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1. Inclusion Problems

find x∗ ∈ Rd such that 0 ∈ F (x∗) (IP)

• F : Rd ⇒ Rd is some (possibly set-valued) mapping
• Gr(F ) := {(u, Fu) | Fu ∈ F (u)}
• Generalization of minimization, saddle points, and variational in-
equalities problems
• Standard assumption is (maximal) monotonicity:

⟨F (x) − F (y), x − y⟩ ≥ 0
• In many real-world problems, monotonicity does not hold
• We focus on the structured non-monotone problems

2. Negative Comonotonicity

Definition 1. ρ-Negative comonotonicity (cohypomonotonicity [1])

⟨Fx − Fy, x − y⟩ ≥ −ρ∥Fx − Fy∥2, ∀x, y . (1)

Definition 2. Star-negative comonotonicity (weak Minty condition [2])

Operator F : Rd ⇒ Rd is called ρ-star-negative comonotone for
some ρ ≥ 0 if ∀ (x, Fx) ∈ Gr(F ) and x∗ being a solution of (IP)

⟨Fx, x − x∗⟩ ≥ −ρ∥Fx∥2. (2)

• We assume that the mapping F is maximal in the sense that its
graph is not strictly contained in the graph of any other ρ-negative
comonotone operator (resp., ρ-star-negative comonotone)
• Some examples star-negative comonotone operators that are non-
monotone can be found in [3]
• The next theorem provides a spectral viewpoint on NC

Theorem 1.

Let F : Rd → Rd be a continuously differentiable. Then, the
following statements are equivalent:
• F is ρ-negative comonotone,
• ℜ(1/λ) ≥ −ρ for all λ ∈ Sp(∇F (x)) := {λ ∈ C | det(∇F (x)−

λI) = 0}, ∀x ∈ Rd.

Figure: Visualization of Theorem 1. Red open disc corresponds to the constraint
ℜ(1/λ) < −ρ that defines the set such that all eigenvalues the Jacobian of
ρ-negative comonotone operator should lie outside this set.

Theorem 2 (Corollary 3.15 from [3]).

If F : Rd ⇒ Rd is maximally ρ-negative comonotone, then the
solution set X∗ = F −1(0) is convex.

✗ Negative comonotonicity is not satisfied for many practical tasks
✓ Studying the convergence of traditional methods under NC is a
natural step towards understanding their behaviors in more compli-
cated non-monotonic cases

Main Contributions

⋄ Closer look at Proximal Point method
• O(1/N) last-iterate and best-iterate convergence rates under

negative comonotonicity and star-negative comonotonicity
assumptions, respectively

• Worst-case examples and counter-examples for the case
when the stepsize is smaller than 2ρ

⋄ New results for Extragradient-based methods
• O(1/N) last-iterate convergence of EG and OG under milder

assumptions on the negative comonotonicity parameter ρ
than in the prior work [5]

• Counter-examples showing that the range of ρ cannot be
improved for EG and OG (for the best-iterate convergence)

3. Proximal Point Method

xk+1 = xk − γF (xk+1). (PP)

• We analyze the worst-case behavior of (PP) using Performance
Estimation Problems (PEPs) [6, 7, 8]

max
F,x0

∥xN − xN−1∥2 (3)

s.t. F satisfies (2),
∥x0 − x∗∥2 ≤ R2, 0 ∈ F (x∗),
xk+1 = xk − γF (xk+1), k = 0, 1, . . . , N − 1.

Theorem 3.

Problem (3) can be reformulated as an SDP.

• Solving the resulting SDP numerically, we verified O(1/N) rate
• Using the trace heuristic, we found the worst-case example
• Finally, we constructed counter-example showing that (PP) is not
necessary converging when γ < 2ρ

Theorem 4 (Upper bounds).

• Let F : Rd ⇒ Rd be maximally ρ-star-negative comonotone.
Then, for any γ > 2ρ the iterates produced by PP are well-
defined and satisfy ∀N ≥ 1:

1
N

N∑
k=1

∥xk − xk−1∥2 ≤ γ∥x0 − x∗∥2

(γ − 2ρ)N
. (4)

• If F : Rd ⇒ Rd is maximally ρ-negative comonotone, then for
any γ > 2ρ and any k ≥ 1 the iterates produced by PP satisfy
∥xk+1 − xk∥ ≤ ∥xk − xk−1∥ and for any N ≥ 1:

∥xN − xN−1∥2 ≤ γ∥x0 − x∗∥2

(γ − 2ρ)N
. (5)
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Figure: The worst-case trajectories of PP for N = 40. The form of trajectories
hints that the worst-case operator is a rotation operator.

