High-Probability Convergence for Composite and Distributed Stochastic Minimization and Variational Inequalities with Heavy-Tailed Noise

Eduard Gorbunov¹

Abdurakhmon Sadiev²

1. Composite Stochastic Optimization

Composite minimization problem

$$\min_{x \in \mathbb{R}^d} \{ \Phi(x) := f(x) + \Psi(x) \}$$
with stochastic first-order oracle:
 $\nabla f_{\xi}(x)$ – an estimate of $\nabla f(x)$

• $f : \mathbb{R}^d \to \mathbb{R}$ – convex smooth function • $\Psi: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ – proper, closed, convex function (composite/regularization term)

Examples:

• Regularized expectation minimization

$$\min_{x \in \mathbb{R}^d} \left\{ \Phi(x) = \underbrace{\mathbb{E}_{\xi \sim \mathcal{D}}[f_{\xi}(x)]}_{f(x)} + \underbrace{\lambda_1 \|x\|_1 + \lambda_2 \|x\|_2^2}_{\Psi(x)} \right\}$$

• Constrained empirical risk minimization

$$\min_{x \in \mathbb{R}^d} \left\{ \Phi(x) = \frac{1}{m} \sum_{i=1}^m f_{\xi_i}(x) + \Psi(x) \right\}, \quad \Psi(x) = \begin{cases} 0, & \text{if } x \in \mathcal{X} \\ +\infty, & \text{if } x \notin \mathcal{X} \end{cases}$$

Heavy-tailed noise:

$$\mathbb{E} \|\nabla f_{\xi}(x) - \nabla f(x)\|^{\alpha} \le \sigma^{\alpha}, \quad 1 < \alpha \le 2$$

• Such noise appears in various ML problems, including training of LLMs [1] and GANs [2]

2. High-Probability Convergence

In-expectation guarantees:

$$\mathbb{E}[f(x) - f(x^*)] \le \varepsilon \tag{1}$$

High-probability guarantees:

$$\mathbb{P}\{f(x) - f(x^*) \le \varepsilon\} \ge 1 - \beta \tag{2}$$

✓ If for method \mathcal{M} we know that (1) is satisfied for $x = x^{N(\varepsilon)}$ after $N(\varepsilon)$ iterations, then for the same method we can guarantee (2) after $N(\varepsilon\beta)$ iterations due to the Markov's inequality:

$$\mathbb{P}\{f(x^{N(\varepsilon\beta)}) - f(x^*) > \varepsilon\} < \frac{\mathbb{E}[f(x^{N(\varepsilon\beta)})) - f(x^*)]}{\varepsilon} \stackrel{(1)}{\leq} \mu$$

 \checkmark Typically $N(\varepsilon)$ has inverse power dependence on ε , e.g., $N(\varepsilon) \sim 1$ $1/\varepsilon^2$ for SGD in the convex case \longrightarrow this approach gives inverse power-dependence on β in high-probability complexity bounds ✓ High-probability guarantees are more accurate

Figure: Typical trajectories of SGD and clipped-SGD applied to solve $\min_{x \in \mathbb{R}} \{f(x) := ||x||^2/2\}$ with $\nabla f_{\xi}(x) = x + \xi$ and ξ having Gaussian or Weibull tails with the same variance. Plots are taken from [3].

- ✓ Gradient clipping improves high-probability convergence in theory (logarithmic dependence on β) and practice [2,3,4,5]
- **Provide a contraction of the second second** existing results to composite/distributed problems?

Marina Danilova ³ Samuel Horváth ¹ Gauthier Gidel ⁴ Pavel Dvurechensky ⁵ Alexander Gasnikov ^{6,7,3,8} ¹MBZUAI ²KAUST ³MIPT ⁴UdeM, CIFAR AI Chair ⁵ WIAS ⁶ Innopolis University ⁷ ISP RAS ⁸ Skoltech

