

Convergence of Proximal Point and Extragradient-Based Methods Beyond Monotonicity: the Case of Negative Comonotonicity

¹Mohamed bin Zayed University of Artificial Intelligence ²INRIA & D.I. École Normale Supérieure, CNRS & PSL Research University ³Mila, Université de Montréal, Canada CIFAR AI chair

1. Inclusion Problems

find $x^* \in \mathbb{R}^d$ such that $0 \in F(x^*)$

(IP)

- $F : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is some (possibly set-valued) mapping
- $\operatorname{Gr}(F) := \{(u, F_u) \mid F_u \in F(u)\}$
- Generalization of minimization, saddle points, and variational inequalities problems
- Standard assumption is (maximal) monotonicity:

$$\langle F(x) - F(y), x - y \rangle \ge 0$$

- In many real-world problems, monotonicity does not hold
- We focus on the structured non-monotone problems

2. Negative Comonotonicity

Definition 1. ρ -Negative comonotonicity (cohypomonotonicity [1])	

$\langle F_x - F_y, x - y \rangle \ge -\rho \ F_x - F_y\ ^2, \forall x, y. $ ⁽¹⁾	1)
Definition 2. Star-negative comonotonicity (weak Minty condition [2])	
Operator $F : \mathbb{R}^d \to \mathbb{R}^d$ is called a star negative componetone for	r
some $a > 0$ if $\forall (x, F) \in Cr(F)$ and x^* being a solution of (IF) D)
Some $p \ge 0$ if $\sqrt{(x, T_x)} \in O((T))$ and x being a solution of (if	
$\langle F_x, x - x^* \rangle \ge -\rho \ F_x\ ^2. \tag{2}$	2)

• We assume that the mapping F is *maximal* in the sense that its graph is not strictly contained in the graph of any other ρ -negative comonotone operator (resp., ρ -star-negative comonotone)

• Some examples star-negative comonotone operators that are nonmonotone can be found in [3]

• The next theorem provides a spectral viewpoint on NC

Let $F : \mathbb{R}^d \to \mathbb{R}^d$ be a continuously differentiable. Then, the following statements are equivalent:

• F is ρ -negative comonotone,

Theorem 1.

• $\Re(1/\lambda) \ge -\rho$ for all $\lambda \in \operatorname{Sp}(\nabla F(x)) := \{\lambda \in \mathbb{C} \mid \det(\nabla F(x)) = \{\lambda \in \mathbb{C} \mid det(\nabla F(x)) = \{\lambda \in \mathbb{C}$ $\lambda I = 0 \}, \, \forall x \in \mathbb{R}^d.$

Figure: Visualization of Theorem 1. Red open disc corresponds to the constraint $\Re(1/\lambda) < -\rho$ that defines the set such that all eigenvalues the Jacobian of ρ -negative comonotone operator should lie outside this set.

Theorem 2 (Corollary 3.15 from [3]).

If $F : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is maximally ρ -negative comonotone, then the solution set $X^* = F^{-1}(0)$ is convex.

× Negative comonotonicity is not satisfied for many practical tasks ✓ Studying the convergence of traditional methods under NC is a natural step towards understanding their behaviors in more complicated non-monotonic cases

Main Contributions

♦ Closer look at Proximal Point method

- $\mathcal{O}(1/N)$ last-iterate and best-iterate convergence rates under negative comonotonicity and star-negative comonotonicity assumptions, respectively
- Worst-case examples and counter-examples for the case when the stepsize is smaller than 2ρ

♦ New results for Extragradient-based methods

- $\mathcal{O}(1/N)$ last-iterate convergence of EG and OG under milder assumptions on the negative comonotonicity parameter ρ than in the prior work [5]
- Counter-examples showing that the range of ρ cannot be improved for EG and OG (for the best-iterate convergence)

3. Proximal Point Method

$$x^{k+1} = x^k - \gamma F(x^{k+1}). \tag{PP}$$

• We analyze the worst-case behavior of (**PP**) using Performance Estimation Problems (PEPs) [6, 7, 8]

$$\max_{F,x^0} \|x^N - x^{N-1}\|^2$$

s.t. F satisfies (2),
$$\|x^0 - x^*\|^2 \le R^2, \ 0 \in F(x^*),$$
$$x^{k+1} = x^k - \gamma F(x^{k+1}), \quad k = 0, 1, \dots, N-1.$$

Problem (3) can be reformulated as an SDP.

