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Heavy-Tailed Noise
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Typical Machine Learning Problem: Classification

Pictures sources: https://en.wikipedia.org/wiki/Cat, https://en.wikipedia.org/wiki/Dog 

Neural Network

Cat

Dog

Training data
(𝑛 images)

Goal: classify what is on the picture – cat or dog

Cat

https://en.wikipedia.org/wiki/Cat
https://en.wikipedia.org/wiki/Dog
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Typical Machine Learning Problem
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Typical Machine Learning Problem
• Dimension of the model: 𝑑

• Model parameters: 𝑥
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Typical Machine Learning Problem
• Dimension of the model: 𝑑

• Model parameters: 𝑥

• Training data: 𝑛 samples

• Loss on the 𝑖-th sample: 𝑓!(𝑥)

• Training loss: 𝑓(𝑥)
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Typical Machine Learning Problem
• Dimension of the model: 𝑑

• Model parameters: 𝑥

• Training data: 𝑛 samples

• Loss on the 𝑖-th sample: 𝑓!(𝑥)

• Training loss: 𝑓(𝑥)

are usually very large…and

Computation of ∇𝑓(𝑥) is very expensive ⟹ stochastic methods are used 
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Gradient Descent vs Stochastic Gradient Descent

H.	Robbins,	S.	Monro.	A	stochastic	approximation	method	(The	annals	of	mathematical	statistics	1951).

Pictures source: https://fa.bianp.net/teaching/2018/COMP-652/

Gradient Descent (GD) Stochastic Gradient Descent (SGD)

Convergence to the exact optimum asymptotically
High computation cost of one iteration

Convergence to the neighborhood of the solution
Cheap iterations
Faster convergence (for most of ML problems)

Random index from 1, 2, … , 𝑛

https://fa.bianp.net/teaching/2018/COMP-652/
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Gradient Descent vs Stochastic Gradient Descent

H.	Robbins,	S.	Monro.	A	stochastic	approximation	method	(The	annals	of	mathematical	statistics	1951).

Pictures source: https://fa.bianp.net/teaching/2018/COMP-652/

Gradient Descent (GD) Stochastic Gradient Descent (SGD)

Convergence to the exact optimum asymptotically
High computation cost of one iteration

Convergence to the neighborhood of the solution
Cheap iterations
Faster convergence (for most of ML problems)

Random index from 1, 2, … , 𝑛

🤔All you need is SGD?

https://fa.bianp.net/teaching/2018/COMP-652/
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Choice of the Method is Important

J.	Zhang	et	al.	Why	are	adaptive	methods	good	for	attention	models?	(NeurIPS	2020).

‼If the noise is heavy-tailed, SGD is not a good choice (not even guaranteed to converge)

✍Heavy-tailed noise in the stochastic gradients is typical for training LLMs and GANs
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From Empirical Risk To Expected Risk Minimization

Empirical risk minimization (ERM):

Risk minimization (RM):
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From Empirical Risk To Expected Risk Minimization

Empirical risk minimization (ERM):

Risk minimization (RM):

• The first problem is a special case of the second one
• If 𝑛 is large enough, then the minimizer of ERM is close to the minimizer of RM

Therefore, let us focus on RM from now on in this talk
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Heavy-Tailed Noise

🫣 When 𝛼 < 2 variance can be unbounded
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Heavy-Tailed Noise

🫣 When 𝛼 < 2 variance can be unbounded

🫣 SGD can diverge: 

SGD:
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Heavy-Tailed Noise

🫣 When 𝛼 < 2 variance can be unbounded

🫣 SGD can diverge: 

SGD:

UnboundedUnbounded

💡Gradient clipping fixes SGD!
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SGD vs Clipped-SGD

SGD:

Clipped-SGD:

R.	Pascanu	et	al.	On	the	difficulty	of	training	recurrent	neural	networks.	(ICML	2013).
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High-Probability Convergence
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In-Expectation vs High-Probability Guarantees

In-expectation	guarantees:	𝔼 𝑥	 − 𝑥∗ " ≤ 𝜀,	𝔼 𝑓 𝑥 − 𝑓(𝑥∗) ≤ 𝜀,	𝔼 ∇𝑓(𝑥) " ≤ 𝜀

😐 Typically,	depend	only	on	some	moments	of	stochastic	gradient,	e.g.,	variance
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In-Expectation vs High-Probability Guarantees

In-expectation	guarantees:	𝔼 𝑥	 − 𝑥∗ " ≤ 𝜀,	𝔼 𝑓 𝑥 − 𝑓(𝑥∗) ≤ 𝜀,	𝔼 ∇𝑓(𝑥) " ≤ 𝜀

High-probability	guarantees:	ℙ{ 𝑥	 − 𝑥∗ " ≤ 𝜀} ≥ 1 − 𝛽,	ℙ{𝑓 𝑥 − 𝑓(𝑥∗) ≤ 𝜀} ≥ 1 − 𝛽,
																																																											ℙ{ ∇𝑓(𝑥) " ≤ 𝜀} ≥ 1 − 𝛽

