

1.Preliminaries	3. Our Contribution
Main Problems• Minimization problem: $min_{x \in \mathbb{R}^d} \{f(x) = \mathbb{E}_{\xi \sim \mathcal{D}}[f_{\xi}(x)]\},$ (1) where ξ is a random variable with distribution \mathcal{D} .• Variational inequality problem: find $x^* \in \mathbb{R}^d$ such that $F(x^*) = 0,$ (2) where $F(x) = \mathbb{E}_{\xi \sim \mathcal{D}}[F_{\xi}(x)].$	 New high-probability results under Assump. A1, A2 Smooth (quasi-strongly) convex minimization Monotone/quasi-strongly monotone VIP Weaker assumptions in the non-convex case We do not assume boundedness of the gradient Extension to the functions satisfying PŁ-condition A5 Failure of SGD We construct an example of a strongly convex smooth problem and stochastic oracle with bounded variance such that to achieve P{ x^k - x[*] ² > ε} ≤ β SGD requires Ω(σ²/µ√εβ) iterations
Bounded α -Moment Assumption We assume that there exist some set $Q \subseteq \mathbb{R}^d$ and values $\sigma \geq 0$,	4. Failure of SGD
(A1) for problem (1) $\mathbb{E}_{\xi \sim \mathcal{D}}[\nabla f_{\xi}(x)] = \nabla f(x)$ and $\mathbb{E}_{\xi \sim \mathcal{D}}[\ \nabla f_{\xi}(x) - \nabla f(x)\ ^{\alpha}] \leq \sigma^{\alpha},$ (3) (A2) for problem (2) $\mathbb{E}_{\xi \sim \mathcal{D}}[F_{\xi}(x)] = F(x)$ and	× SGD $x^{k+1} = x^k - \gamma \nabla f_{\xi^k}(x^k)$ can diverge in expectation, when Assumption (A1) is satisfied with $\alpha < 2$. × There are no high-probability convergence results for SGD having logarithmic dependence on $1/\beta$.
$\mathbb{E}_{\xi \sim \mathcal{D}}[\ F_{\xi}(x) - F(x)\ ^{\alpha}] \leq \sigma^{\alpha}. $ (4) Assumptions for Minimization Problem (1) (A3), (A4): Smoothness and lower-boundedness: $\forall x, y \in Q$ we have $\ \nabla f(x) - \nabla f(y)\ \leq L \ x - y\ $ and $f_* = \inf_{x \in Q} f(x) > -\infty$ (A5) Polyak-Łojasiewicz (PŁ) condition: $\forall x \in Q$ and $x^* = \arg \min_{x \in \mathbb{R}^d} f(x)$ we have $\ \nabla f(x)\ ^2 \geq 2\mu (f(x) - f(x^*)).$ (A6) μ -quasi-strong convexity: $\forall x \in Q$ and $x^* =$	Theorem 1 For any $\varepsilon > 0$ and sufficiently small $\beta \in (0, 1)$ there exist problem (1) such that Assumptions (A1), (A3), and (A7) hold with $Q = \mathbb{R}^d$, $\alpha = 2, 0 < \mu \leq L$ and for the iterates produced by SGD with any stepsize $\gamma > 0$ $\mathbb{P}\left\{ \ x^k - x^*\ ^2 \geq \varepsilon \right\} \leq \beta \implies k = \Omega\left(\frac{\sigma}{\mu\sqrt{\varepsilon\beta}}\right).$ • This partially justifies the need of applying some non-linearity to
$\arg\min_{x\in\mathbb{R}^d} f(x) \text{ we have } f(x^*) \geq f(x) + \langle \nabla f(x), x^* - x\rangle + \frac{\mu}{2} x - x^* ^2.$	the stochastic gradient (e.g., clipping). 5. Gradient Clipping
A7 μ -strongly convexity: $\forall x, y \in Q$ we have $f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} y - x ^2$. When $\mu = 0$ function f is called convex. Assumptions for Variational Inequality Problem (2) A8 Lipschitzness: $\forall x, y \in Q$ we have $ F(x) - F(y) \leq \frac{\mu}{2}$	The clipping operator is defined as $clip(x,\lambda) = \begin{cases} \min\left\{1,\frac{\lambda}{\ x\ }\right\}x, & \text{if } x \neq 0, \\ 0, & \text{otherwise.} \end{cases}$ • Clipping creates bias: $\mathbb{E}[clip(\nabla f_{\xi}(x),\lambda)] \neq \nabla f(x)$ in general
$\begin{split} L \ x - y\ . \\ \textbf{A9} \underline{\text{Monotonicity:}} \ \forall x, y \in Q \text{ we have } \langle F(x) - F(y), x - y \rangle \geq 0. \\ \textbf{A10} \underline{\mu}\text{-quasi-strong monotonicity:} \forall x \in Q \text{ and } x^* \text{ such that} \\ F(x^*) &= 0 \text{ we have } \langle F(x), x - x^* \rangle \geq \mu \ x - x^*\ ^2. \\ \textbf{A11} \underline{\text{Star-cocoercivity:}} \forall x \in Q \ x^* \text{ such that } F(x^*) = 0 \text{ we have} \\ \ F(x)\ ^2 \leq \ell \langle F(x), x - x^* \rangle. \end{split}$	Lemma 1 Let X be a random vector in \mathbb{R}^d and $\tilde{X} = \operatorname{clip}(X, \lambda)$. Then, $\ \tilde{X} - \mathbb{E}[\tilde{X}]\ \leq 2\lambda$. Moreover, if for some $\sigma \geq 0$ and $\alpha \in [1, 2)$ $\mathbb{E}[X] = x \in \mathbb{R}^d$, $\mathbb{E}[\ X - x\ ^{\alpha}] \leq \sigma^{\alpha}$ and $\ x\ \leq \lambda/2$, then $\ \mathbb{E}[\tilde{X}] - x\ \leq \frac{2^{\alpha}\sigma^{\alpha}}{\lambda^{\alpha-1}}$, (6) $\mathbb{E}\left[\ \tilde{X} - \mathbb{E}[\tilde{X}]\ ^2\right] \leq 18\lambda^{2-\alpha}\sigma^{\alpha}$. (7)
2. In-Expectation vs High-Probability In-expectation guarantees: $\mathbb{E}[x - x^* ^2] \leq \varepsilon$,	• clipped-SGD: $x^{k+1} = x^k - \gamma \cdot \operatorname{clip} \left(\nabla f_{\xi^k}(x^k), \lambda_k \right)$ • In our proofs, we separate "stochastic" and "deterministic" parts • In the analysis of clipped-SGD for convex problems, we derive

