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1. Composite Stochastic Optimization

Composite minimization problem
min
x∈Rd

{Φ(x) := f (x) + Ψ(x)}

with stochastic first-order oracle:
∇fξ(x) – an estimate of ∇f (x)

• f : Rd → R – convex smooth function
• Ψ : Rd → R ∪ {+∞} – proper, closed, convex function (compos-
ite/regularization term)
Examples:
• Regularized expectation minimization

min
x∈Rd

{
Φ(x) = Eξ∼D[fξ(x)]︸ ︷︷ ︸

f (x)

+ λ1∥x∥1 + λ2∥x∥2
2︸ ︷︷ ︸

Ψ(x)

}

• Constrained empirical risk minimization

min
x∈Rd

{
Φ(x) = 1

m

m∑
i=1

fξi
(x)︸ ︷︷ ︸

f (x)

+Ψ(x)
}

, Ψ(x) =

0, if x ∈ X
+∞, if x ̸∈ X

Heavy-tailed noise:

E∥∇fξ(x) − ∇f (x)∥α ≤ σα, 1 < α ≤ 2

• Such noise appears in various ML problems, including training of
LLMs [1] and GANs [2]

2. High-Probability Convergence

In-expectation guarantees:
E[f (x) − f (x∗)] ≤ ε (1)

High-probability guarantees:
P{f (x) − f (x∗) ≤ ε} ≥ 1 − β (2)

✓ If for method M we know that (1) is satisfied for x = xN(ε) after
N(ε) iterations, then for the same method we can guarantee (2)
after N(εβ) iterations due to the Markov’s inequality:

P{f (xN(εβ)) − f (x∗) > ε} <
E[f (xN(εβ))) − f (x∗)]

ε

(1)
≤ β

✗ Typically N(ε) has inverse power dependence on ε, e.g., N(ε) ∼
1/ε2 for SGD in the convex case −→ this approach gives inverse
power-dependence on β in high-probability complexity bounds

✓ High-probability guarantees are more accurate
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Figure: Typical trajectories of SGD and clipped-SGD applied to solve
minx∈R{f (x) := ∥x∥2/2} with ∇fξ(x) = x + ξ and ξ having Gaussian or Weibull
tails with the same variance. Plots are taken from [3].

✓ Gradient clipping improves high-probability convergence in theory
(logarithmic dependence on β) and practice [2,3,4,5]

Resolved open question: how to generalize the
existing results to composite/distributed problems?

Main contributions

Methods with clipping of gradient differences for distributed composite minimization
Key idea: clip the difference between the stochastic gradients and the shifts that are updated on the fly

✓ The first results showing linear speed-up under bounded α-th moment assumption
✓ The first accelerated high-probability convergence rates and tight high-probability convergence rates for the non-accelerated method in

the quasi-strongly convex case
Tight convergence rates

✓ In the known special cases (Ψ ≡ 0 and/or n = 1), the derived complexity bounds either recover or outperform previously known ones
✓ In certain regimes, the results have optimal (up to logarithms) dependencies on ε

Generalization to the case of distributed composite variational inequalities

3. Failure of Naïve Approach

Standard method for composite optimization:
xk+1 = proxγΨ

(
xk − γ∇f (xk)

)
(Prox-GD)

• Proximal operator: proxγΨ(x) := arg miny∈Rd

{
γΨ(y) + 1

2∥y − x∥2
}

How to incorporate gradient clipping in Prox-GD?
Naïve approach:

xk+1 = proxγΨ

(
xk − γclip(∇f (xk), λk)

)
(Prox-clipped-GD)

• Clipping operator: clip(x, λ) :=

min
{

1, λ
∥x∥

}
x, if x ̸= 0

0, if x = 0
✗ x∗ is not a fixed point: if ∥∇f (x∗)∥ > λk for all k ≥ k0, then

x∗ ̸= proxγΨ (x∗ − γclip(∇f (x∗), λk))
Decreasing stepsizes are needed for acceleration and tight conver-
gence rates in (quasi-)strongly convex case [4,5]

4. Non-Implementable Solution

Clip the difference −→ Prox-clipped-SGD-star
xk+1 = proxγΨ

(
xk − γ

(
∇f (x∗) + clip(∇fξk(xk) − ∇f (x∗), λk)

))
✓ x∗ is a fixed point (in the case of deterministic gradients)
✓ Provable high-probability convergence under heavy-tailed noise
✗ Non-implementable method: ∇f (x∗) is unknown

5. Clipping of Gradient Differences

Approximate ∇f (x∗) with a learnable shift:

xk+1 = proxγΨ

(
xk − γg̃k

)
, (Prox-clipped-SGD-shift)

g̃k = hk + ∆̂k, hk+1 = hk + ν∆̂k,

∆̂k = clip
(
∇fξk(xk) − hk, λk

)
• ν > 0 – stepsize for learning the shift
Distributed learning

f (x) := 1
n

n∑
i=1

fi(x), fi(x) := Eξi∼Di
[fξi

(x)]

• n workers/clients are connected with a parameter-server
• fi(x) – loss on the data available on worker i

