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1.Preliminaries

Main Problems

• Minimization problem:
min
x∈Rd

{f (x) = Eξ∼D [fξ(x)]} , (1)

where ξ is a random variable with distribution D.
• Variational inequality problem:

find x∗ ∈ Rd such that F (x∗) = 0, (2)
where F (x) = Eξ∼D[Fξ(x)].

Bounded α-Moment Assumption

We assume that there exist some set Q ⊆ Rd and values σ ≥ 0,
α ∈ (1, 2] such that for all x ∈ Q

A1 for problem (1) Eξ∼D[∇fξ(x)] = ∇f (x) and

Eξ∼D[∥∇fξ(x) − ∇f (x)∥α] ≤ σα, (3)

A2 for problem (2) Eξ∼D[Fξ(x)] = F (x) and

Eξ∼D[∥Fξ(x) − F (x)∥α] ≤ σα. (4)

Assumptions for Minimization Problem (1)

A3 , A4 : Smoothness and lower-boundedness: ∀x, y ∈ Q we
have ∥∇f (x)−∇f (y)∥ ≤ L∥x−y∥ and f∗ = infx∈Q f (x) > −∞
A5 Polyak-Łojasiewicz (PŁ) condition: ∀x ∈ Q and
x∗ = arg minx∈Rd f (x) we have ∥∇f (x)∥2 ≥ 2µ (f (x) − f (x∗)) .

A6 µ-quasi-strong convexity:∀x ∈ Q and x∗ =
arg minx∈Rd f (x) we have f (x∗) ≥ f (x) + ⟨∇f (x), x∗ −
x⟩ + µ

2∥x − x∗∥2.

A7 µ-strongly convexity:∀x, y ∈ Q we have
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩ + µ

2∥y − x∥2.
When µ = 0 function f is called convex.

Assumptions for Variational Inequality Problem (2)

A8 Lipschitzness: ∀x, y ∈ Q we have ∥F (x) − F (y)∥ ≤
L∥x − y∥.
A9 Monotonicity: ∀x, y ∈ Q we have ⟨F (x)−F (y), x−y⟩ ≥ 0.

A10 µ-quasi-strong monotonicity:∀x ∈ Q and x∗ such that
F (x∗) = 0 we have ⟨F (x), x − x∗⟩ ≥ µ∥x − x∗∥2.

A11 Star-cocoercivity:∀x ∈ Q x∗ such that F (x∗) = 0 we have
∥F (x)∥2 ≤ ℓ⟨F (x), x − x∗⟩.

2. In-Expectation vs High-Probability

In-expectation guarantees: E [∥x − x∗∥2] ≤ ε,
E [f (x) − f (x∗)] ≤ ε, E [∥∇f (x∗)∥2] ≤ ε
✗ Typically, depend only on some moments of stochastic gradient,
e.g., variance
High-probability guarantees: P {∥x − x∗∥2 ≤ ε} ≥ 1 − β,
P {f (x) − f (x∗) ≤ ε} ≥ 1 − β, P {∥∇f (x∗)∥2 ≤ ε} ≥ 1 − β
✓ Sensitive to the distribution of the stochastic gradient noise

3. Our Contribution

⋄ New high-probability results under Assump. A1 , A2
• Smooth (quasi-strongly) convex minimization
• Monotone/quasi-strongly monotone VIP

⋄ Weaker assumptions in the non-convex case
• We do not assume boundedness of the gradient
• Extension to the functions satisfying PŁ-condition A5

⋄ Failure of SGD
• We construct an example of a strongly convex smooth problem

and stochastic oracle with bounded variance such that to achieve
P{∥xk − x∗∥2 > ε} ≤ β SGD requires Ω (σ2/µ

√
εβ) iterations

4. Failure of SGD

✗ SGD xk+1 = xk − γ∇fξk(xk) can diverge in expectation, when
Assumption A1 is satisfied with α < 2.
✗ There are no high-probability convergence results for SGD having
logarithmic dependence on 1/β.

Theorem 1

For any ε > 0 and sufficiently small β ∈ (0, 1) there exist problem
(1) such that Assumptions A1 , A3 , and A7 hold with Q =
Rd, α = 2, 0 < µ ≤ L and for the iterates produced by SGD
with any stepsize γ > 0

P
{

∥xk − x∗∥2 ≥ ε
}

≤ β =⇒ k = Ω
(

σ

µ
√

εβ

)
.

• This partially justifies the need of applying some non-linearity to
the stochastic gradient (e.g., clipping).

