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About MBZUAI

• Established in 2019, located in Masdar City (Abu Dhabi, UAE)
• First classes started in January 2021 (because of COVID-19)
• Three departments: NLP, CV, and ML
• Some numbers: ≈ 200 students, ≈ 50 faculties, 19th in CSRankings
(AI, CV, ML, and NLP)
• 1 hour to Dubai :)

Figure 1: https://www.arabnews.com/node/1724111/amp
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• Gorbunov, E., Danilova, M., Shibaev, I., Dvurechensky, P., & Gasnikov, A.
(2021). Near-optimal high probability complexity bounds for
non-smooth stochastic optimization with heavy-tailed noise.
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• Gorbunov, E., Danilova, M., Dobre, D., Dvurechenskii, P., Gasnikov, A., &
Gidel, G. (2022). Clipped stochastic methods for variational inequalities
with heavy-tailed noise. NeurIPS 2022.

• Sadiev, A., Danilova, M., Gorbunov, E., Horváth, S., Gidel, G.,
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case of unbounded variance. Accepted to ICML 2023.
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Clipping and Heavy-Tailed Noise



Stochastic Gradient Descent (SGD)

xk+1 = xk − γ · ∇f(xk, ξk) (1)

• f – the function to be minimized
• ∇f(xk, ξk) – stochastic gradient, i.e., unbiased estimate of ∇f(xk):
Eξk [∇f(xk, ξk)] = ∇f(xk)
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Clipped Stochastic Gradient Descent (clipped-SGD)

xk+1 = xk − γ · clip
(
∇f(xk, ξk), λ

)
(2)

• clip(x, λ) = min{1, λ/∥x∥}x
• clip(∇f(xk, ξk), λ) – biased estimate of ∇f(xk):
Eξk [clip(∇f(xk, ξk), λ)] ̸= ∇f(xk)
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Origin of Clipping

• Gradient clipping was proposed in (Pascanu et al., 2013).
Originally it was used to handle exploding and vanishing
gradients in RNNs.

Figure 2: from (Goodfellow et al., 2016)
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Few Years Later in NLP…

• Merity et al. (2017) use gradient clipping for LSTM
• Peters et al. (2017) trained their deep bidirectional language
model with Adam + clipping

• Mosbach et al. (2020) fine-tune BERT using AdamW + clipping

It Seems that gradient clipping is an important component in
training these models. Why?

8



Few Years Later in NLP…

• Merity et al. (2017) use gradient clipping for LSTM
• Peters et al. (2017) trained their deep bidirectional language
model with Adam + clipping

• Mosbach et al. (2020) fine-tune BERT using AdamW + clipping

It Seems that gradient clipping is an important component in
training these models. Why?

8



Heavy-Tailed Noise in Stochastic Gradients

Let us look at the distribution of ∥∇f(x, ξ)−∇f(x)∥ in two settings:

• Standard CV task: training ResNet50 on ImageNet dataset
• Standard NLP task: training BERT on Wikipedia+Books dataset
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Heavy-Tailed Noise in Stochastic Gradients

Figure 3: from (Zhang et al., 2020)
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Definition of Heavy-Tailed Noise in Stochastic Gradients

• Random vector X has light tails if

P{∥X− E[X]∥ ≥ b} ≤ 2 exp
(
− b2
2σ2

)
∀b > 0. (3)

The above condition is equivalent (up to the numerical factor in
σ) to

E
[
exp

(
∥X− E[X]∥2

σ2

)]
≤ exp(1). (4)

• Otherwise we say that X has heavy tails. However, in this talk, we
will assume that it has bounded central α-th moment for some
α ∈ (1, 2]:

E [∥X− E[X]∥α] ≤ σα (5)
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In-Expectation Guarantees vs
High-Probability Convergence



Problem and Assumptions

min
x∈Rn

{f(x) = Eξ [f(x, ξ)]} (6)