• Solving the resulting SDP numerically, we verified $\mathcal{O}(1/N)$ rate • Using the trace heuristic, we found the worst-case example • Finally, we constructed counter-example showing that (PP) is not necessary converging when $\gamma < 2\rho$

Theorem 4 (Upper bounds).

Theorem 3.

• Let $F : \mathbb{R}^d \implies \mathbb{R}^d$ be maximally ρ -star-negative comonotone. Then, for any $\gamma > 2\rho$ the iterates produced by PP are welldefined and satisfy $\forall N \geq 1$:

$$\frac{1}{N}\sum_{k=1}^{N} \|x^{k} - x^{k-1}\|^{2} \le \frac{\gamma \|x^{0} - x^{*}\|^{2}}{(\gamma - 2\rho)N}.$$
(4)

• If $F : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is maximally ρ -negative comonotone, then for any $\gamma > 2\rho$ and any $k \ge 1$ the iterates produced by PP satisfy $||x^{k+1} - x^k|| \le ||x^k - x^{k-1}||$ and for any $N \ge 1$:

$$\|x^N - x^{N-1}\|^2 \le \frac{\gamma \|x^0 - x^*\|^2}{(\gamma - 2\rho)N}.$$
(5)

Figure: The worst-case trajectories of PP for N = 40. The form of trajectories hints that the worst-case operator is a rotation operator.

Theorem 5 • For an two-d for θ

(3)

Theorem 6

any $N \ge 1$

Eduard Gorbunov¹ Adrien Taylor² Samuel Horváth¹ Gauthier Gidel³

Comparison with Prior Work

nown and new	$\mathcal{O}\left({1\!/\!N} ight)$ converger	nce results for	PP, EG and	d OG. Notat	ion: NC =
comonotonici	ity, L -Lip. $= L$ -Li	ipschitzness. (Green color:	the derived	results are

Method	Satur	$\circ \subset$	Convergence	Reference	
Methou	Jetup	$p \in$	Convergence	Nelelelice	
PP ⁽¹⁾	NC	$[0, +\infty)$	Last-iterate	Theorem 4	Theorem 5 (
	SNC	$[0, +\infty)$	Best-iterate	Theorem 4	Theorem 5 (
	NC + L-Lip.	[0, 1/16L)	Last-iterate	[5]	
EG	NC + L-Lip.	[0, 1/8L)	Last-iterate	Theorem 6	Theorem
	SNC + L-Lip.	[0, 1/8L)	Best-iterate	[2]	
	SNC + L-Lip.	[0, 1/2L)	Best-iterate	[3]	Theorem 3
	SNC + L-Lip.	[0, 1/2L)	Best-iterate	Theorem 6 ⁽²⁾	Theorem
OG	NC + L-Lip.	$[0, \frac{8}{(27\sqrt{6}L)})$	Last-iterate	[5]	
	NC + L-Lip.	[0, 5/62L)	Last-iterate	Theorem 7	Theorem
	SNC + L-Lip.	[0, 1/2L)	Best-iterate	[9]	
	SNC + L-Lip.	[0, 1/2L)	Best-iterate	Theorem 7 ⁽²⁾	Theorem

⁽¹⁾ The best-iterate convergence result can be obtained from Lemma 2 [10], and the last-iterate convergence result can also be derived from the non-expansiveness of PP update, see Proposition 3.13 (iii) [4]. At the moment of writing our paper, we were not aware of these results.

⁽²⁾ Although these results are not new for the best-iterate convergence of EG and OG, the proof techniques differ from prior works.

