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6. Convergence Results

Composite minimization problem ¥ Methods with clipping of gradient differences for distributed composite minimization Assumptions
. Key idea: clip the difference between the stochastic gradients and the shifts that are updated on the fly
;2%@{(1)( z) = f(z)+ V(z)} Foralli=1,...,nand z,y € R? we have

with stochastic first-order oracle:

V fe(x) — an estimate of V f(x)

o f:RY - R — convex smooth function

e U:R?Y 5 RU{+o00} - proper, closed, convex function (compos-
ite/regularization term)

Examples:

e Regularized expectation minimization

min {CP(ZIZ) = EEger[fg(x)l‘Ff\leHl + )\2Hx||§}

v/ The first results showing linear speed-up under bounded a-th moment assumption

v/ The first accelerated high-probability convergence rates and tight high-probability convergence rates for the non-accelerated method in

the quasi-strongly convex case

¥ Tight convergence rates

v In the known special cases (W = 0 and/or n = 1), the derived complexity bounds either recover or outperform previously known ones

v In certain regimes, the results have optimal (up to logarithms) dependencies on ¢

¥ Generalization to the case of distributed composite variational inequalities

3. Failure of Naive Approach

5. Clipping of Gradient Differences

— Vfi(x)||* < o for some a € (1, 2]
- Vfiy)ll < Lllz —y|
> f(2)+H{Vf(z),y—z)+5ly—=|°

ALE|V /e (2)
A 2. Smoothness: ||V f;(x)
A 3. Strong convexity: f(y)

Convergence of DProx-clipped-SGD-shift

Let the above assumptions hold with ¢ = 0. Then, the iterates
produced by DProx-clipped-SGD-shift after K iterations with

1 Ryn Rna

7@<mln{LA7 AC*7 oz(yl})?

rER? —~ -~ O'KéA

o - kf(fv). _— V() Standard method for composite optimization: ; Approximate V f(z*) with a learnable shift: R 48nK 2

T T e v = PrO=qw (xk B nyf(a:k)) (Prox-GD) 2" = prox_ (xk — ng) (Prox-clipped-SGD-shift) M=AZO <%4) A= - \ n Z VI
| 1 & 0, ifre X | , ! 7
fel]%z {CD Xr) = EZ fe(x) +V x)}v U(z) = {+oo if r & X e Proximal operator: proxw(z) = arg miny cpd {V\If(y) + %Hy — 513“2} ko kAR Rk 4 AR with probability at least 1 — 3 satlsfy
= ’ “ How to incorporate gradient clipping in Prox-GD? QAZ ’v k_ Pk ) ’ " LR’A R(CA oR AT
x = cli — 3 O(x") —P(2") =0 ; - 9 a— 9
: .f< | Naive approach: ) 1p( Jelz) k) ) o) (max{ K " /nK' (nK )al}>
Heavy-tailed noise: . . | \ _ o v > () — stepsize for learning the shift o 1
" = prox.y (x — ~vclip(V f(z"), )\k)) (Prox-clipped-GD) Distributed learning where T K+1 ST
E|[V fe(z) - V@) < 0%, 1<a<?

e Such noise appears in various ML problems, including training of
LLMs [1] and GANs |2

2. High-Probability Convergence

min < 1, A r, itz #0
e Clipping operator: clip(x, \) := {O { ”x”} ¢ ’ 0
’ I & =

X x* is not a fixed point: if ||V f(x*)|| > A for all kE > Kk, then
x” # prox,y (2" — yelip(V f(z7), \i))

Il Decreasing stepsizes are needed for acceleration and tight conver-

Zf@ . il

e 1. workers/clients are connected with a parameter-server
e fi(x) —loss on the data available on worker i

& Distributed version — DProx-clipped-SGD-shift

E&sz [f§z<x)]

v’ Logarithmic dependence on confidence level 3
v’ Linear speed-up in the complexity (see the Table)
@ v =0 when 4 =0and v = ©6(1/4) when p > 0