• f : Rn → Rn is convex and L-smooth, i.e., ∀x, y ∈ Rn

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩, (7)
∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥. (8)

• Stochastic gradient ∇f(x, ξ) with bounded central α-th moment
(α ∈ (1, 2]) is available, i.e., ∀x ∈ Rn

Eξ [∇f(x, ξ)] = ∇f(x), Eξ [∥∇f(x, ξ)−∇f(x)∥α] ≤ σα. (9)
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SGD Does Not Converge When α < 2

• In-expectation guarantees: E[∥x− x∗∥2] ≤ ε, E[f(x)− f(x∗)] ≤ ε,
E[∥∇f(x)∥2] ≤ ε

• Consider the example from (Zhang et al., 2020): f(x) = 1
2∥x∥

2 and
∇f(x, ξ) = x+ ξ, where E[ξ] = 0 and E∥ξ∥α ≤ σα but E∥ξ∥2 = ∞
(e.g., ξ can Levý α-stable distribution)

• Then, after one step of SGD we have
E∥x1 − x∗∥2 = E∥x0 − x∗ − γ∇f(x0, ξ0)∥2

= ∥x0 − x∗∥2 − 2γE
[
x0 − x∗,∇f(x0, ξ0)

]︸ ︷︷ ︸
infinite

+γ2 E∥∇f(x0, ξ0)∥2︸ ︷︷ ︸
=∞

= ∞

The method does not converge in expectation (in L2) when α < 2!
What about the case when α = 2 (bounded variance)?
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In-Expectation Guarantees and Trajectories of the Method

Consider SGD with constant stepsize

xk+1 = xk − γ · ∇f(xk, ξk)

applied to a toy stochastic quadratic problem:

min
x∈Rn

{f(x) = Eξ[f(x, ξ)]} , f(x, ξ) = 1
2∥x∥

2 + ⟨ξ, x⟩,

where E[ξ] = 0 and E[∥ξ∥2] = σ2.

We consider three scenarios:

• ξ has Gaussian distribution
• ξ has Weibull distribution (non-sub-Gaussian)
• ξ has Burr Type XII distribution (non-sub-Gaussian)

14



In-Expectation Guarantees and Trajectories of the Method

Consider SGD with constant stepsize

xk+1 = xk − γ · ∇f(xk, ξk)

applied to a toy stochastic quadratic problem:

min
x∈Rn

{f(x) = Eξ[f(x, ξ)]} , f(x, ξ) = 1
2∥x∥

2 + ⟨ξ, x⟩,

where E[ξ] = 0 and E[∥ξ∥2] = σ2. We consider three scenarios:

• ξ has Gaussian distribution
• ξ has Weibull distribution (non-sub-Gaussian)
• ξ has Burr Type XII distribution (non-sub-Gaussian)

14



In-Expectation Guarantees and Trajectories of the Method

For all of three cases, state-of-the-art theory on SGD (Ghadimi and
Lan, 2013) says

E
[
f(xk)− f(x∗)

]
≤ (1− γ)k

(
f(x0)− f(x∗)

)
+

γσ2

2 . (10)

However, the behavior in practice does depend on the distribution:

Figure 4: from (Gorbunov et al., 2020)
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In-Expectation Guarantees vs High-Probability Guarantees

• In-expectation guarantees: E[∥x− x∗∥2] ≤ ε, E[f(x)− f(x∗)] ≤ ε,
E[∥∇f(x)∥2] ≤ ε

• Typically, depend only on some moments of stochastic gradient,
e.g., variance

• High-probability guarantees: P{∥x− x∗∥2 ≤ ε} ≥ 1− β,
P{f(x)− f(x∗) ≤ ε} ≥ 1− β, P{∥∇f(x)∥2 ≤ ε} ≥ 1− β

• Sensitive to the distribution of the stochastic gradient noise
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High-Probability Results under Light-Tails Assumption

Light-tails assumption (classical one):