5. Gradient Clipping

The clipping operator is defined as

clip(x, λ) =

min
{

1, λ
∥x∥

}
x, if x ̸= 0,

0, otherwise.
(5)

• Clipping creates bias: E[clip(∇fξ(x), λ)] ̸= ∇f (x) in general
Lemma 1

Let X be a random vector in Rd and X̃ = clip(X, λ). Then,∥∥∥X̃ − E[X̃ ]
∥∥∥ ≤ 2λ. Moreover, if for some σ ≥ 0 and α ∈ [1, 2)

E[X ] = x ∈ Rd, E[∥X − x∥α] ≤ σα and ∥x∥ ≤ λ/2, then∥∥∥E[X̃ ] − x
∥∥∥ ≤ 2ασα

λα−1 , (6)

E
[∥∥∥X̃ − E[X̃ ]

∥∥∥2
]

≤ 18λ2−ασα. (7)

• clipped-SGD: xk+1 = xk − γ · clip
(
∇fξk(xk), λk

)
• In our proofs, we separate “stochastic” and “deterministic” parts
• In the analysis of clipped-SGD for convex problems, we derive

γ(k +1)
(
f (xk) − f (x∗)

)
⪅ R2

0 −R2
k+1 +γ

k∑
t=0

⟨ηt, θt⟩+γ2
k∑

t=0
∥θt∥2,

where Rt = ∥xt − x∗∥, xk = 1
k+1

∑k
t=0 xt, ηt = xt − x∗ − γ∇f (xt),

θt = clip(∇fξt(xt), λt) − ∇f (xt)
• We upper-bound the sums with θt using Bernstein’s inequality for
martingale differences and do it inductively (to ensure that Rt is
bounded with high probability)

6. Results for clipped-SGD
Theorem 2

Let k ≥ 0 and β ∈ (0, 1] are such that A = ln 4(K+1)
β ≥ 1.

Case 1. Let Assumptions A1 , A3 , A4 hold for Q = {x ∈ Rd | ∃y ∈
Rd : f (y) ≤ f∗ + 2∆ and ∥x − y∥ ≤

√
∆/20

√
L}, ∆ ≥ f (x0) − f∗ and

0 < γ ≤ O
(
min{1/LA,

√
∆/σ

√
LK

1/αA
(α−1)/α}

)
, λk = λ = Θ(

√
∆/

√
LγA).

Case 2. Let Assumptions A1 , A3 , A5 hold for Q = {x ∈
Rd | ∃y ∈ Rd : f (y) ≤ f∗ + 2∆ and ∥x − y∥ ≤

√
∆/20

√
L},

∆ ≥ f (x0) − f∗ and 0 < γ = O (min{1/LA, ln(BK)/µ(K+1)}), BK =
Θ
(

max{2, (K+1)2(α−1)/αµ2∆/Lσ2A
2(α−1)/α ln2(BK)}

)
, λk = Θ(exp(−γµ(1+k/2))

√
∆/

√
LγA).

Case 3. Let Assumptions A1 , A3 , A7 with µ = 0 hold for Q = B3R(x∗),
R ≥ ∥x0 − x∗∥ and 0 < γ ≤ O(min{1/LA, R/σK

1/αA
(α−1)/α}), λk = λ = Θ(R/γA).

Case 4. Let Assumptions A1 , A3 , A6 with µ > 0 hold for Q =
B3R(x∗), R ≥ ∥x0 − x∗∥ and 0 < γ = O (min{1/LA, ln(BK)/µ(K+1)}), BK =
Θ
(

max{2, (K+1)2(α−1)/αµ2R2/σ2A
2(α−1)/α ln2(BK)}

)
, λk = Θ(exp(−γµ(1+k/2))R/γA).

Then to guarantee 1
K+1

∑k
k=0 ∥∇f (xk)∥2 ≤ ε in Case 1, f (xK) − f (x∗) ≤ ε

in Case 2, f (x̄K) − f (x∗) ≤ ε in Case 3 with x̄K = 1
K+1

∑K
k=0 xk,

∥xK − x∗∥2 ≤ ε in Case 4 with probability ≥ 1 − β clipped-SGD re-
quires

Case 1: Õ

(
max

{
L∆
ε

,

(√
L∆σ

ε

) α
α−1
})

Case 2: Õ

(
max

{
L

µ
,

(
Lσ2

µ2ε

) α
2(α−1)
})

Case 3: Õ

(
max

{
LR2

ε
,

(
σR

ε

) α
α−1
})

Case 4: Õ

(
max

{
L

µ
,

(
σ2

µ2ε

) α
2(α−1)
})

oracle calls.

