
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Other Results in the Paper

• We obtain some “pessimistic” results on Optimistic Gradient method (OG):
7 for the two popular representations of OG (for the classical one and for the

extrapolation from the past) we proved that corresponding operators are not
even star-cocoercive

• For Hamiltonian Gradient method (HGM) [Balduzzi et al., 2018] we also
7 showed non-cocoercivity of corresponding operator when F is monotone and

Lipschitz
3 derived best-iterate O (1/K) convergence rate in terms of the squared norm of

the gradient of the Hamiltonian function H(x) = 1
2‖F (x)‖2 when F and ∇F

are Lipschitz-continuous but F is not necessary monotone
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Details on SDP and Its Dual

• Primal problem. For given symmetric matrices C,A1, . . . ,Am ∈ Sn, vectors
a1, . . . , am ∈ Rl , and numbers b1, . . . , bm ∈ R, we consider a primal SDP:

max
X∈Sn,u∈Rl

Tr(CX) + c>u

s.t. Tr(AkX) + a>k u ≤ bk for k = 1, . . . ,m
X � 0

• Dual problem can be written as (for b = (b1, . . . , bm)> ∈ Rm)

min
y∈Rm

b>y

s.t.
m∑

k=1

ykAk − C � 0 and
m∑

k=1

ykak = c

y ≥ 0 (component-wise)
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Details on SDP and Its Dual

• Strong duality. For PEPs one can prove

Tr(CX∗) + c>u∗ = b>y∗

• Summing up the constraints from the primal problem with weights y∗1 , . . . , y
∗
m

we get
m∑

k=1

y∗k
(
Tr(AkX) + a>k u

)
− b>y∗ ≤ 0,

which is equivalent to

Tr

((
m∑

k=1

y∗k Ak

)
X

)
+

(
m∑

k=1

y∗k ak

)>
u − b>y∗ ≤ 0,
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Details on SDP and Its Dual

• For any A � 0 and B � 0 we have Tr(AB) ≥ 0

• Since
m∑

k=1
y∗k Ak − C � 0, we have Tr

((
m∑

k=1
y∗k Ak

)
X
)
≥ Tr(CX)

• Putting all together, we derive

Tr(CX) + c>u ≤ b>y∗ = Tr(CX∗) + c>u∗

The result is trivial but the derivation gives a recipe of getting the proof!
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