In-expectation guarantees: $\mathbb{E}\left[f(x) - f(x^*)\right] \le \varepsilon, \ \mathbb{E}\left[\|\nabla f(x^*)\|^2\right] \le \varepsilon$

 $\mathbb{E}\left[\|x - x^*\|^2\right]$

× Typically, depend only on some moments of stochastic gradient, e.g., variance

High-probability guarantees: $\mathbb{P}\left\{\|x - x^*\|^2 \le \varepsilon\right\} \ge 1 - \beta$, $\mathbb{P}\left\{f(x) - f(x^*) \le \varepsilon\right\} \ge 1 - \beta, \ \mathbb{P}\left\{\|\nabla f(x^*)\|^2 \le \varepsilon\right\} \ge 1 - \beta$ \checkmark Sensitive to the distribution of the stochastic gradient noise

High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance

Marina Dalinova² Eduard Gorbunov³ Samuel Horváth³ Abdurakhmon Sadiev¹ Gauthier Gidel⁴⁵ Pavel Dvurechensky⁶ Alexander Gasnikov²⁷⁸ Peter Richtárik¹

¹King Abdullah University of Science and Technology ²Moscow Institute of Physics and Technology ³Mohamed bin Zayed University of Artificial Intelligence ⁴Mila, Université de Montréal ⁵Canada CIFAR AI Chair ⁶Weierstrass Institute for Applied Analysis and Stochastics ⁷HSE University ⁸ Institute for Information Transmission Problems RAS

2

$$\mathbb{P}\left\{\|x^k - x^*\|^2 \ge \varepsilon\right\} \le \beta \implies k = \Omega\left(\frac{\sigma}{\mu\sqrt{\varepsilon\beta}}\right).$$

$$\operatorname{clip}(x,\lambda) = \begin{cases} \min\left\{1,\frac{\lambda}{\|x\|}\right\}x, & \text{if } x \neq 0, \\ 0, & \text{otherwise.} \end{cases}$$
(5)