7. Acceleration

In-expectation guarantees: gence rates in (quasi-)strongly convex case |4,5] CARE ProX.,y (flfk - 7§k) DProx-clipped-SSTM-shift: 2° = ¢ = 2° Ay =ay =0, ap.q =
_ ()] < n . k42 _
| N E[f(aj) f(x )] ~ & (1) . gk — EZA’Zky g@ hk + Ak h?—l»l _ hi{ i VAZk ZCLilﬂ Ak_|_1 — Ak -+ (@7 aﬂd
High-probability guarantees: 4. Non-Implementable Solution n <= o At X e
P{f(2) = f(a") S e} > 1= 5 2 . . . Af = c1ip (Vg(a") - hi M) T e T e (e ™).
| | v s Clip the difference — Prox-clipped-SGD-star . AP 4 gy 2
v/ If for method M we know that (1) is satisfied for = V) after bl " . | . ) e Fach worker updates its own shift A k+l + ]
N (e) iterations, then for the same method we can guarantee (2) v T P9 (x — (Vf (27) + clip(Vfer(a?) = V/(27), )\k))) e Even with W = 0 shifts are needed: otherwise we have . Ap1
after N(ef3) iterations due to the Markov’s inequality: v x* is a fixed point (in the case of deterministic gradients) ! G(z"h) = 1 G, G2 = nF 4+ AF

N(eB)\) _ * (1)
3

X Typically N(e) has inverse power dependence on ¢, e.g., N(g) ~

1/e2 for SGD in the convex case — this approach gives inverse

power-dependence on 3 in high-probability complexity bounds

ELf(z

) >et <

v High-probability guarantees are more accurate

v/ Provable high-probability convergence under heavy-tailed noise

X Non-implementable method: V f(x*) is unknown

— =Y cl HEA AP 1
vt F —2_clip (V fi(x"™), \r) in genera

1=1

o It is sufficient to store h* := %Z;’;l h¥ on the server

Table: Summary of known and new high-probability complexity results for solving (non-) composite (non-) distributed smooth optimization problem. Complexity is the
number of stochastic oracle calls (per worker) needed for a method to guarantee that P{Metric < e} > 1 — 3 for some ¢ > 0, § € (0, 1] and “Metric” is taken from the

corresponding column. Numerical and logarithmic factors are omitted for simplicity. Notation: R = any upper bound on ||z"
RBR+ L'(2no + ||V f(z")]])) for some n > 0 (one can show that R? =

\/% 2?21 |V fiz*)||% EZ _

— x*||; {4+ = any upper bound on

O(R? + R&/1) when n = 1).

Convergence of DProx-clipped-SSTM-shift

Let the above assumptions hold with ¢ = 0. Then, the iterates
produced by DProx-clipped-SSTM-shift after K iterations with

Gaussian tails, f(x°) — fix") =2.87 Weibull tails, f(ix°) — fix") =2.87
109, B flci;p[i)ed-SGD o B fﬁp[;ed-sgo Function Method Reference Metric Complexity Composite? Distributed? U, = {mzkﬁ)? it k> K, A =6 ( nRR ) |
Clipped-SMD() o] @) —d(z*)  max {Lfi (R)} / X O (i) ik ifo;ﬁg UK(J’::;{) .
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Figure: Typical trajectories of SGD and clipped-SGD applied to solve
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O(y™")=d(z*) = O (max{

minger{ f(x) := I2I°/2} with V fe(x) =  + £ and £ having Gaussian or Weibull DProx-clipped-SSTM-shift  This paper CI)(y K2 'V K? (TLK)O%
tails with the same variance. Plots are taken from [3]. S n | i ‘ 5 ( ) =T
. L . . . clipped-SGD 1 Tt —x max{ =) } X
v (iradl.erlls cl.lpgmg H(];lproves hlgh—plz)bablh.ty convergence in theory Strongly convex p\pte e References
( Ogarlt HE epen CLee Ol 6> all praCtlce [2737475] DPrOX_Cllpped_SGD_Shlft Thls paper |'CEK ZE* |2 max {%7 % (ﬁ) ) } / / 1] J. Zhang et al. "Why are adaptive methods good for attention models?." NeurIPS 2020.

@ Resolved open question: how to generalize the
existing results to composite/distributed problems?

(1) The authors additionally assume that for a chosen point Z from the domain and for 7 > 0 one can compute an estimate § such that
P{l|g — Vf(2)|| > no} < e. Such an estimate can be found using geometric median of O(In e~ ') samples [6].

() The authors assume that V f(x

*) = 0, which is not true for general composite optimization.

2 NeurIPS 2022.
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