Main contributions

Methods with clipping of gradient differences for distributed composite minimization **Key idea**: clip the difference between the stochastic gradients and the shifts that are updated on the fly \checkmark The first results showing linear speed-up under bounded α -th moment assumption ✓ The first accelerated high-probability convergence rates and tight high-probability convergence rates for the non-accelerated method in the quasi-strongly convex case **V** Tight convergence rates ✓ In the known special cases ($\Psi \equiv 0$ and/or n = 1), the derived complexity bounds either recover or outperform previously known ones \checkmark In certain regimes, the results have optimal (up to logarithms) dependencies on ε • Generalization to the case of distributed composite variational inequalities 5. Clipping of Gradient Differences 3. Failure of Naïve Approach Standard method for composite optimization: **Q** Approximate $\nabla f(x^*)$ with a learnable shift: $x^{k+1} = \operatorname{prox}_{\gamma\Psi} \left(x^k - \gamma \nabla f(x^k) \right)$ $(\mathsf{Prox}\mathsf{-}\mathsf{GD})$ $x^{k+1} = \operatorname{prox}_{\gamma\Psi} \left(x^k - \gamma \widetilde{g}^k \right),$ • Proximal operator: $\operatorname{prox}_{\gamma\Psi}(x) := \operatorname{arg\,min}_{y\in\mathbb{R}^d} \left\{ \gamma\Psi(y) + \frac{1}{2} \|y - x\|^2 \right\}$ How to incorporate gradient clipping in **Prox-GD**? Naïve approach: • $\nu > 0$ – stepsize for learning the shift $x^{k+1} = \operatorname{prox}_{\gamma\Psi} \left(x^k - \gamma \operatorname{clip}(\nabla f(x^k), \lambda_k) \right) \quad (\mathsf{Prox-clipped-GD})$ Distributed learning • Clipping operator: $\operatorname{clip}(x, \lambda) := \begin{cases} \min\left\{1, \frac{\lambda}{\|x\|}\right\} x, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$ x^* is not a fixed point: if $\|\nabla f(x^*)\| > \lambda_k$ for all $k \ge k_0$, then • *n* workers/clients are connected with a parameter-server • $f_i(x)$ – loss on the data available on worker i $x^* \neq \operatorname{prox}_{\gamma\Psi}(x^* - \gamma \operatorname{clip}(\nabla f(x^*), \lambda_k))$ Distributed version – DProx-clipped-SGD-shift **!** Decreasing stepsizes are needed for acceleration and tight conver $x^{k+1} - \operatorname{prov}\left(x^k - \sqrt{a}^k\right)$ gence rates in (quasi-)strongly convex case [4,5]4. Non-Implementable Solution

 $\$ Clip the difference \longrightarrow **Prox-clipped-SGD-star** $x^{k+1} = \operatorname{prox}_{\gamma\Psi} \left(x^k - \gamma \left(\nabla f(x^*) + \operatorname{clip}(\nabla f_{\xi^k}(x^k) - \nabla f(x^*), \lambda_k) \right) \right)$

 $\checkmark x^*$ is a fixed point (in the case of deterministic gradients) ✓ Provable high-probability convergence under heavy-tailed noise

× Non-implementable method: $\nabla f(x^*)$ is unknown

Table: Summary of known and new high-probability complexity results for solving (non-) composite (non-) distributed smooth optimization problem. Complexity is the number of stochastic oracle calls (per worker) needed for a method to guarantee that $\mathbb{P}\{$ Metric $\leq \varepsilon\} \geq 1 - \beta$ for some $\varepsilon > 0$, $\beta \in (0, 1]$ and "Metric" is taken from the corresponding column. Numerical and logarithmic factors are omitted for simplicity. Notation: R = any upper bound on $||x^0 - x^*||$; $\zeta_* =$ any upper bound on $\sqrt{\frac{1}{n}\sum_{i=1}^{n} \|\nabla f_i(x^*)\|^2}$; $\widehat{R}^2 = R\left(3R + L^{-1}(2\eta\sigma + \|\nabla f(x^0)\|)\right)$ for some $\eta > 0$ (one can show that $\widehat{R}^2 = \Theta(R^2 + R\zeta_*/L)$ when n = 1).

