gt High-Probability Bounds for Stochastic Optimization

and Variational Inequalities: the Case of Unbounded Variance

Université f”’l

alllauc Sllall aealn

(

King Abdullah University of
Science and Technology

'King Abdullah University of Science and Technology 2Moscow Institute of Physics and Technology

1.Preliminaries

Main Problems

e Minimization problem:

iré%}l {f(@) =Eeup [ fe(2)]}

where £ is a random variable with distribution D.

e Variational inequality problem:
find * € R such that F(z*) = 0,

= E¢op|Fe(w)].

where F'(x)

.
— 1

Bounded a-Moment Assumption

We assume that there exist some set () C R? and values o > 0,
a € (1, 2] such that for all z € Q)

for problem (1) Ecup|V fe(z)| = Vf(x) and
Eeopl||Vfe(z) — V()] < 0, (3)

@ for problem (2) E¢op|Fe(x)| = F(z) and
Eepl||Fe(z) — F(z)]]"] < 0. (4)

Assumptions for Minimization Problem (1)

. Smoothness and lower-boundedness: Vx,y € () we

have ||Vf( )=Vl < Lllz—yl and f. = infoeq f(z) > —o0
Polyak-tojasiewicz (PL) condition: Vo € @ and

v = argmin, s () we have [V £(2)[? > 2u (f(x) — f(a*)).
and z* —

<Vf<il?), Tt —

(-quasi-strong convexity:Va € Q)
arg mingcps f(x) we have f(z*) > f(z) +
r) + e — 2|
@ u-strongly convexity:Ve, y € () we have
fly) = flz) +(Vf(z),y —2) + 5lly — =*

When p = 0 tfunction f is called convex.

Assumptions for Variational Inequality Problem (2)

Lipschitzness: Vx,y € @ we have ||F(x)
Lilz =yl

— Fy)|| <

Q@

(-quasi-strong monotonicity:Ve € () and x® such that
F(z*) = 0 we have (F(x),x — z*) > pl|lz — z*||*.
‘ Star-cocoercivity:Va € @) x* such that F(z*) = 0 we have
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| F(2)|” < U(F(z), 5 — x*).

2. In-Expectation vs High-Probability

In-expectation guarantees: E |||z — x*||?] < g,
E[f(z) = fla")] <& E[|Vf()[] <e

X Typically, depend only on some moments of stochastic gradient,

e.g., variance
High-probability guarantees: P{||z — z*||* <e} > 1 — 3,
P{f(z) - flz*) <e}t 21 =B, P{IVf@)  <e} = 1-7

v Sensitive to the distribution of the stochastic gradient noise

3. Our Contribution

¢ New high-probability results under Assump. ,

e Smooth (quasi-strongly) convex minimization
e Monotone/quasi-strongly monotone VIP

¢ Weaker assumptions in the non-convex case
e We do not assume boundedness of the gradient

e [ixtension to the functions satistying Pt.-condition
¢ Failure of SGD

e We construct an example of a strongly convex smooth problem
and stochastic oracle with bounded variance such that to achieve

P{||z* — 2*||* > e} < B SGD requires € (¢*/u/z5) iterations

4. Failure of SGD

X SGD Ml =2F -~V fgk(xk) can diverge in expectation, when

is satisfied with o < 2.
X There are no high-probability convergence results for SGD having
logarithmic dependence on 1/s.

Assumption

Theorem 1

For any € > 0 and sufficiently small 8 € (0, 1) there exist problem

(1) such that Assumptions - and hold with Q) =

RY oo =2 0 < pu < L and for the 1terates produced by SGD
with any stepsize v > 0

P{lo" P >c)l <p = k:@(u&’%)

e This partially justifies the need of applying some non-linearity to
the stochastic gradient (e.g., clipping).

5. Gradient Clipping

The clipping operator is defined as
(
: A :
mm{l,w} xr, ifxz+#0, (5)
0, otherwise.
A)| # V f(x) in general

Let X be a random vector in R and X = clip(X,\). Then,

X — IE[X]H < 2X. Moreover, if for some ¢ > 0 and a € [1,2)

clip(x, \) = «

\

e Clipping creates bias: E|clip(V fe(z),

E[X] =2 cRY E[|X — 2z]|*] < ¢ and ||z]| < Ve, then
- 2%
[BX] - 2| < T (6)
- 112
E “X _E[X] ] < 18\, (7)

o clipped-SGD: 2" = zF — ~ . clip (Vfgk(l’k), )\k)
e In our proofs, we separate “stochastic” and “deterministic” parts
e In the analysis of clipped-SGD for convex problems, we derive

k k
Y(k+1) (@) = f(@7) £ B = Ri+v > (0 +97 Y 164
t=0 t=0

where R; = ||zt — 2*||, " = %ﬂztkzo o' =2t —at — 4V f(ah),
0 = clip(V fu(z"), \r) — V f(z4)

e We upper-bound the sums with 6' using Bernstein’s inequality for
martingale differences and do it inductively (to ensure that Ry is
bounded with high probability)

6. Results for clipped-SGD

Let k> 0 and 8 € (0, 1] are such that A = In (KH) > 1.

