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1. Inclusion Problems

find * € R? such that 0 € F(z*) (IP)

o [': RY = RY is some (possibly set-valued) mapping

o Gr(F) ={(u, F,) | F, € F(u)}

e Generalization of minimization, saddle points, and variational in-
equalities problems

e Standard assumption is (maximal) monotonicity:

(F(z) = Fy),z —y) =20

e In many real-world problems, monotonicity does not hold
o We focus on the structured non-monotone problems

2. Negative Comonotonicity

Definition 1. p-Negative comonotonicity (cohypomonotonicity [1])

<Fx_Fyvx_y>Z_:OHF@“_FyHZv Va,y. (1)

Definition 2. Star-negative comonotonicity (weak Minty condition [2])

Operator F': R? = R? is called p-star-negative comonotone for
some p > 0if V (z, F,) € Gr(F') and x* being a solution of (IP)

<anx — 37*> > _/0||F:I:H2- (2)

e We assume that the mapping F' is maximal in the sense that its
oraph is not strictly contained in the graph of any other p-negative
comonotone operator (resp., p-star-negative comonotone)

e Some examples star-negative comonotone operators that are non-
monotone can be found in [3]

e The next theorem provides a spectral viewpoint on NC

Let F : RY — RY be a continuously differentiable. Then, the

following statements are equivalent:

e [ is p-negative comonotone,
e R(1/A) > —pforall A € Sp(VF(x)) ={\ € C | det(VF(z)—
A) =0}, Vo € R%
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Figure: Visualization of Theorem 1. Red open disc corresponds to the constraint
J(1/A) < —p that defines the set such that all eigenvalues the Jacobian of
p-negative comonotone operator should lie outside this set.

Theorem 2 (Corollary 3.15 from [3]).

If FF: RY = R is maximally p-negative comonotone, then the
solution set X* = F~1(0) is convex.

X Negative comonotonicity is not satisfied for many practical tasks
v/ Studying the convergence of traditional methods under NC is a
natural step towards understanding their behaviors in more compli-
cated non-monotonic cases

Main Contributions

¢ Closer look at Proximal Point method
e O(1/N) last-iterate and best-iterate convergence rates under
negative comonotonicity and star-negative comonotonicity
assumptions, respectively

e Worst-case examples and counter-examples for the case

when the stepsize is smaller than 2p

¢ New results for Extragradient-based methods
e O(1/N) last-iterate convergence of EG and OG under milder
assumptions on the negative comonotonicity parameter p
than in the prior work [5]
e Counter-examples showing that the range of p cannot be
improved for EG and OG (for the best-iterate convergence)

3. Proximal Point Method

" = b — yF (2. (PP)

e We analyze the worst-case behavior of (PP) using Performance
Estimation Problems (PEPs) [6, 7, §]

max ||z — 2™ 7Y? (3)
F 20

s.t. F satisfies (2),
|2 —2*|]” < R?, 0 € F(x"),
" = gF — AR (Y, k=0,1,...,N—1.

Problem (3) can be reformulated as an SDP.

e Solving the resulting SDP numerically, we verified O(1/n) rate

e Using the trace heuristic, we found the worst-case example

e Finally, we constructed counter-example showing that (PP) is not
necessary converging when v < 2p

Theorem 4 (Upper bounds).

oLet F: RY = R? be maximally p-star-negative comonotone.

Then, for any v > 2p the iterates produced by PP are well-
defined and satisty VIV > 1.

Lsm ok — pp < 2 = R
N k=1 B (7 o QIO)N
o If F': RY = R is maximally p-negative comonotone, then for
any v > 2p and any k£ > 1 the iterates produced by PP satisfy
|25 — 2%|| < ||#* — 27| and for any N > 1:

X

0 |2
N xN_1H2 S ’YHZE L H (5)

(v —20)N

Worst-case trajectories for PP, N=40, p=1
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Figure: The worst-case trajectories of PP for N = 40. The form of trajectories
hints that the worst-case operator is a rotation operator.

Comparison with Prior Work

Known and new O (1/N) convergence results for PP, EG and OG. Notation: NC = negative comonotonicity, SNC = star-negative
comonotonicity, L-Lip. = L-Lipschitzness. Green color: the derived results are completely novel /extend the existing ones.