Function	Method	Reference	Metric	
Convex	Clipped-SMD ⁽¹⁾	[2]	$\Phi(\overline{x}^K) - \Phi(x^*)$	
	Clipped-ASMD	[2]	$\Phi(y^K) - \Phi(x^*)$	
	DProx-clipped-SGD-shift	This paper	$\Phi(\overline{x}^K) - \Phi(x^*)$	
	DProx-clipped-SSTM-shift	This paper	$\Phi(y^K) - \Phi(x^*)$	ľ.
Strongly convex	clipped-SGD	[1]	$ x^{K} - x^{*} ^{2}$	
	DProx-clipped-SGD-shift	This paper	$\ x^K - x^*\ ^2$	

(1) The authors additionally assume that for a chosen point \hat{x} from the domain and for $\eta > 0$ one can compute an estimate \hat{g} such that $\mathbb{P}\{\|\widehat{g} - \nabla f(\widehat{x})\| > \eta\sigma\} \le \epsilon$. Such an estimate can be found using geometric median of $\mathcal{O}(\ln \epsilon^{-1})$ samples [6]. ⁽²⁾ The authors assume that $\nabla f(x^*) = 0$, which is not true for general composite optimization.

(Prox-clipped-SGD-shift)

$$\widetilde{g}^k = h^k + \hat{\Delta}^k, \quad h^{k+1} = h^k + \nu \hat{\Delta}^k, \ \hat{\Delta}^k = \operatorname{clip}\left(\nabla f_{\xi^k}(x^k) - h^k, \lambda_k\right)$$

$$f(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x), \quad f_i(x) := \mathbb{E}_{\xi_i \sim \mathcal{D}_i}[f_{\xi_i}(x)]$$

$$\begin{split} \widetilde{g}^{k} &= \Pr \operatorname{Ox}_{\gamma \Psi} \left(x^{k} - \gamma g^{k} \right) \\ \widetilde{g}^{k} &= \frac{1}{n} \sum_{i=1}^{n} \widetilde{g}^{k}_{i}, \quad \widetilde{g}^{k}_{i} = h^{k}_{i} + \hat{\Delta}^{k}_{i}, \quad h^{k+1}_{i} = h^{k}_{i} + \nu \hat{\Delta}^{k}_{i} \\ \hat{\Delta}^{k}_{i} &= \operatorname{clip} \left(\nabla f_{\xi^{k}_{i}}(x^{k}) - h^{k}_{i}, \lambda_{k} \right) \end{split}$$

• Each worker updates its own shift h_i^k • Even with $\Psi \equiv 0$ shifts are needed: otherwise we have

$$x^* \neq x^* - \frac{\gamma}{n} \sum_{i=1}^n \operatorname{clip}\left(\nabla f_i(x^*), \lambda_k\right)$$
 in general

• It is sufficient to store $h^k := \frac{1}{n} \sum_{i=1}^n h_i^k$ on the server

For all $i = 1, \ldots, n$ and $x, y \in \mathbb{R}^d$ we have **A1.** $\mathbb{E} \| \nabla f_{\xi_i}(x) - \nabla f_i(x) \|^{\alpha} \leq \sigma^{\alpha}$ for some $\alpha \in (1, 2]$ **A2.** Smoothness: $\|\nabla f_i(x) - \nabla f_i(y)\| \le L \|x - y\|$ **A3.** Strong convexity: $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2$

Convergence of DProx-clipped-SGD-shift

 $\gamma = \Theta\left(\min\left\{\frac{1}{LA}, \frac{R\sqrt{n}}{A\zeta_*}, \frac{Rn^{\frac{\alpha-1}{\alpha}}}{\sigma K^{\frac{1}{\alpha}}A^{\frac{\alpha-1}{\alpha}}}\right\}\right),$ $= \Theta\left(\frac{nR}{\gamma A}\right), \ A = \ln\frac{48nK}{\beta}, \ \zeta_* \ge \sqrt{\frac{1}{n}\sum_{i=1}^n \|\nabla f_i(x^*)\|^2}$ $\Phi(\overline{x}^{K}) - \Phi(x^{*}) = \mathcal{O}\left(\max\left\{\frac{LR^{2}A}{K}, \frac{R\zeta_{*}A}{\sqrt{nK}}, \frac{\sigma RA^{\frac{\alpha-1}{\alpha}}}{(nK)^{\frac{\alpha-1}{\alpha}}}\right\}\right),$

$$\lambda_k \equiv \lambda = 0$$

Let the above assumptions hold with $\mu = 0$. Then, the iterates produced by $\mathsf{DProx-clipped-SGD-shift}$ after K iterations with with probability at least $1 - \beta$ satisfy where $\overline{x}^{K} = \frac{1}{K+1} \sum_{k=0}^{K} x^{k}$.