E
[
exp

(
∥∇f(x, ξ)−∇f(x)∥2

σ2

)]
≤ exp(1). (11)

Under this assumption (+ convexity and L-smoothness of f)

• Devolder et al. (2011) proved that SGD finds x̂ such that
f(x̂)− f(x∗) ≤ ε with probability at least 1− β using

O
(
max

{
LR20
ε

,
σ2R20
ε2

ln2
(
1
β

)})
oracle calls

• Ghadimi and Lan (2012) proved that AC-SA (an accelerated
version of SGD) finds x̂ such that f(x̂)− f(x∗) ≤ ε with probability
at least 1− β using

O

(
max

{√
LR20
ε

,
σ2R20
ε2

ln2
(
1
β

)})
oracle calls
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High-Probability Convergence of SGD under Bounded Variance
Assumption

Natural idea: apply Markov’s inequality:

P {f(x̂)− f(x∗) > ε} <
E [f(x̂)− f(x∗)]

ε
.

Taking enough steps of SGD, we can guarantee E [f(x̂)− f(x∗)] ≤ εβ

that implies P {f(x̂)− f(x∗) > ε} ≤ β or, equivalently,
P {f(x̂)− f(x∗) ≤ ε} ≥ 1− β.

Bad news: to ensure E [f(x̂)− f(x∗)] ≤ εβ SGD needs

O
(
max

{
LR20
εβ

,
σ2R20
ε2β2

})
oracle calls

Negative-power dependence on β :(

Natural question: can we analyze high-probability convergence of
SGD better?
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High-Probability Convergence of SGD under Bounded Variance
Assumption

Failure of SGD
For any ε > 0, β ∈ (0, 1), and SGD parameterized by the number of
steps K and stepsize γ, there exists µ-strongly convex L-smooth
problem (19) and stochastic oracle with noise having bounded α-th
moment with α = 2, 0 < µ ≤ L such that for the iterates produced
by SGD with any stepsize 0 < γ ≤ 1/µ

P
{
∥xK − x∗∥2 ≥ ε

}
≤ β =⇒ K = Ω

(
σ

µ
√
βε

)
. (12)

This illustrates the necessity of modifying the method, e.g., one can
use gradient clipping
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Main Results for Minimization
Problems



Key Challenge in the Analysis of clipped-SGD

xk+1 = xk − γ · clip
(
∇f(xk, ξk), λ

)
︸ ︷︷ ︸

∇̃f(xk,ξk)

• Key challenge: E
[
∇̃f(xk, ξk) | xk

]
̸= ∇f(xk)
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Analysis of clipped-SGD: Key Idea

• We start the proof classically:

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2γ⟨xk − x∗, ∇̃f(xk, ξk)⟩
+γ2∥∇̃f(xk, ξk)∥2

≤ . . .

• Using convexity and smoothness of f and simple
rearrangements, we eventually get for ∆k = f(xk)− f(x∗),
Rk = ∥xk − x∗∥, θk = ∇̃f(xk, ξk)−∇f(xk)

2γ(1− 2γL)
N

N−1∑
k=0

∆k ≤ 1
N
(
R20 − R2N

)
+
2γ
N

N−1∑
k=0

⟨x∗ − xk, θk⟩+
2γ2
N

N−1∑
k=0

∥θk∥2

How to upper bound the sums in red?
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Bernstein Inequality for Martingale Differences

Lemma 1 (Bennett, 1962; Dzhaparidze and Van Zanten, 2001;
Freedman et al., 1975)
Let the sequence of random variables {Xi}i≥1 form a martingale
difference sequence, i.e. E [Xi | Xi−1, . . . , X1] = 0 for all i ≥ 1. Assume
that conditional variances σ2i

def
= E

[
X2i | Xi−1, . . . , X1

]
exist and are

bounded and assume also that there exists deterministic constant
c > 0 such that |Xi| ≤ c almost surely for all i ≥ 1.