Distributed version – DProx-clipped-SGD-shift
xk+1 = proxγΨ

(
xk − γg̃k

)
g̃k = 1

n

n∑
i=1

g̃k
i , g̃k

i = hk
i + ∆̂k

i , hk+1
i = hk

i + ν∆̂k
i

∆̂k
i = clip

(
∇fξk

i
(xk) − hk

i , λk

)
• Each worker updates its own shift hk

i

• Even with Ψ ≡ 0 shifts are needed: otherwise we have

x∗ ̸= x∗ − γ

n

n∑
i=1

clip (∇fi(x∗), λk) in general

• It is sufficient to store hk := 1
n

∑n
i=1 hk

i on the server

Table: Summary of known and new high-probability complexity results for solving (non-) composite (non-) distributed smooth optimization problem. Complexity is the
number of stochastic oracle calls (per worker) needed for a method to guarantee that P{Metric ≤ ε} ≥ 1 − β for some ε > 0, β ∈ (0, 1] and “Metric” is taken from the
corresponding column. Numerical and logarithmic factors are omitted for simplicity. Notation: R = any upper bound on ∥x0 − x∗∥; ζ∗ = any upper bound on√

1
n

∑n
i=1 ∥∇fi(x∗)∥2; R̂2 = R (3R + L−1(2ησ + ∥∇f (x0)∥)) for some η > 0 (one can show that R̂2 = Θ(R2 + Rζ∗/L) when n = 1).

Function Method Reference Metric Complexity Composite? Distributed?

Convex

Clipped-SMD(1) [2] Φ(xK) − Φ(x∗) max
{

LR̂2

ε ,
(

σR
ε

) α
α−1
}

✓ ✗

Clipped-ASMD [2] Φ(yK) − Φ(x∗) max
{√

LR2

ε ,
(

σR
ε

) α
α−1
}

✓✗(2) ✗

DProx-clipped-SGD-shift This paper Φ(xK) − Φ(x∗) max
{

LR2

ε , Rζ∗√
nε

, 1
n

(
σR
ε

) α
α−1
}

✓ ✓

DProx-clipped-SSTM-shift This paper Φ(yK) − Φ(x∗) max
{√

LR2

ε ,
√

Rζ∗√
nε

, 1
n

(
σR
ε

) α
α−1
}

✓ ✓

Strongly convex
clipped-SGD [1] ∥xK − x∗∥2 max

{
L
µ,
(

σ2

µ2ε

) α
2(α−1)

}
✗ ✗

DProx-clipped-SGD-shift This paper ∥xK − x∗∥2 max
{

L
µ, 1

n

(
σ2

µ2ε

) α
2(α−1)

}
✓ ✓

(1) The authors additionally assume that for a chosen point x̂ from the domain and for η > 0 one can compute an estimate ĝ such that
P{∥ĝ − ∇f (x̂)∥ > ησ} ≤ ϵ. Such an estimate can be found using geometric median of O(ln ϵ−1) samples [6].
(2) The authors assume that ∇f (x∗) = 0, which is not true for general composite optimization.

6. Convergence Results

Assumptions

For all i = 1, . . . , n and x, y ∈ Rd we have
A1.E∥∇fξi

(x) − ∇fi(x)∥α ≤ σα for some α ∈ (1, 2]
A2. Smoothness: ∥∇fi(x) − ∇fi(y)∥ ≤ L∥x − y∥
A3. Strong convexity: f (y) ≥ f (x)+⟨∇f (x), y−x⟩+µ

2∥y−x∥2

Convergence of DProx-clipped-SGD-shift

Let the above assumptions hold with µ = 0. Then, the iterates
produced by DProx-clipped-SGD-shift after K iterations with

γ = Θ
(

min
{

1
LA

,
R

√
n

Aζ∗
,

Rn
α−1

α

σK
1
αA

α−1
α

})
,

λk ≡ λ = Θ
(

nR

γA

)
, A = ln 48nK

β
, ζ∗ ≥

√√√√1
n

n∑
i=1

∥∇fi(x∗)∥2

with probability at least 1 − β satisfy

Φ(xK) − Φ(x∗) = O
(

max
{

LR2A

K
,
Rζ∗A√

nK
,
σRA

α−1
α

(nK)α−1
α

})
,

where xK = 1
K+1

∑K
k=0 xk.

✓ Logarithmic dependence on confidence level β

✓ Linear speed-up in the complexity (see the Table)
ν = 0 when µ = 0 and ν = Θ(1/A) when µ > 0

7. Acceleration

DProx-clipped-SSTM-shift: x0 = y0 = z0, A0 = α0 = 0, αk+1 =
k+2
2aL, Ak+1 = Ak + αk+1 and

xk+1 = Aky
k + αk+1z

k

Ak+1
, zk+1 = proxαk+1Ψ

(
zk − αk+1g̃(xk+1)

)
,

yk+1 = Aky
k + αk+1z

k+1

Ak+1
,

g̃(xk+1) = 1
n

n∑
i=1

g̃i(xk+1), g̃i(xk+1) = hk
i + ∆̂k

i ,

hk+1
i = hk

i + νk∆̂k
i , ∆̂k

i = clip
(
∇fξk

i
(xk+1) − hk

i , λk

)
Convergence of DProx-clipped-SSTM-shift

Let the above assumptions hold with µ = 0. Then, the iterates
produced by DProx-clipped-SSTM-shift after K iterations with

νk =


2k+5

(k+3)2, if k > K0,

Θ
(

(k+2)2

A2(K0+2)2

)
, if k ≤ K0,

, λk = Θ
(

nR

αk+1A

)
,

K0 = Θ(A2), a = Θ
(

max
{

2,
A4

n
,

A3ζ∗

L
√

nR
,
σK (α+1)/αA(α−1)/α

LRnα−1/α

})
,

with probability at least 1 − β satisfy

Φ(yK)−Φ(x∗) = O
(

max
{

LR2(1 + A4/n)
K2 ,

Rζ∗A
3

√
nK2,

σRA
α−1

α

(nK)α−1
α

})
.
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