✓ Logarithmic dependence on confidence level β \checkmark Linear speed-up in the complexity (see the Table) $\mathbf{O} \nu = 0$ when $\mu = 0$ and $\nu = \Theta(1/A)$ when $\mu > 0$ 7. Acceleration

$$\begin{aligned} \mathbf{DProx-clipp} \\ \frac{k+2}{2aL}, \ A_{k+1} &= A \\ x^{k+1} &= \frac{A_k y^k}{2aL} \end{aligned}$$

$$\widetilde{g}(x)$$

Conv
Let the above
produced by
$$\nu_{k} = \begin{cases} \frac{2}{6} \\ \frac{2}{6} \end{cases}$$
$$K_{0} = \Theta(A^{2})$$
with probabe
$$\Phi(y^{K}) - \Phi(x)$$

Peter Richtárik²

6. Convergence Results

Assumptions

ped-SSTM-shift: $x^0 = y^0 = z^0, A_0 = \alpha_0 = 0, \alpha_{k+1} = 0$ $A_k + \alpha_{k+1}$ and $\frac{ky^{k} + \alpha_{k+1}z^{k}}{A_{k+1}}, \quad z^{k+1} = \operatorname{prox}_{\alpha_{k+1}\Psi} \left(z^{k} - \alpha_{k+1} \tilde{g}(x^{k+1}) \right),$ $y^{k+1} = \frac{A_{k}y^{k} + \alpha_{k+1}z^{k+1}}{A_{k+1}},$ $(x^{k+1}) = \frac{1}{2} \sum_{i=1}^{n} \widetilde{g}_i(x^{k+1}), \quad \widetilde{g}_i(x^{k+1}) = h_i^k + \hat{\Delta}_i^k,$ $n \sum_{i=1}^{n}$ $h_i^k +
u_k \hat{\Delta}_i^k, \quad \hat{\Delta}_i^k = \operatorname{clip}\left(
abla f_{\xi_i^k}(x^{k+1}) - h_i^k, \lambda_k \right)$ vergence of DProx-clipped-SSTM-shift ve assumptions hold with $\mu = 0$. Then, the iterates **DProx-clipped-SSTM-shift** after K iterations with $\lambda_k = \Theta\left(\frac{nR}{\dots}\right).$ $\left(\frac{(k+2)^2}{A^2(K_0+2)^2}\right)$ if $k \leq K_0$, '), $a = \Theta\left(\max\left\{2, \frac{A^4}{n}, \frac{A^3\zeta_*}{L\sqrt{nR}}, \frac{\sigma K^{(\alpha+1)/\alpha}A^{(\alpha-1)/\alpha}}{LRn^{\alpha-1/\alpha}}\right\}\right)$

ility at least
$$1 - \beta$$
 satisfy
*) = $\mathcal{O}\left(\max\left\{\frac{LR^2(1 + A^4/n)}{K^2}, \frac{R\zeta_*A^3}{\sqrt{nK^2}}, \frac{\sigma RA^{\frac{\alpha-1}{\alpha}}}{(nK)^{\frac{\alpha-1}{\alpha}}}\right\}\right)$

References

[1] J. Zhang et al. "Why are adaptive methods good for attention models?." NeurIPS 2020.

[2] E. Gorbunov et al. "Clipped stochastic methods for variational inequalities with heavy-tailed noise." NeurIPS 2022.

[3] E. Gorbunov et al. "Stochastic optimization with heavy-tailed noise via accelerated gradient clipping." NeurIPS 2020. [4] A. Sadiev et al. "High-probability bounds for stochastic optimization and variational inequalities: the case of unbounded

[5] T. D. Nguen et al. "Improved convergence in high probability of clipped gradient methods with heavy tails." NeurIPS 2023. [6] S. Minsker. "Geometric median and robust estimation in banach spaces." Bernoulli 2015.

variance." ICML 2023