Comparison with Prior Work
Known and new O (1/N) convergence results for PP, EG and OG. Notation: NC = negative comonotonicity, SNC = star-negative

comonotonicity, L-Lip. = L-Lipschitzness. Green color: the derived results are completely novel/extend the existing ones.
Method Setup ρ ∈ Convergence Reference Counter-/Worst-case examples?

PP(1) NC [0, +∞) Last-iterate Theorem 4 Theorem 5 (worst-case example & divergence for γ ≤ 2ρ)
SNC [0, +∞) Best-iterate Theorem 4 Theorem 5 (worst-case example & divergence for γ ≤ 2ρ)

EG

NC + L-Lip. [0, 1/16L) Last-iterate [5] ✗

NC + L-Lip. [0, 1/8L) Last-iterate Theorem 6 Theorem 6 (diverge for ρ ≥ 1/2L and any γ1, γ2 > 0)
SNC + L-Lip. [0, 1/8L) Best-iterate [2] ✗

SNC + L-Lip. [0, 1/2L) Best-iterate [3] Theorem 3.4 (diverge for γ1 = 1/L and ρ ≥ (1−Lγ2)/2L)
SNC + L-Lip. [0, 1/2L) Best-iterate Theorem 6 (2) Theorem 6 (diverge for ρ ≥ 1/2L and any γ1, γ2 > 0)

OG

NC + L-Lip. [0, 8/(27
√

6L)) Last-iterate [5] ✗

NC + L-Lip. [0, 5/62L) Last-iterate Theorem 7 Theorem 7 (diverge for ρ ≥ 1/2L and any γ1, γ2 > 0)
SNC + L-Lip. [0, 1/2L) Best-iterate [9] ✗

SNC + L-Lip. [0, 1/2L) Best-iterate Theorem 7 (2) Theorem 7 (diverge for ρ ≥ 1/2L and any γ1, γ2 > 0)
(1) The best-iterate convergence result can be obtained from Lemma 2 [10], and the last-iterate convergence result can also be
derived from the non-expansiveness of PP update, see Proposition 3.13 (iii) [4]. At the moment of writing our paper, we were
not aware of these results.
(2) Although these results are not new for the best-iterate convergence of EG and OG, the proof techniques differ from prior works.

Theorem 5 (Wosrt-case example and counter-examples).

• For any ρ > 0, γ > 2ρ, and N ≥ max{ρ2/γ(γ−2ρ), 1} consider
two-dimensional F : R2 → R: F (x) = αAx with

A =
(

cos θ − sin θ
sin θ cos θ

)
, α = | cos θ|

ρ

for θ ∈ (π/2, π) such that cos θ = − ρ√
Nγ(γ−2ρ)

. Then, F is ρ-
negative comonotona and after N iterations PP with stepsize γ
produces xN+1 satisfying

∥F (xN+1)∥2 ≥ ∥x0 − x∗∥2

γ(γ − 2ρ)N
(
1 + 1

N

)N+1. (6)

• For any ρ > 0 there exists ρ-negatively comonotone single-valued
operator F : Rd → Rd (e.g., F (x) = −x/ρ) such that PP does
not converge to the solution of IP for any 0 < γ ≤ 2ρ.

4. Extragradient

x̃k = xk − γ1F (xk),
xk+1 = xk − γ2F (x̃k),

∀k ≥ 0. (EG)

Theorem 6.
• Let F be L-Lipschitz and ρ-star-negative comonotone with ρ <
1/2L. Then, for any 2ρ < γ1 < 1/L and 0 < γ2 ≤ γ1 − 2ρ the
iterates produced by EG after N ≥ 0 iteration satisfy

1
N + 1

N∑
k=0

∥F (xk)∥2 ≤ ∥x0 − x∗∥2

γ1γ2(1 − L2γ2
1)(N + 1)

. (7)