😐 Typically,	depend	only	on	some	moments	of	stochastic	gradient,	e.g.,	variance

👌 Sensitive	to	the	distribution	of	the	stochastic	gradient	noise
❗ Harder	to	obtain	with	logarithmic	dependence	on	1/𝛽

High-probability	results	give	better	understanding	of	methods	behavior
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Convergence of SGD: Toy Example

Problem: and
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Convergence of SGD: Toy Example

Problem:

Convergence:

and
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Convergence of SGD: Toy Example

Problem:

Convergence:

and

SGD’s	behavior	does	depend	on	the	distribution	but	it	is	not	reflected	by	in-expectation	guarantees!
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Convergence of SGD and Clipped-SGD: Toy Example

Problem:

Convergence:

and

SGD’s	behavior	does	depend	on	the	distribution	but	it	is	not	reflected	by	in-expectation	guarantees!

Clipped-SGD	oscillates	less	around	the	same	value
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Some Recent Advances on High-Probability Convergence
Nazin	et	al.	Algorithms	of	robust	stochastic	optimization	based	on	mirror	descent	method.
(Automation	and	Remote	Control,	2019)
Davis	et	al.	From	low	probability	to	high	confidence	in	stochastic	convex	optimization.	(JMLR	2021)
Gorbunov	et	al.	Stochastic	optimization	with	heavy-tailed	noise	via	accelerated	gradient	clipping.
(NeurIPS	2020)
Cutkosky	&	Mehta.	High-probability	bounds	for	non-convex	stochastic	optimization	with	heavy	tails.	
(NeurIPS	2021)
Gorbunov	et	al.	Clipped	stochastic	methods	for	variational	inequalities	with	heavy-tailed	noise.
(NeurIPS	2022)
Sadiev	et	al.	High-probability	bounds	for	stochastic	optimization	and	variational	inequalities:	the	case	of	
unbounded	variance.	(ICML	2023)
Nguyen	et	al.	High	probability	convergence	of	Clipped-SGD	under	heavy-tailed	noise.	(arXiv:2302.05437)
Liu	et	al.	High	probability	convergence	of	stochastic	gradient	methods.	(ICML	2023)
Nguyen	et	al.	Improved	convergence	in	high	probability	of	clipped	gradient	methods	with	heavy	tails.	
(NeurIPS	2023)
Liu	&	Zhou.	Stochastic	Nonsmooth	convex	optimization	with	heavy-tailed	noises:	high-probability	bound,	
in-expectation	rate	and	initial	distance	adaptation.	(arXiv:2303.12277)
Puchkin	et	al.	Breaking	the	heavy-tailed	noise	barrier	in	stochastic	optimization	problems.	(AISTATS	2024)
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Some Recent Advances on High-Probability Convergence
Nazin	et	al.	Algorithms	of	robust	stochastic	optimization	based	on	mirror	descent	method.
(Automation	and	Remote	Control,	2019)
Davis	et	al.	From	low	probability	to	high	confidence	in	stochastic	convex	optimization.	(JMLR	2021)
Gorbunov	et	al.	Stochastic	optimization	with	heavy-tailed	noise	via	accelerated	gradient	clipping.
(NeurIPS	2020)
Cutkosky	&	Mehta.	High-probability	bounds	for	non-convex	stochastic	optimization	with	heavy	tails.	
(NeurIPS	2021)
Gorbunov	et	al.	Clipped	stochastic	methods	for	variational	inequalities	with	heavy-tailed	noise.
(NeurIPS	2022)
Sadiev	et	al.	High-probability	bounds	for	stochastic	optimization	and	variational	inequalities:	the	case	of	
unbounded	variance.	(ICML	2023)
Nguyen	et	al.	High	probability	convergence	of	Clipped-SGD	under	heavy-tailed	noise.	(arXiv:2302.05437)
Liu	et	al.	High	probability	convergence	of	stochastic	gradient	methods.	(ICML	2023)
Nguyen	et	al.	Improved	convergence	in	high	probability	of	clipped	gradient	methods	with	heavy	tails.	
(NeurIPS	2023)
Liu	&	Zhou.	Stochastic	Nonsmooth	convex	optimization	with	heavy-tailed	noises:	high-probability	bound,	
in-expectation	rate	and	initial	distance	adaptation.	(arXiv:2303.12277)
Puchkin	et	al.	Breaking	the	heavy-tailed	noise	barrier	in	stochastic	optimization	problems.	(AISTATS	2024)

😐Analysis for composite and distributed 
problems is limited!
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Composite Optimizaton
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Stochastic Composite Optimization



29

Stochastic Composite Optimization

Convex and smooth function
Stochastic gradients ∇𝑓,(𝑥) are available
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Stochastic Composite Optimization

Convex and smooth function
Stochastic gradients ∇𝑓,(𝑥) are available

“Simple” function (proper, closed, and convex)
Prox-operator (a.k.a. projection) is computable