(Wosrt-case example and counter-examples).
In
$$p > 0, \gamma > 2\rho$$
, and $N \ge \max\{\frac{\rho^2}{\gamma(\gamma-2\rho)}, 1\}$ consider
imensional $F : \mathbb{R}^2 \to \mathbb{R}$: $F(x) = \alpha Ax$ with
 $A = \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad \alpha = \frac{|\cos \theta|}{\rho}$
 $\in (\pi/2, \pi)$ such that $\cos \theta = -\frac{\rho}{\sqrt{N\gamma(\gamma-2\rho)}}$. Then, F is ρ -

negative comonotona and after N iterations PP with stepsize γ produces x^{N+1} satisfying

$$\|F(x^{N+1})\|^{2} \ge \frac{\|x^{0} - x^{*}\|^{2}}{\gamma(\gamma - 2\rho)N\left(1 + \frac{1}{N}\right)^{N+1}}.$$
 (6)

• For any $\rho > 0$ there exists ρ -negatively comonotone single-valued operator $F: \mathbb{R}^d \to \mathbb{R}^d$ (e.g., $F(x) = -x/\rho$) such that PP does not converge to the solution of IP for any $0 < \gamma \leq 2\rho$.

4. Extragradient

$$\widetilde{x}^{k} = x^{k} - \gamma_{1} F(x^{k}), \quad \forall k \ge 0.$$

$$x^{k+1} = x^{k} - \gamma_{2} F(\widetilde{x}^{k}), \quad \forall k \ge 0.$$
(EG)

• Let F be L-Lipschitz and ρ -star-negative comonotone with $\rho < \rho$ 1/2L. Then, for any $2\rho < \gamma_1 < 1/L$ and $0 < \gamma_2 \leq \gamma_1 - 2\rho$ the iterates produced by **EG** after $N \ge 0$ iteration satisfy

$$\frac{1}{N+1} \sum_{k=0}^{N} \|F(x^k)\|^2 \le \frac{\|x^0 - x^*\|^2}{\gamma_1 \gamma_2 (1 - L^2 \gamma_1^2)(N+1)}.$$
 (7)

• If, in addition, F is ρ -negative comonotone with $\rho \leq 1/8L$ and $\gamma_1 = \gamma_2 = \gamma$ such that $4\rho \leq \gamma \leq 1/2L$, then for any $k \geq 0$ the iterates produced by EG satisfy $||F(x^{k+1})|| \leq ||F(x^k)||$ and for

$$\|F(x^N)\|^2 \le \frac{28\|x^0 - x^*\|^2}{N\gamma^2 + 320\gamma\rho}.$$
(8)

• For $\rho \geq 1/2L$ and any choice of stepsizes $\gamma_1, \gamma_2 > 0$ EG does not necessary converges on solving IP with this operator F. In particular, for $\gamma_1 > 1/L$ it is sufficient to take F(x) = Lx, and for $0 < \gamma_1 \leq 1/L$ one can take F(x) = LAx, where $x \in \mathbb{R}^2$,

$$A = \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad \theta = \frac{2\pi}{3}.$$

 $\frac{1}{N+1}\sum_{k}^{N}$

Theorem 7

discovered via PEP

[1]	Pennanen, T. (2002). L ematics of Operations H
[2]	Diakonikolas, J., Daska optimization. ICML 20
[3]	Pethick, T., Latafat, P nonconvex-nonconcave
[4]	Bauschke, H. H., Mours Programming, 189:55–7
[5]	Luo, Y. and Tran-Dinh, ods for co-monotone eq
[6]	Drori, Y. and Teboulle, Programming, 145(1):4
[7]	Taylor, A. B., Hendrick first-order methods. Ma
[8]	Taylor A B Hendrich

- Journal on Optimization, 13(4):1080–1097, 2003.