Case 1. Let Assumptions hold for = {z e RY | Jy ¢

R : f(y) < f+2Aand Hflﬁ—yH < VA/vi}, A > f(z¥) — fi and
0 < < O (min{l/r4, VA/oyIK A 1/a}) Ay =\ = @<\/_/va)

Case 2. Let Assumptlons hold for = {:13 S

A > flz )—f* and 0 < v = O (min{!/rA4, 1HBK/MK+1})7 BK —

S (max{Z (K412 A 1 52 42V }) i = O(exp(—yu(1+H2)VA/ /Ty A).

Case 3. Let Assumptions with ¢ = 0 hold for @) = Bsg(x*

R> |z —z*| and 0 < v < O(mm{l/LA RlgkYopa e Del) Ay = A = @(R/’y

Case 4. Let Assumptions with ¢ > 0 hold for @

Bsgp(z*), R > ||2° — z*|| and 0 < v = O (min{l/za, mBx)/u(k+1)}), Bk
O (maX{Z (K+1)* o2 R f 2 g20 Do }) A = O(exp(=u(1+42)) R/ 4)

Then to guarantee K—szzo HVf(a: MII? < ein Case 1, f(z%) — f(a*) < ¢
in Case 2, f(z") — f(z*) < e in Case 3 with /' = ﬁZ?ZOZCk,
|z% — 2*||> < ¢ in Case 4 with probability > 1 — 3 clipped-SGD re-

quires
~ (LA (VIAc\™
Case 1: O (max< —, (\/ U) })
g g
_ ( 2\ -1
Case 2. O (max< £, (L%) })
p'\ pe
N (T D2 ot
Case 3 O (max< %, (?) })

. (L 2 2(5—1)
Case 4. O (max< — (%) })
| \pe

II\-/\-/

oracle calls.

e For a = 2 the derived complexity bounds match the best-known
ones for clipped-SGD

e The second term under the maximum in (8) (quasi-strongly convex
functions) is optimal up to logarithmic factors

7. Results for clipped-SSTM

e Clipped Stochastic Similar Triangles Method:

k k
$k+1 o Aky T 0412
T )

A1

A= R clip (Vfgk:(ﬁlflﬁ_l), )\k) :
k+1

yk+1 _ Akyk T Q1%
Apt 7
where Ay = ag = 0, ag4 = 2 L7 Apr = Ap + agy, and f
sampled from D;. independently from previous steps.
Theorem 3

Let Assumptions with 4 = 0 hold for Q = Bsg(x*), R >

|z — z*||* and a = (maX{A2 oK A IR IRV Ny = O(Bf(ay,14)), where
B € (0, 1] are such that A = lnf > 1. Then to guarantee f(y*)— f(z*) < ¢
with probability > 1 — 3 clipped-SSTM requires

N [T R2 a1
@, (ma:x:{ i : (UR) }) oracle calls.
£ £

Moreover, with probability > 1 — 3 the iterates of clipped-SSTM stay in

the ball Bog(z*): {z*}0! {y*HE | {2* R, C Bog(z*).

e For v = 2 the derived complexity bounds match the best-known
ones for clipped-SSTM
e For strongly convex problems, we have a restarted version (R-

clipped-SSTM)

8. Comparison with Prior Work

& Minimization Problem:

Setup Method Complexity )
RSMD [1] max { 2=, &L= 2

clipped-SGD 2] max {LEQ, 0251%2} 2

7 clipped-SSTM 2] max{ sz, i 2

clipped-SGD

clipped-SSTM max{ i (%)a} (1, 2]
restarted-RSMD |[1] max

proxBoost (4] max

, R-clipped-SGD 2] max

(> 0) R-clipped-SSTM [2]
R-clipped-SSTM

clipped-SGD

,—/H,—/H,—/‘\
TISEI=E =
SILHINES
O RO NC

==
%2

™M

N—

(1> 0)
MSGD |L5] max {Liﬁ, Z;} X
clipped-NMSGD [6 (<) = (1,9]
clipped-SGD max {L?, ( ljf")a&l} (1, 2]

clipped-SGD max {%, (%)2(51)} (1, 2]

e Column “Setup” indicates the assumptions made in addition to

Assumptions ,

¢ Variational Inequality Problem:

Setup Method Complexity )

Mirror-Prox |7] max sz, 0252} X

7 clipped-SEG [3] max {LRZ, 0252} 2
clipped-SEG max {L—RZ, (%)aa} (1, 2]

7 clipped-SEG |[3] max {ﬁ,Z—z}Q 2
clipped-SEG max {%, (5_225 ! (1, 2]

’ clipped-SGDA 3] max {@2, ‘?f}a 2
clipped-SGDA {W (UR)“T 1,2
clipped-SGDA 3]
clipped-SGDA  max {W (%—R)—l (1,2]
7 clipped-SGDA (3] max {ﬁ, /f—zg}a 2
clipped-SGDA  max {ﬁ (“—2) Aol 1,2
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