W

$$\mathbb{E}\left[\left\|\tilde{X} - \mathbb{E}[\tilde{X}]\right\|^2\right] \le 18\lambda^{2-\alpha}\sigma^{\alpha}.$$
(7)

$$\begin{split} (k+1) \left(f(\overline{x}^k) - f(x^*) \right) &\lesssim R_0^2 - R_{k+1}^2 + \gamma \sum_{t=0}^k \langle \eta_t, \theta_t \rangle + \gamma^2 \sum_{t=0}^k \|\theta_t\|^2, \\ \text{where } R_t &= \|x^t - x^*\|, \ \overline{x}^k = \frac{1}{k+1} \sum_{t=0}^k x^t, \ \eta_t = x^t - x^* - \gamma \nabla f(x^t), \\ e &= \texttt{clip}(\nabla f_{\xi^t}(x^t), \lambda_t) - \nabla f(x_t) \end{split}$$

• We upper-bound the sums with θ^t using Bernstein's inequality for martingale differences and do it inductively (to ensure that R_t is bounded with high probability)

Theorem 2 Let $k \ge 0$ and $\beta \in (0, 1]$ are such that $A = \ln \frac{4(K+1)}{\beta} \ge 1$. **Case 1.** Let Assumptions (A1), (A3), (A4) hold for $Q = \{x \in \mathbb{R}^d \mid \exists y \in \mathbb{R$ \mathbb{R}^d : $f(y) \leq f_* + 2\Delta$ and $\|x - y\| \leq \sqrt{\Delta}/20\sqrt{L}$, $\Delta \geq f(x^0) - f_*$ and $0 < \gamma \leq \mathcal{O}\left(\min\{1/LA, \sqrt{\Delta}/\sigma\sqrt{L}K^{1/\alpha}A^{(\alpha-1)/\alpha}\}\right), \ \lambda_k = \lambda = \Theta(\sqrt{\Delta}/\sqrt{L}\gamma A).$ Case 2. Let Assumptions (A1), (A3), (A5) hold for $Q = \{x \in A\}$ $\mathbb{R}^d \mid \exists y \in \mathbb{R}^d : f(y) \leq f_* + 2\Delta \text{ and } \|x - y\| \leq \sqrt{\Delta}/20\sqrt{L}\},$ $\Delta \geq f(x^0) - f_*$ and $0 < \gamma = \mathcal{O}(\min\{1/LA, \ln(B_K)/\mu(K+1)\}), B_K =$ $\Theta\left(\max\{2, (K+1)^{2(\alpha-1)/\alpha}\mu^2\Delta/L\sigma^2A^{2(\alpha-1)/\alpha}\ln^2(B_K)\}\right), \ \lambda_k = \Theta(\exp(-\gamma\mu(1+k/2))\sqrt{\Delta}/\sqrt{L\gamma}A).$ **Case 3.** Let Assumptions (A1), (A3), (A7) with $\mu = 0$ hold for $Q = B_{3R}(x^*)$, $R \geq ||x^0 - x^*||$ and $0 < \gamma \leq \mathcal{O}(\min\{1/LA, R/\sigma K^{1/\alpha} A^{(\alpha-1)/\alpha}\}), \lambda_k = \lambda = \Theta(R/\gamma A).$ Case 4. Let Assumptions (A1), (A3), (A6) with $\mu > 0$ hold for Q = $B_{3R}(x^*), R \ge ||x^0 - x^*||$ and $0 < \gamma = \mathcal{O}(\min\{1/LA, \ln(B_K)/\mu(K+1)\}), B_K = 0$ $\Theta\left(\max\{2, (K+1)^{2(\alpha-1)/\alpha}\mu^2 R^2 / \sigma^2 A^{2(\alpha-1)/\alpha} \ln^2(B_K)\}\right), \ \lambda_k = \Theta(\exp(-\gamma \mu(1+k/2)) R / \gamma A).$ Then to guarantee $\frac{1}{K+1} \sum_{k=0}^{k} \|\nabla f(x^k)\|^2 \leq \varepsilon$ in **Case 1**, $f(x^K) - f(x^*) \leq \varepsilon$ in Case 2, $f(\bar{x}^K) - f(x^*) \leq \varepsilon$ in Case 3 with $\bar{x}^K = \frac{1}{K+1} \sum_{k=0}^K x^k$, $||x^{K} - x^{*}||^{2} \leq \varepsilon$ in **Case 4** with probability $\geq 1 - \beta$ clipped-SGD require Case 1: $\widetilde{\mathcal{O}}$ | max -*Case 2*:

oracle calls

Theorem 3

• For $\alpha = 2$ the derived complexity bounds match the best-known ones for clipped-SSTM • For strongly convex problems, we have a restarted version (Rclipped-SSTM)