Then for all
b > 0, G > 0 and N ≥ 1

P

{∣∣∣ N∑
i=1

Xi
∣∣∣ > b and

N∑
i=1

σ2i ≤ G
}

≤ 2 exp
(
− b2
2G+ 2cb/3

)
.

To bound 2γ
N

N−1∑
k=0

⟨x∗ − xk, θk⟩+ 2γ2
N

N−1∑
k=0

∥θk∥2 we need to

• upper bound bias, variance, and distortion of θk
• have high-prob. upper bounds for ∥xk − x∗∥ and ∥θk∥
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Magnitude, Bias, Variance, Distortion

Lemma 2
Let X be a random vector in Rd and X̃ = clip(X, λ). Then,
∥X̃− E[X̃]∥ ≤ 2λ. Moreover, if for some σ ≥ 0 and α ∈ (1, 2] we have
E[X] = x ∈ Rd, E[∥X− x∥α] ≤ σα, and ∥x∥ ≤ λ/2, then∥∥∥E[X̃]− x

∥∥∥ ≤ 2ασα

λα−1 , (13)

E
[∥∥∥X̃− x

∥∥∥2] ≤ 18λ2−ασα, (14)

E
[∥∥∥X̃− E[X̃]

∥∥∥2] ≤ 18λ2−ασα. (15)
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Bound on the Distance to the Solution

Inequality

2γ(1− 2γL)
N

N−1∑
k=0

∆k ≤ 1
N
(
R20 − R2N

)
+
2γ
N

N−1∑
k=0

⟨x∗ − xk, θk⟩+
2γ2
N

N−1∑
k=0

∥θk∥2

implies

R2N ≤ R20 + 2γ
N−1∑
k=0

⟨x∗ − xk, θk⟩+ 2γ2
N−1∑
k=0

∥θk∥2.

Key idea: prove RN ≤ CR0 with high probability for some numerical
constant C using the induction!
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High-Probability Convergence of clipped-SGD

It is sufficient to make all assumptions on a ball around the solution!

Theorem 1
Let f be convex and L-smooth on
B7R0(x∗) = {x ∈ Rn | ∥x− x∗∥ ≤ 7R0} and (9) holds on B7R0(x∗). Then,
for all β ∈ (0, 1), ε ≥ 0 such that ln(LR20/εβ) ≥ 2 there exists a choice
of γ such that clipped-SGD with clipping level λ ∼ 1/γ and
batchsize mk = 1 finds x̄N satisfying f(x̄N)− f(x∗) ≤ ε with
probability at least 1− β using

O

(
max

{
LR2
ε

,

(
σR
ε

) α
α−1

ln

(
1
β

(
σR
ε

) α
α−1
)})

iterations/oracle calls.
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Accelerated clipped-SGD: clipped-SSTM

• Stochastic Similar Triangles Method was proposed by Gasnikov
and Nesterov (2016)

• We combine it with a gradient clipping:

αk+1 =
k+ 2
2aL , Ak+1 = Ak + αk+1, λk+1 =

B
αk+1

xk+1 = Akyk + αk+1zk
Ak+1

zk+1 = zk − αk+1 ∇̃f(xk+1, ξk)︸ ︷︷ ︸
clip(∇f(xk+1,ξk),λk+1)

yk+1 = Ayk + αk+1zk+1
Ak+1

• Why factor a is needed?
• Why λk+1 is chosen this way?
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clipped-SSTM: Intuition Behind the Proof

• The key idea is the same: prove that RN ≤ CR0 with high
probability using the induction

• The method is accelerated – it is more sensitive to the quality of
estimate ∇̃f(xk+1, ξk)

• For deterministic SSTM (i.e., STM) one can prove
∥∇f(xk+1)∥ = O(1/αk+1)

• This hints to choose λk+1 ∼ 1/αk+1 (in the hope that
∥∇f(xk+1)∥ = O(1/αk+1) in the stochastic case with high probability)

