Problem

$$\min_{x \in \mathbb{R}^d} f(x)$$

Standard *L*-smoothness: $\|\nabla^2 f(x)\|_2 \le L$

- Equivalent definition: $\|\nabla f(x) \nabla f(y)\| \le L\|x y\|$
- \nearrow Does not hold on \mathbb{R}^d in Deep Learning
- X Even if satisfied on a compact, constant L can be large

 (L_0, L_1) -smoothness: $\|\nabla^2 f(x)\|_2 \le L_0 + L_1 \|\nabla f(x)\|$

✓ Proposed and empirically validated by Zhang et al. (2020) [7]

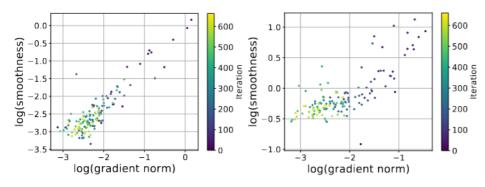


Figure 1: Estimated smoothness constant for two DL tasks (Zhang et al., 2020) [7]

✓ Generalized by Zhang et al. (2020) [6] and Chen et al. (2023) [1] to

$$\|\nabla f(x) - \nabla f(y)\| \le \left(L_0 + L_1 \sup_{u \in [x,y]} \|\nabla f(u)\|\right) \|x - y\|$$

✓ Chen et al. (2023) [1] proved that (L_0, L_1) -smoothness is equivalent to

$$\|\nabla f(x) - \nabla f(y)\| < (L_0 + L_1 \|\nabla f(y)\|) \exp(L_1 \|x - y\|) \|x - y\|.$$

Existing convergence results in the convex case

Let f be **convex** and (L_0, L_1) -smooth. **Goal:** bound the number of iterations $N(\varepsilon)$ needed to reach $f(x^N) - f(x^*) \le \varepsilon$ for a given method, $x^* \in \arg\min_{x \in \mathbb{R}^d} f(x)$.

- Li et al. (2024) [3]: $N = \mathcal{O}\left(\frac{L_0(1+L_1R_0\exp(L_1R_0))R_0^2}{\varepsilon}\right)$
 - X Exponentially large factor of $R_0 = ||x^0 x^*||$
- Koloskova et al. (2023) [2], Takezawa et al. (2024) [5]: $N = \mathcal{O}\left(\max\left\{\frac{L_0 R_0^2}{\varepsilon}, \sqrt{\frac{R_0^4 L L_1^2}{\varepsilon}}\right\}\right)$
 - ✗ Derived under additional L-smoothness assumption
- ⁹ Is it possible to derive better results without extra assumptions? Yes!

References

- $1. \ \ Chen \ et \ al. \ \textit{Generalized-smooth nonconvex optimization is as efficient as smooth nonconvex optimization} \ (ICML\ 2023)$
- 2. Koloskova et al. Revisiting gradient clipping: Stochastic bias and tight convergence guarantees (ICML 2023)
- 3. Li et al. Convex and non-convex optimization under generalized smoothness (NeurIPS 2024)
- $4. \quad \text{Malitsky \& Mishchenko}. \ \textit{Adaptive gradient descent without descent} \ (\text{ICML 2020})$
- 5. Takezawa et al. Parameter-free Clipped Gradient Descent Meets Polyak (NeurIPS 2024)
- 6. Zhang et al. Improved analysis of clipping algorithms for non- convex optimization (NeurIPS 2020)
- 7. Zhang et al. Why gradient clipping accelerates training: A theoretical justification for adaptivity (ICLR 2020)

Methods for Convex (L_0, L_1) -Smooth Optimization:

- Clipping
- Acceleration
- Adaptivity

Eduard Gorbunov*
Nazarii Tupitsa*
Sayantan Choudhury
Alen Aliev
Peter Richtárik
Samuel Horváth
Martin Takáč (*equal contribution)

Gradient Descent with Polyak Stepsizes

$$\begin{array}{l} \textbf{Algorithm:} \ x^{k+1} = x^k - \frac{f(x^k) - f(x^*)}{\|\nabla f(x^k)\|^2} \nabla f(x^k) \\ \textbf{Rate:} \ f(x^N) - f(x^*) \leq \varepsilon \ \text{after} \ N = \mathcal{O}\left(\max\left\{\frac{L_0 R_0^2}{\varepsilon}, L_1^2 R_0^2\right\}\right) \end{array}$$

Gradient Descent with Smoothed Clipping

Algorithm:
$$x^{k+1} = x^k - \frac{\eta}{L_0 + L_1 \|\nabla f(x^k)\|} \nabla f(x^k)$$

Rate: $f(x^N) - f(x^*) \le \varepsilon$ after $N = \mathcal{O}\left(\max\left\{\frac{L_0 R_0^2}{\varepsilon}, L_1^2 R_0^2\right\}\right)$

- ✓ No exponential factors of $R_0 = ||x^0 x^*||$
- ✓ No additional assumptions
- Proof sketch
 - Using the convexity, $\frac{\nu\|\nabla f(x)\|^2}{2(L_0+L_1\|\nabla f(x)\|)} \leq f(x) f(x^*)$, and $\eta \leq \frac{\nu}{2}$, we get

$$||x^{k+1} - x^*||^2 \le ||x^k - x^*||^2 - \eta \frac{f(x^k) - f(x^*)}{L_0 + L_1 ||\nabla f(x^k)||}$$

• Then, we consider two possible cases:

$$||x^{k+1} - x^*||^2 \le \begin{cases} ||x^k - x^*||^2 - \frac{\nu\eta}{8L_1^2}, & \text{if } ||\nabla f(x^k)|| \ge \frac{L_0}{L_1} \\ ||x^k - x^*||^2 - \frac{\eta}{2L_0} \left(f(x^k) - f(x^*) \right), & \text{if } ||\nabla f(x^k)|| < \frac{L_0}{L_1} \end{cases}$$

• The first case occurs no more than $\mathcal{O}(L_1^2 R_0^2)$ times; the second case is standard

Adaptive Gradient Descent (Malitsky & Mishchenko, (2020) [4])

Algorithm:
$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$
, where

$$\lambda_k = \min \left\{ \sqrt{1 + \frac{\lambda_{k-1}}{\lambda_{k-2}}} \lambda_{k-1}, \frac{\|x^k - x^{k-1}\|}{4\|\nabla f(x^k) - \nabla f(x^{k-1})\|} \right\}$$

Rate:
$$f(x^N) - f(x^*) \le \varepsilon$$
 after $N = \mathcal{O}\left(\max\left\{\frac{L_0 D^2}{\varepsilon}, m^2(L_1^2 D^2 + L_1^4 D_1^4)\right\}\right)$

- $m := 1 + \log_{\sqrt{2}} \left[\frac{(1 + L_1 D \exp(2L_1 D))}{2} \right]$
- $D^2 := \|x^1 x^*\|^2 + \frac{3}{4}\|x^1 x^0\|^2 + 2\lambda_1\theta_1(f(x^0) f(x^*))$
- No explicit exponential factors of R_0
- In the paper, we also have: an accelerated method $((L_0, L_1)\text{-STM})$ and stochastic extensions of the first two methods

Experiments

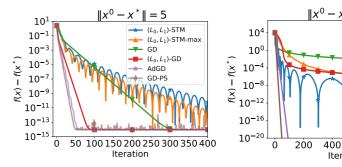


Figure 3: $f(x) = x^4$

(L₀, L₁)-GD