31

Stochastic Composite Optimization: Examples
• Regularized risk minimization
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Stochastic Composite Optimization: Examples
• Regularized risk minimization

• Constrained risk minimization

,

closed convex set
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Stochastic Composite Optimization: Examples
• Distributed optimization

• 𝑛	workers/clients	are	connected	with	a	parameter-server
• 𝑓# 𝑥# 	-	loss	on	the	data	available	on	client	𝑖
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Stochastic Composite Optimization: Examples
• Distributed optimization

• 𝑛	workers/clients	are	connected	with	a	parameter-server
• 𝑓# 𝑥# 	-	loss	on	the	data	available	on	client	𝑖
⚙ In	our	work,	we	consider	an	explicit	form	of	the	distributed	problem
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Standard Method: Prox-SGD
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Standard Method: Prox-SGD



37

Standard Method: Prox-SGD
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Standard Method: Prox-SGD

🤔 Just clip stochastic gradient?
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Failure of the Naïve Approach
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Proximal Clipped-SGD

There is an issue with this method related to the choice of 𝜆m
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Closer Look at the Deterministic Case
Prox-GD Prox-clipped-GD
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Closer Look at the Deterministic Case
Prox-GD Prox-clipped-GD

Solution is a fixed-point:

No need to decrease stepsizes
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Closer Look at the Deterministic Case
Prox-GD Prox-clipped-GD

Solution is a fixed-point: Solution is not necessarily a fixed point :

This can happen if ∇𝑓(𝑥∗) > 𝜆#  for all 𝑘 ≥ 𝑘$ since No need to decrease stepsizes
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Closer Look at the Deterministic Case
Prox-GD Prox-clipped-GD

Solution is a fixed-point: Solution is not necessarily a fixed point :

This can happen if ∇𝑓(𝑥∗) > 𝜆#  for all 𝑘 ≥ 𝑘$ since No need to decrease stepsizes

In the stochastic case, known results for unconstrained problems require decreasing 𝜆2 
for tight convergence in the strongly convex case and acceleration!
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Non-Implementable Fix
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New Method: Proximal Clipped-SGD-star
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New Method: Proximal Clipped-SGD-star

Solution is a fixed-point for any choice of 𝜆$ (in the special case of deterministic gradients)

Provable convergence (we have proofs)
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New Method: Proximal Clipped-SGD-star

Solution is a fixed-point for any choice of 𝜆$

Provable convergence (we have proofs)

The method cannot be used: ∇𝑓(𝑥∗) is unknown in general
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Learnable Shifts
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New Method: Proximal Clipped-SGD with Shift

learnable shift



51

New Method: Proximal Clipped-SGD with Shift

learnable shift
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New Method: Proximal Clipped-SGD with Shift

learnable shift

ℎ$ approximates ∇𝑓(𝑥∗) 

Provable convergence (we have proofs)

Intuition: one step of clipped-SGD applied to

where ∇𝑓%S(𝑥
$) can be seen as 

a noisy estimate of ∇𝑓(𝑥∗) 



53

Convergence Results: Convex Case 
Assumptions

• Convexity

• Smoothness

Convergence rate
There exists a choice of stepsizes 𝛾 and 𝜈 and clipping level 𝜆 such that with probability at least 1 − 𝛽
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Convergence Results: Convex Case 
Assumptions

• Convexity

• Smoothness

Convergence rate
There exists a choice of stepsizes 𝛾 and 𝜈 and clipping level 𝜆 such that with probability at least 1 − 𝛽

⚙ 𝑅 – an upper bound on 𝑥& − 𝑥∗ , 𝜁∗ = ∇𝑓(𝑥∗) , 𝐴 = 	 log '()
Logarithmic dependence on 𝛽
The rate matches the one for clipped-SGD in the unconstrained case
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Convergence Results: Strongly Convex Case 
Assumptions

• Strong convexity

• Smoothness

Convergence rate
There exists a choice of stepsizes 𝛾 and 𝜈 and clipping level 𝜆$ such that with probability at least 1 − 𝛽

⚙ 𝑅 – an upper bound on 𝑥& − 𝑥∗ , 𝜁∗ = ∇𝑓(𝑥∗) , 𝐴 = 	 log (), 𝐵 – another logarithmic factor

Logarithmic dependence on 𝛽
The rate matches the one for clipped-SGD in the unconstrained case
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Extensions and Generalizations
In the paper, we also have

💎Accelerated rates

💎Linear speed up for distributed composite problems (even for 𝛼 < 2)

💎Generalization to the variational inequalities

⚙Detailed proofs (with novel Lyapunov function for accelerated method)
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Conclusion
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Conclusion
Main takeaway:

clip gradient differences for better high-probability convergence 
for composite and distributed problems

Come to our poster for more details: Today, 11:30 am (Hall C 4-9 #1014)

Paper: My website:
(I am on the job market)