• For α = 2 the derived complexity bounds match the best-known
ones for clipped-SGD
• The second term under the maximum in (8) (quasi-strongly convex
functions) is optimal up to logarithmic factors

7. Results for clipped-SSTM

• Clipped Stochastic Similar Triangles Method:

xk+1 = Akyk + αk+1z
k

Ak+1
,

zk+1 = zk − αk+1 · clip
(
∇fξk(xk+1), λk

)
,

yk+1 = Akyk + αk+1z
k+1

Ak+1
,

where A0 = α0 = 0, αk+1 = k+2
2aL, Ak+1 = Ak + αk+1, and ξk is

sampled from Dk independently from previous steps.
Theorem 3

Let Assumptions A1 , A3 , A7 with µ = 0 hold for Q = B3R(x∗), R ≥
∥x0 − x∗∥2 and a = Θ(max{A2, σK

(α+1)/αA
(α−1)/α/LR}), λk = Θ(R/(αk+1A)), where

β ∈ (0, 1] are such that A = ln 4K
β ≥ 1. Then to guarantee f (yK)−f (x∗) ≤ ε

with probability ≥ 1 − β clipped-SSTM requires

Õ

(
max

{√
LR2

ε
,

(
σR

ε

) α
α−1
})

oracle calls.

Moreover, with probability ≥ 1 − β the iterates of clipped-SSTM stay in
the ball B2R(x∗): {xk}K+1

k=0 , {yk}K
k=0, {zk}K

k=0 ⊆ B2R(x∗).

• For α = 2 the derived complexity bounds match the best-known
ones for clipped-SSTM
• For strongly convex problems, we have a restarted version (R-
clipped-SSTM)

8. Comparison with Prior Work
⋄ Minimization Problem:

Setup Method Complexity α

A7 ,
(µ = 0)

RSMD [1] max
{

LD2

ε , σ2D2

ε

}
2

clipped-SGD [2] max
{

LR2

ε , σ2R2

ε

}
2

clipped-SSTM [2] max
{√

LR2

ε , σ2R2

ε

}
2

clipped-SGD max
{

LR2

ε ,
(

σR
ε

) α
α−1
}

(1, 2]

clipped-SSTM max
{√

LR2

ε ,
(

σR
ε

) α
α−1
}

(1, 2]

A7 ,
(µ > 0)

restarted-RSMD [1] max
{

L
µ, σ2

µε

}
2

proxBoost [4] max
{

L
µ, σ2

µε

}
2

R-clipped-SGD [2] max
{

L
µ, σ2

µε

}
2

R-clipped-SSTM [2] max
{√

L
µ, σ2

µε

}
2

R-clipped-SSTM max
{√

L
µ,
(

σ2

µε

) α
2(α−1)

}
(1, 2]

A6
(µ > 0)

clipped-SGD max
{

L
µ,
(

σ2

µ2ε

) α
2(α−1)

}
(1, 2]

A4

MSGD [L5] max
{

L2∆2

ε , σ4

ε2

}
✗

clipped-NMSGD [6]
(

G2

ε

)3α−2
2α−2 (1, 2]

clipped-SGD max
{

L∆
ε ,
(√

L∆σ
ε

) α
α−1
}

(1, 2]

A5 clipped-SGD max
{

L
µ,
(

Lσ2

µ2ε

) α
2(α−1)

}
(1, 2]

• Column “Setup” indicates the assumptions made in addition to
Assumptions A1 , A3

⋄ Variational Inequality Problem:
Setup Method Complexity α

A8 , A9

Mirror-Prox [7] max
{

LD2

ε , σ2D2

ε

}
✗

clipped-SEG [3] max
{

LR2

ε , σ2R2

ε

}
2

clipped-SEG max
{

LR2

ε ,
(

σR
ε

) α
α−1
}

(1, 2]

A8 , A10
clipped-SEG [3] max

{
L
µ, σ2

µε

}
2

clipped-SEG max
{

L
µ,
(

σ2

µ2ε

) α
α−1
}

(1, 2]

A9 , A11 clipped-SGDA [3] max
{

ℓR2

ε , σ2R2

ε2

}
2

clipped-SGDA max
{

ℓR2

ε ,
(

σR
ε

) α
α−1
}

(1, 2]

A11 clipped-SGDA [3] max
{

ℓ2R2

ε , ℓ2σ2R2

ε2

}
2

clipped-SGDA max
{

ℓ2R2

ε ,
(

ℓσR
ε

) α
α−1
}

(1, 2]

A10 , A11 clipped-SGDA [3] max
{

ℓ
µ, σ2

µ2ε

}
2

clipped-SGDA max
{

ℓ
µ,
(

σ2

µ2ε

) α
2(α−1)

}
(1, 2]
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