6. Results for clipped-SGD

 $Case \ 3$: Case 4:

• For $\alpha = 2$ the derived complexity bounds match the best-known ones for clipped-SGD

• The second term under the maximum in (8) (quasi-strongly convex functions) is optimal up to logarithmic factors

7. Results for clipped-SSTM

• Clipped Stochastic Similar Triangles Method:

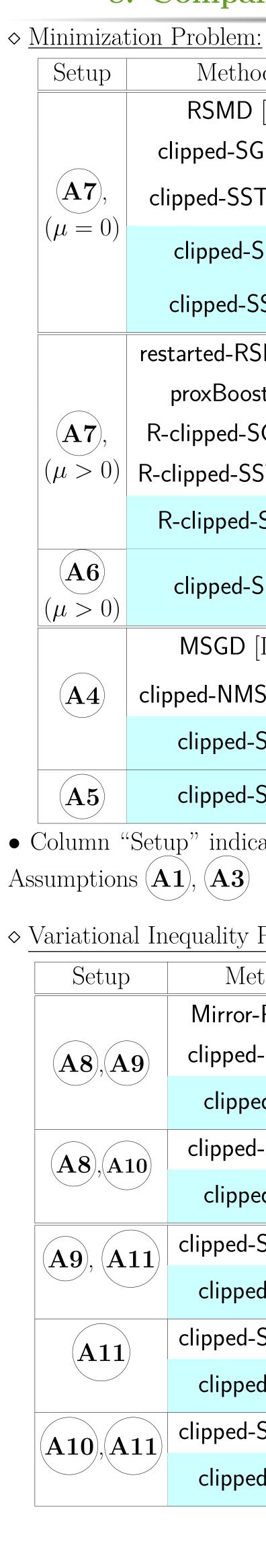
$$egin{aligned} x^{k+1} &= rac{A_k y^k + lpha_{k+1} z^k}{A_{k+1}}, \ z^{k+1} &= z^k - lpha_{k+1} \cdot ext{clip} \left(
abla f_{\xi^k}(x^{k+1}), \lambda_k
ight), \ y^{k+1} &= rac{A_k y^k + lpha_{k+1} z^{k+1}}{A_{k+1}}, \end{aligned}$$

where $A_0 = \alpha_0 = 0$, $\alpha_{k+1} = \frac{k+2}{2aL}$, $A_{k+1} = A_k + \alpha_{k+1}$, and ξ^k is sampled from \mathcal{D}_k independently from previous steps.

Let Assumptions (A1), (A3), (A7) with $\mu = 0$ hold for $Q = B_{3R}(x^*), R \geq 0$ $\|x^0 - x^*\|^2 \text{ and } a = \Theta(\max\{A^2, \sigma K^{(\alpha+1)/\alpha}A^{(\alpha-1)/\alpha}/LR\}), \lambda_k = \Theta(R/(\alpha_{k+1}A)), \text{ where } \beta \in (0, 1] \text{ are such that } A = \ln \frac{4K}{\beta} \ge 1. \text{ Then to guarantee } f(y^K) - f(x^*) \le \varepsilon$ with probability $\geq 1 - \beta$ clipped-SSTM requires

$$\widetilde{\mathcal{O}}\left(\max\left\{\sqrt{\frac{LR^2}{\varepsilon}}, \left(\frac{\sigma R}{\varepsilon}\right)^{\frac{\alpha}{\alpha-1}}\right\}\right) \quad \text{oracle calls.}$$

Moreover, with probability $\geq 1 - \beta$ the iterates of **clipped-SSTM** stay in the ball $B_{2R}(x^*)$: $\{x^k\}_{k=0}^{K+1}, \{y^k\}_{k=0}^K, \{z^k\}_{k=0}^K \subseteq B_{2R}(x^*).$



[1] Nazin, A. V., Nemirovsky, A., Tsybakov, A. B., and Juditsky, A. Algorithms of robust stochastic optimization based on mirror descent method. Automation and Remote Control 2019 [2] Gorbunov, E., Danilova, M., and Gasnikov, A. Stochastic optimization with heavy-tailed noise via accelerated gradient clipping. NeurIPS 2020. [3] Gorbunov, E., Danilova, M., Dobre, D., Dvurechensky, P., Gasnikov, A., and Gidel, G. Clipped stochastic methods for variational inequalities with heavy-tailed noise. NeurIPS 2022. [4] Davis, D., Drusvyatskiy, D., Xiao, L., and Zhang, J. From low probability to high confidence in stochastic convex optimization.