Method Setup p E Convergence Reference Counter-/Worst-case examples?
op(1) NC 0, +00) _ast-iterate Theorem 4 | Theorem 5 (worst-case example & divergence for v < 2p)
SNC 0, +00) Best-iterate Theorem 4 | Theorem 5 (worst-case example & divergence for 7 < 2p)
NC + L-Lip. [0, /16L) _ast-iterate 5] X
NC + L-Lip. [0, 1/sL) _ast-iterate  Theorem 6 Theorem 6 (diverge for p > 1/2L and any 7,7, > 0)
EG |SNC + L-Lip. |0,1/sr) Best-iterate 2] X
SNC + L-Lip. [0,1/2L) Best-iterate 3] Theorem 3.4 (diverge for v, =1/ and p > (1=L72)/21)
SNC + L-Lip. [0, 1/2L) Best-iterate  Theorem 6 ?) | Theorem 6 (diverge for p > 1/21 and any 71,y > 0)

NC + L-Lip. [0,8/27v6L)) Last-iterate 5]
NC + L-Lip. [0,3/62L) _ast-iterate
OG sne 4+ L-Lip. [0,1/2L) Best-iterate 9]
SNC + L-Lip. [0, /2r)

Theorem 7

Best-iterate Theorem 7 (2)

X
Theorem 7 (diverge for p > /2L and any 7,y > 0)

X
Theorem 7 (diverge for p > /2L and any 7, v, > 0)

(1) The best-iterate convergence result can be obtained from Lemma 2 [10], and the last-iterate convergence result can also be

derived from the non-expansiveness of PP update, see Proposition 3.13 (iii) [4]. At the moment of writing our paper, we were

not aware of these results.

(2) Although these results are not new for the best-iterate convergence of EG and OG, the proof techniques differ from prior works.

Theorem 5 (Wosrt-case example and counter-examples).

eForany p > 0,7 > 2p, and N > max{r’/y(v—2p), 1} consider
two-dimensional F': R* — R: F(x) = a Az with

e ((3089 —sm@) R | cos 0|

sin@ cos6@

P
- _ p is -
for 6 € (7/2, ) such that cos6 NIETET) Then, F is p
negative comonotona and after IV iterations PP with stepsize
produces z¥ ! satisfying
|2” — &*||°
| F (=" > NTT (6)

Y(v = 20)N (1+ )
e For any p > 0 there exists p-negatively comonotone single-valued

operator ' : RY — R? (e.g., F(z) = —/5) such that PP does
not converge to the solution of IP for any 0 < v < 2p.

4. Extragradient

~k k k
# = o — (e,
Yk > 0. EG
$k+1 _ ZCk . ”)/QF(fk), - ( )

e Let F' be L-Lipschitz and p-star-negative comonotone with p <

L/or. Then, for any 2p < 11 < YL and 0 < v < 1 — 2p the
iterates produced by EG after N > 0 iteration satisty

LT [ L G
N+1:= ~ me(l = LN + 1)

e If in addition, F' is p-negative comonotone with p < 1/3r and
Y1 = 72 = 7 such that 4p < ~ < 1/21, then for any & > 0 the

iterates produced by EG satisfy || F(z"™)|| < ||F(2")|| and for
any N > 1

28 0 |2

. S
— N~2 4 320vp 8)

e For p > 1/21 and any choice of stepsizes 1,7 > 0 EG does
not necessary converges on solving 1P with this operator £'. In
particular, for v > 1/r it is sufficient to take F'(x) = Lx, and for
0 < v < YL one can take F(z) = LAz, where x € R?,

e 2
A(COSH sm@)) 9:_7T.

sinf@ cos6 3

5. Optimistic Gradient

8 =2t —y F@EY, Yk >0,
" = 2F — A F(ZY), Yk >0,

e Let F' be L-Lipschitz and p-star-negative comonotone with p <

L/or. Then, forany 2p < v; < Y/rand 0 < v < min{l/L—~y, 71—
2p} the iterates produced by OG after N > 0 iteration satisfy

N+1:= ~ el = LAy 4+ 92)?) (N + 1)
e If in addition, F' is p-negative comonotone with p < 5/62r and
71 = o = v such that 4p < v < 10/31, then for any N > 1 the
iterates produced by OG satisty
0  .x|]|2

Nv(y — 3p) + 8007
e For p > l/21 and any choice of stepsizes v1,72 > 0 OG does
not necessary converges on solving IP with this operator F'. In

particular, for v, > 1/r it is sufficient to take F'(x) = Lx, and for
0 < v < YL one can take F(x) = LAx, where x € R?,

o 2
A(COSH sm@)7 9:_7T.

sinf cos6 3

(0G)

(10)

e The proofs for (EG) and (OG) are potential-based proof and were
discovered via PEP
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