• Parameter a allows to choose smaller stepsizes and, as the result,
batchsizes mk = 1

27



clipped-SSTM: Intuition Behind the Proof

• The key idea is the same: prove that RN ≤ CR0 with high
probability using the induction

• The method is accelerated – it is more sensitive to the quality of
estimate ∇̃f(xk+1, ξk)

• For deterministic SSTM (i.e., STM) one can prove
∥∇f(xk+1)∥ = O(1/αk+1)

• This hints to choose λk+1 ∼ 1/αk+1 (in the hope that
∥∇f(xk+1)∥ = O(1/αk+1) in the stochastic case with high probability)

• Parameter a allows to choose smaller stepsizes and, as the result,
batchsizes mk = 1

27



clipped-SSTM: Intuition Behind the Proof

• The key idea is the same: prove that RN ≤ CR0 with high
probability using the induction

• The method is accelerated – it is more sensitive to the quality of
estimate ∇̃f(xk+1, ξk)

• For deterministic SSTM (i.e., STM) one can prove
∥∇f(xk+1)∥ = O(1/αk+1)

• This hints to choose λk+1 ∼ 1/αk+1 (in the hope that
∥∇f(xk+1)∥ = O(1/αk+1) in the stochastic case with high probability)

• Parameter a allows to choose smaller stepsizes and, as the result,
batchsizes mk = 1

27



clipped-SSTM: Intuition Behind the Proof

• The key idea is the same: prove that RN ≤ CR0 with high
probability using the induction

• The method is accelerated – it is more sensitive to the quality of
estimate ∇̃f(xk+1, ξk)

• For deterministic SSTM (i.e., STM) one can prove
∥∇f(xk+1)∥ = O(1/αk+1)

• This hints to choose λk+1 ∼ 1/αk+1 (in the hope that
∥∇f(xk+1)∥ = O(1/αk+1) in the stochastic case with high probability)

• Parameter a allows to choose smaller stepsizes and, as the result,
batchsizes mk = 1

27



High-Probability Convergence of clipped-SSTM

It is sufficient to make all assumptions on a ball around the solution!

Theorem 2
Let f be convex and L-smooth on B3R0(x∗) and (9) holds on B3R0(x∗).
Then, for all β ∈ (0, 1), ε ≥ 0 such that ln(

√
LR0/

√
εβ) ≥ 2 there exists

a choice of a such that clipped-SSTM with clipping level
λ ∼ 1/αk+1 and batchsize mk = 1 finds yN satisfying f(yN)− f(x∗) ≤ ε

with probability at least 1− β using

O

(√
LR2
ε

ln
LR2
εβ

,

(
σR
ε

) α
α−1

ln

(
1
β

(
σR
ε

) α
α−1
))

iterations/oracle calls.

• Better result than for clipped-SGD
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Theoretical Extensions

In (Gorbunov et al., 2021; Sadiev et al., 2023) we also have

• Results for the non-convex objectives
• Results for the strongly convex objectives
• Results for the functions with Hölder continuous gradient

29



Numerical Experiments: Setup

We tested the performance of the methods on the following
problems1:

• BERT (≈ 0.6M parameters) fine-tuning on CoLA dataset. We use
pretrained BERT and freeze all layers except the last two linear
ones. This dataset contains 8551 sentences, and the task is
binary classification – to determine if sentence is grammatically
correct.

• ResNet-18 (≈ 11.7M parameters) training on ImageNet-100
(first 100 classes of ImageNet). It has 134395 images.