- JMLR 2021
- Systems, 2011

8. Comparison with Prior Work Method Complexity **RSMD** [1] max { $\max\left\{\frac{LR^2}{\varepsilon}, \frac{\sigma^2 R^2}{\varepsilon}\right\}$ clipped-SGD [2] $\max\left\{\sqrt{\frac{LR^2}{\varepsilon}}, \frac{\sigma^2 R^2}{\varepsilon}\right\}$ clipped-SSTM [2] $\left\{ \frac{LR^2}{\varepsilon}, \left(\frac{\sigma R}{\varepsilon} \right)^{\overline{\alpha}} \right\}$ clipped-SGD (1, 2)max { clipped-SSTM restarted-RSMD [1] max { proxBoost [4] max < R-clipped-SGD [2]max · $\mathsf{R} ext{-clipped} ext{-SSTM}$ max R-clipped-SSTM (1, 2] $\max\left\{\frac{L}{\mu}, \left(\frac{\sigma^2}{\mu^2\varepsilon}\right)^2\right\}$ clipped-SGD (1, 2] $\max\left\{\frac{L^2\Delta^2}{\varepsilon}, \frac{\sigma^4}{\varepsilon^2}\right\}$ MSGD [L5] X clipped-NMSGD [6] (1, 2] $\underline{L\Delta}$, $\left(\underline{\sqrt{L\Delta}\sigma}\right)^{\overline{\alpha-1}}$ clipped-SGD (1,2] $\max \langle$ clipped-SGD (1, 2]max {

• Column "Setup" indicates the assumptions made in addition to

♦ Variational Inequality Problem:

	Method	Complexity	α
	Mirror-Prox [7]	$\max\left\{\frac{LD^2}{\varepsilon}, \frac{\sigma^2 D^2}{\varepsilon}\right\}$	X
	clipped-SEG $[3]$	$\max\left\{\frac{LR^2}{\varepsilon}, \frac{\sigma^2 R^2}{\varepsilon}\right\}$	2
	clipped-SEG	$\max\left\{\frac{LR^2}{\varepsilon}, \left(\frac{\sigma R}{\varepsilon}\right)^{\frac{\alpha}{\alpha-1}}\right\}$	(1, 2]
D	clipped-SEG $[3]$	$\max\left\{\frac{L}{\mu}, \frac{\sigma^2}{\mu\varepsilon}\right\}$	2
	clipped-SEG	$\max\left\{\frac{\underline{L}}{\mu}, \left(\frac{\sigma^2}{\mu^2\varepsilon}\right)^{\frac{\alpha}{\alpha-1}}\right\}$	(1, 2]
1	clipped-SGDA $[3]$	$\max\left\{\frac{\ell R^2}{\varepsilon}, \frac{\sigma^2 R^2}{\varepsilon^2}\right\}$	2
	clipped-SGDA	$\max\left\{\frac{\ell R^2}{\varepsilon}, \left(\frac{\sigma R}{\varepsilon}\right)^{\frac{\alpha}{\alpha-1}}\right\}$	(1, 2]
	clipped-SGDA $[3]$	$\max\left\{\frac{\ell^2 R^2}{\varepsilon}, \frac{\ell^2 \sigma^2 R^2}{\varepsilon^2}\right\}$	2
	clipped-SGDA	$\max\left\{\frac{\ell^2 R^2}{\varepsilon}, \left(\frac{\ell\sigma R}{\varepsilon}\right)^{\frac{\alpha}{\alpha-1}}\right\}$	(1, 2]
1	clipped-SGDA $[3]$	$\max\left\{\frac{\ell}{\mu}, \frac{\sigma^2}{\mu^2 \varepsilon}\right\}$	2
	clipped-SGDA	$\max\left\{\frac{\ell}{\mu}, \left(\frac{\sigma^2}{\mu^2\varepsilon}\right)^{\frac{\alpha}{2(\alpha-1)}}\right\}$	(1, 2]

References

[5] Li, X. and Orabona, F. A high probability analysis of adaptive SGD with momentum. arXiv preprint arXiv:2007.14294, 2020. [6] Cutkosky, A. and Mehta, H. High-probability bounds for non-convex stochastic optimization with heavy tails. NeurIPS 2021. [7] Juditsky, A., Nemirovski, A., and Tauvel, C. Solving variational inequalities with stochastic mirror-prox algorithm. Stochastic