• If, in addition, F is ρ-negative comonotone with ρ ≤ 1/8L and
γ1 = γ2 = γ such that 4ρ ≤ γ ≤ 1/2L, then for any k ≥ 0 the
iterates produced by EG satisfy ∥F (xk+1)∥ ≤ ∥F (xk)∥ and for
any N ≥ 1

∥F (xN)∥2 ≤ 28∥x0 − x∗∥2

Nγ2 + 320γρ
. (8)

• For ρ ≥ 1/2L and any choice of stepsizes γ1, γ2 > 0 EG does
not necessary converges on solving IP with this operator F . In
particular, for γ1 > 1/L it is sufficient to take F (x) = Lx, and for
0 < γ1 ≤ 1/L one can take F (x) = LAx, where x ∈ R2,

A =
(

cos θ − sin θ
sin θ cos θ

)
, θ = 2π

3
.

5. Optimistic Gradient

x̃k = xk − γ1F (x̃k−1), ∀k > 0,

xk+1 = xk − γ2F (x̃k), ∀k ≥ 0,
(OG)

Theorem 7.
• Let F be L-Lipschitz and ρ-star-negative comonotone with ρ <
1/2L. Then, for any 2ρ < γ1 < 1/L and 0 < γ2 ≤ min{1/L−γ1, γ1−
2ρ} the iterates produced by OG after N ≥ 0 iteration satisfy

1
N + 1

N∑
k=0

∥F (xk)∥2 ≤ ∥x0 − x∗∥2

γ1γ2(1 − L2(γ1 + γ2)2)(N + 1)
. (9)

• If, in addition, F is ρ-negative comonotone with ρ ≤ 5/62L and
γ1 = γ2 = γ such that 4ρ ≤ γ ≤ 10/31L, then for any N ≥ 1 the
iterates produced by OG satisfy

∥F (xN)∥2 ≤ 717∥x0 − x∗∥2

Nγ(γ − 3ρ) + 800γ2. (10)

• For ρ ≥ 1/2L and any choice of stepsizes γ1, γ2 > 0 OG does
not necessary converges on solving IP with this operator F . In
particular, for γ1 > 1/L it is sufficient to take F (x) = Lx, and for
0 < γ1 ≤ 1/L one can take F (x) = LAx, where x ∈ R2,

A =
(

cos θ − sin θ
sin θ cos θ

)
, θ = 2π

3
.

• The proofs for (EG) and (OG) are potential-based proof and were
discovered via PEP

References
[1] Pennanen, T. (2002). Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math-

ematics of Operations Research, 27(1):170–191
[2] Diakonikolas, J., Daskalakis, C., and Jordan, M. I. (2021). Efficient methods for structured nonconvex-nonconcave min-max

optimization. ICML 2021.
[3] Pethick, T., Latafat, P., Patrinos, P., Fercoq, O., and Cevher, V. Escaping limit cycles: Global convergence for constrained

nonconvex-nonconcave minimax problems. ICLR 2022.
[4] Bauschke, H. H., Moursi, W. M., and Wang, X. Generalized monotone operators and their averaged resolvents. Mathematical

Programming, 189:55–74, 2021.
[5] Luo, Y. and Tran-Dinh, Q. Last-iterate convergence rates and randomized block-coordinate variant of extragradient-type meth-

ods for co-monotone equations. preprint, 2022.
[6] Drori, Y. and Teboulle, M. Performance of first-order methods for smooth convex minimization: a novel approach. Mathematical

Programming, 145(1):451–482, 2014.
[7] Taylor, A. B., Hendrickx, J. M., and Glineur, F. Smooth strongly convex interpolation and exact worst-case performance of

first-order methods. Mathematical Programming, 161(1):307–345, 2017.
[8] Taylor, A. B., Hendrickx, J. M., and Glineur, F. Exact worst-case performance of first-order methods for composite convex

optimization. SIAM Journal on Optimization, 27 (3):1283–1313, Jan 2017.
[9] Böhm, A. Solving nonconvex-nonconcave min-max problems exhibiting weak minty solutions. arXiv preprint arXiv:2201.12247,

2022.
[10] Iusem, A. N., Pennanen, T., and Svaiter, B. F. Inexact variants of the proximal point algorithm without monotonicity. SIAM

Journal on Optimization, 13(4):1080–1097, 2003.