negative comonotonicity, SNC = star-negativecompletely novel/extend the existing ones. Counter-/Worst-case examples? (worst-case example & divergence for $\gamma \leq 2\rho$) (worst-case example & divergence for $\gamma \leq 2\rho$) 6 (diverge for $ho \geq 1/_{2L}$ and any $\gamma_1, \gamma_2 > 0$) 3.4 (diverge for $\gamma_1 = 1/L$ and $\rho \ge (1-L\gamma_2)/2L$) 6 (diverge for $ho \geq 1/_{2L}$ and any $\gamma_1, \gamma_2 > 0$) 17 (diverge for $ho \geq 1/_{2L}$ and any $\gamma_1, \gamma_2 > 0$) 7 (diverge for $\rho \geq 1/2L$ and any $\gamma_1, \gamma_2 > 0$)

5. Optimistic Gradient

$$\widetilde{x}^{k} = x^{k} - \gamma_{1} F(\widetilde{x}^{k-1}), \quad \forall k > 0,$$
$$x^{k+1} = x^{k} - \gamma_{2} F(\widetilde{x}^{k}), \quad \forall k \ge 0,$$

(OG)

• Let F be L-Lipschitz and ρ -star-negative comonotone with $\rho <$ 1/2L. Then, for any $2\rho < \gamma_1 < 1/L$ and $0 < \gamma_2 \le \min\{1/L - \gamma_1, \gamma_1 - \gamma_1, \gamma_1 - \gamma_2\}$ 2ρ the iterates produced by **OG** after $N \ge 0$ iteration satisfy $\|x^0 - x^*\|^2$

$$\|F(x^{\kappa})\|^{2} \leq \frac{\|\sigma^{\kappa} - \sigma^{\kappa}\|}{\gamma_{1}\gamma_{2}(1 - L^{2}(\gamma_{1} + \gamma_{2})^{2})(N+1)}.$$
(9)

• If, in addition, F is ρ -negative comonotone with $\rho \leq 5/62L$ and $\gamma_1 = \gamma_2 = \gamma$ such that $4\rho \leq \gamma \leq \frac{10}{31L}$, then for any $N \geq 1$ the iterates produced by OG satisfy

$$\|F(x^N)\|^2 \le \frac{717\|x^0 - x^*\|^2}{N\gamma(\gamma - 3\rho) + 800\gamma^2}.$$
(10)

• For $\rho \geq 1/2L$ and any choice of stepsizes $\gamma_1, \gamma_2 > 0$ OG does not necessary converges on solving IP with this operator F. In particular, for $\gamma_1 > 1/L$ it is sufficient to take F(x) = Lx, and for $0 < \gamma_1 \leq 1/L$ one can take F(x) = LAx, where $x \in \mathbb{R}^2$,

$$A = \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad \theta = \frac{2\pi}{3}.$$

• The proofs for (EG) and (OG) are potential-based proof and were

References

local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math-Research, 27(1):170–191 alakis, C., and Jordan, M. I. (2021). Efficient methods for structured nonconvex-nonconcave min-max Patrinos, P., Fercoq, O., and Cevher, V. Escaping limit cycles: Global convergence for constrained minimax problems. ICLR 2022. si, W. M., and Wang, X. Generalized monotone operators and their averaged resolvents. Mathematical 74, 2021. Q. Last-iterate convergence rates and randomized block-coordinate variant of extragradient-type methuations. preprint, 2022. M. Performance of first-order methods for smooth convex minimization: a novel approach. Mathematical 51 - 482, 2014kx, J. M., and Glineur, F. Smooth strongly convex interpolation and exact worst-case performance of athematical Programming, 161(1):307-345, 2017. x, J. M., and Glineur, F. Exact worst-case performance of first-order methods for composite convex imization. SIAM Journal on Optimization, 27 (3):1283–1313, Jan 2017. [9] Böhm, A. Solving nonconvex-nonconcave min-max problems exhibiting weak minty solutions. arXiv preprint arXiv:2201.12247, [10] Iusem, A. N., Pennanen, T., and Svaiter, B. F. Inexact variants of the proximal point algorithm without monotonicity. SIAM