1The code is available at https://github.com/
ClippedStochasticMethods/clipped-SSTM
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Numerical Experiments: Noise Distribution
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Figure 5: Noise distribution of the stochastic gradients for ResNet-18 on
ImageNet-100 and BERT fine-tuning on the CoLA dataset before the
training. Red lines: probability density functions of normal distributions with
means and variances empirically estimated by the samples. Batch count is
the total number of samples used to build a histogram.
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Evolution of the Noise Distribution, Image Classification
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Figure 6: Evolution of the noise distribution for ResNet-18 +
ImageNet-100 task. 32



Evolution of the Noise Distribution, Text Classification
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Figure 7: Evolution of the noise distribution for BERT + CoLA task.
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Evolution of the Noise Distribution, Text Classification
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Figure 8: Evolution of the noise distribution for BERT + CoLA task, from
iteration 0 (before the training) to iteration 500.
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Numerical Results, Image Classification
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Figure 9: Train and validation loss + accuracy for different optimizers on
ResNet-18 + ImageNet-100 problem. Here, “batch count” denotes the
total number of used stochastic gradients. The noise distribution is almost
Gaussian even vanilla SGD performs well. 35



Numerical Results, Text Classification
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Figure 10: Train and validation loss + accuracy for different optimizers on
BERT + CoLA problem. The noise distribution is heavy-tailed, the methods
with clipping outperform SGD by a large margin.

36



Adam and clipped-SGD

• clipped-SGD:

xk+1 = xk − γ · clip
(
∇f(xk, ξk), λk

)
• Adam:

mk = β1mk−1 + (1− β1)∇f(xk, ξk),

vk = β2vk−1 + (1− β2)(∇f(xk, ξk))2,

xk+1 = xk − γ√
vk + δ

mk

• When β1 = 0 Adam (RMSprop) can be seen as clipped-SGD with
“adaptive” λk
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Main Results for Variational
Inequalities



Variational Inequality Problem

find x∗ ∈ Q ⊆ Rn such that ⟨F(x∗), x− x∗⟩ ≥ 0, ∀x ∈ Q (VIP-C)

• F : Q→ Rn is L-Lipschitz operator: ∀x, y ∈ Q

∥F(x)− F(y)∥ ≤ L∥x− y∥ (16)

• F is monotone: ∀x, y ∈ Q

⟨F(x)− F(y), x− y⟩ ≥ 0 (17)
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⟨F(x)− F(y), x− y⟩ ≥ 0 (17)
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Variational Inequality Problem: Examples

• Min-max problems:
min
u∈U

max
v∈V

f(u, v) (18)

If f is convex-concave, then (18) is equivalent to finding
(u∗, v∗) ∈ U× V such that ∀(u, v) ∈ U× V

⟨∇uf(u∗, v∗),u− u∗⟩ ≥ 0, −⟨∇vf(u∗, v∗), v− v∗⟩ ≥ 0,

which is equivalent to (VIP-C) with Q = U× V, x = (u⊤, v⊤)⊤, and

F(x) =
(

∇uf(u, v)
−∇vf(u, v)

)
These problems appear in various applications such as robust
optimization (Ben-Tal et al., 2009) and control (Hast et al., 2013),
adversarial training (Goodfellow et al., 2015; Madry et al., 2018)
and generative adversarial networks (GANs) (Goodfellow et al.,
2014).
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Variational Inequality Problem: Examples

• Minimization problems:
min
x∈Q

f(x) (19)

If f is convex, then (19) is equivalent to finding a stationary point
of f, i.e., it is equivalent to (VIP-C) with

F(x) = ∇f(x)
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Variational Inequality Problem: Unconstrained Case

When Q = Rn (VIP-C) can be rewritten as

find x∗ ∈ Rn such that F(x∗) = 0 (VIP)

In this talk, we focus on (43) rather than (VIP-C)
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Gradient Descent-Ascent (GDA) and Extragradient (EG)

• GDA (Krasnosel’skiı, 1955; Mann, 1953):

xk+1 = xk − γF(xk)

3 Very simple
7 Does not converge for some simple problems (like bilinear games)

• EG (Korpelevich, 1976)

xk+1 = xk − γF
(
xk − γF(xk)

