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Problem Setup

Dy,

We consider a standard distributed optimization problem S mOdeli o
1 M Aggregation :Eé iii

min T) = — x) . 1

min  J(@) = 37 3 fula) 1)
o [M]:={1,2,..., M} is a set of workers, f,, : RY — R is a non-
convex loss function, computed on the data available on client m for g local FL model -
the current model x € R?; ‘T‘ 1) L
e workers compute V f,(x) or V f,,;(z) (in this case we assume that ®& . & T s

functions {fm}%zl have the finite-sum form). Figure: Federated Learning illustration

Assumption: Symmetric (L, L;)-smoothness or general smoothness

The function f(x) is symmetrically (Lo, L1)-smooth (generally smooth) if
IVf(@) = Vil < (Lo+ Ly sup [|[Vf(w)l)llz—yll, Vz,yeR"

ue|x,y|
If f is twice-differentiable, this is equivalent to

|V f(@)| < Lo+ Ly IV f (@), Yz € R,
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Motivation

e Often real-life problems do not suit under regular L-smoothness ...... L
condition.
e In Figure to the right we show, that Hessian of 2* can be bounded

by Lo+ L1 ||V f(z)]|, but can’t be bounded by some L.
e In |1, 2| authors introduce concept of generalized smoothness and
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empirically show that it accurately represents real-world problems.

e Such problem class is largely unexplored in context of federated
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learning.

e (Generalized smoothness shows strong connection with clipping. Figure: Gen. smoothness of

Generalized Smoothness and Clipping

Generalized Smoothness step size:
1

1 1 1 Ly
— < min . = ——1min 17 .
L+ LV )] {2L0 2L, HVf(fck)H} 2Ly { L lIVf(ﬂwa}
Clipped step size:

A
= ~vmin< 1 .
= { ’ HVf(xk)H}
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Main Contribution

Algorithm Local Steps | Data Reshuffling | Client Participation | Server Step|Server LR
Clip-LocalGDJ v - Full Agoregated | Clipped
CLERR v Global Full Agoregated | Clipped
Clipped-RR-CLI v Local Partial Agoregated | Clipped

Algorithm CLERR: Clipped once in an Epoch Random Reshuffling

1. Input: Starting point 2y € RY, number of epochs T', constants cg, ¢; > 0.
2: fOI’t:O,...,T—ldO

> cycle over communication rounds

3: Choose global stepsize v; = co+61||1Vf(:Ut)||' > clipping of global stepsize
4: Choose small inner stepsize a; > 0.

5. Sample a permutation m; = {m(1),...,m(/N)}. > permute data once in a communication round
6: form=1,.... M do > cycle over clients
7: Ty = Ty

8: for j=0,...,.N—1do > cycle over data points
0: i =z — Vo (@) > update client point
10: end for

11: gt = O%LN(xt — xy) > aggregate gradient for m-th client
12: end for

13: gy = ﬁ Z,nj\f:l g;". > aggregate gradient over all the M clients
14: Tii1 = Tt — Vil > aggregated server step (jumping)
15: end for

Convergence Analysis

o IfT > 255250 and oy is small enough, then [E [mintzlmT {min {”vféft)nz, ”v";(fc’f)”}}} < e.

e [n standard smooth case, we recover rate O (LOT‘SO) of RR from [4].

e [n standard smooth case with PL-condition, we recover O (io In 250) of RR from [4].

Let f =M f.(2), fn = Zj-vzf)l fmi(z) and f,,;(x) be lower bounded and (Ly, L;)-smooth. Choose
small client stepsizes a4, global stepsizes ~; a% < v < -+, where a; = Lo + L ||V f(x;)]] Then, the
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iterates {z,}, , of Algorithm 2 satisfy

E| min {gmm{uwwu? \Wf(scou}}‘

t=0.... T—1 L ’ L
S(1+%8(N )N~ ) +2(N+1)) ol
< i Jo + ——(N + 1)A*, (6)
T At

where a; = Lo+ Ly ||V ()|, ar = Lo+ Ly maxy, |V fo(x)||, ar = Lo+Limax, ; |V fm(x)]|, A% =
[ =3 et frns 00 = flao) — f*

* - These authors contributed equally to this work.
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Experiments
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e Comparison of the Shuffle-Once (SO) methods, that shuffle data once before train loop, on generally-
smooth (2) problem (7).

e Comparison of methods with local steps (LS) on (7).

e Comparison of methods with random reshuffling (RR)), LS and partial participation (PP) on (7).

e Comparison of the SO methods on ResNet-18 on CIFAR-10 problem.
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Figure: Problem (7) for zp = (1,..., 1) (left) and zy = (10, ..., 10) (right) and different number of local steps T
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Figure: SO methods on ResNet-18 on CIFAR-10 problem
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