)
3 Converges for any monotone and L-Lipschitz operator
7 Requires two oracle calls per step (although this can be easily
fixed)

7 Converges worse than Alternating GDA for some popular tasks
(GANs)
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Stochastic VIP

We consider with
F(x) = Eξ[Fξ(x)]

• We have access to Fξ such that for some α ∈ (1, 2] and for all
x ∈ Rn

Eξ [∥Fξ(x)− F(x)∥α] ≤ σα (20)

• For GDA-based methods we assume ℓ-star-cocoercivity: ∀x ∈ Rn

ℓ⟨F(x), x− x∗⟩ ≥ ∥F(x)∥2

• For EG-based methods we assume monotonicity and
L-Lipschitzness: ∀x, y ∈ Rn

⟨F(x)− F(y), x− y⟩ ≥ 0,
∥F(x)− F(y)∥ ≤ L∥x− y∥
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Stochastic GDA (SGDA) and Stochastic EG (SEG)

• SGDA:
xk+1 = xk − γFξk(xk)

• SEG:
xk+1 = xk − γ2Fξk2

(
xk − γ1Fξk1 (x

k)
)

• ξk1 , ξ
k
2 are i.i.d. samples

• γ2 ≤ γ1
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Prior Work on High-Probability Convergence

For the case of bounded domain (with diameter D) and under
light-tails assumption

E
[
exp

(
∥Fξ(x)− F(x)∥2

σ2

)]
≤ exp(1), (21)

Juditsky et al. (2011) proved that projected version of SEG
(Mirror-Prox) finds x̂ such that2 GapD(x̂) ≤ ε with probability at
least 1− β using

O
(
max

{
LD2
ε

,
σ2D2
ε2

ln2
(
1
β

)})
oracle calls

2GapD(y) = maxx:∥x−x∗∥≤D⟨F(x), y− x⟩
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clipped-SGDA and clipped-SEG

• SGDA:
xk+1 = xk − γ · clip

(
Fξk(xk), λk

)
• SEG:

xk+1 = xk−γ2·clip
(
Fξk2 (x̃

k), λ2,k

)
, x̃k = xk−γ1·clip

(
Fξk1 (x

k), λ1,k

)

• ξk1 , ξ
k
2 are i.i.d. samples

• γ2 ≤ γ1

The key idea behind the proof is exactly the same as in minimization!
For simplicity, we skip the convergence results in this part
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Numerical Experiments

In the experiments in training GANs, we tested the following methods

• clipped-SGDA with alternating updates
• Coord-clipped-SGDA – clipped-SGDA with coordinate-wise
clipping and alternating updates

• clipped-SEG
• Coord-clipped-SEG
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WGAN-GP on CIFAR10 Has Heavy-Tailed Gradients

• ρmR: relative fraction of mass after Q3 + 1.5 · (Q3 − Q1)
• For normal distribution there is ≈ .35% of the mass
• In this plot: ≈ 12 times more

• ρmeR: relative fraction of mass after Q3 + 3 · (Q3 − Q1)
• For normal distribution there is ≈ 10−4% of the mass
• In this plot: ≈ 4603 times more
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WGAN-GP on CIFAR10 Has Heavy-Tailed Gradients
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Clipping Helps for WGAN-GP on CIFAR10
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StyleGAN2 on FFHQ Has Heavy-Tailed Gradients
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Clipping Helps for StyleGAN2 on FFHQ
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Clipping Helps for StyleGAN2 on FFHQ

• Still not matching Adam (on this GAN)
• StyleGan2 is full of trick and heuristics
• Has been tuned for Adam!
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Conclusion

• Some popular problems have heavy-tailed noise: in NLP it was
observed before, for GANs we demonstrated empirically

• Clipping is a simple way to deal with heavy-tailed noise
• High-probability convergence results for methods with clipping
are better than known high-probability convergence results for
methods without it

• Partial explanation of the success of adaptive methods like
Adam on GANs and NLP tasks
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