

# Methods with Local Steps and Random Reshuffling for Generally Smooth Non-Convex Federated Optimization





Grigory Malinovsky Samuel Horváth Martin Takáč Peter Richtárik Eduard Gorbunov Petr Ostroukhov\*

King Abdullah University of Science and Technology (KAUST) Mohamed bin Zayed University of Artificial Intelligence (MBZUAI) Moscow Institute of Physics and Technology (MIPT)

## Problem Setup

We consider a standard distributed optimization problem

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) := \frac{1}{M} \sum_{m=1}^M f_m(x) \right\}.$$

 $\bullet$   $[M] := \{1, 2, \ldots, M\}$  is a set of workers,  $f_m : \mathbb{R}^d \to \mathbb{R}$  is a non-the current model  $x \in \mathbb{R}^d$ ;

• workers compute  $\nabla f_m(x)$  or  $\nabla f_{mj}(x)$  (in this case we assume that functions  $\{f_m\}_{m=1}^M$  have the finite-sum form).



Figure: Federated Learning illustration

## Assumption: Symmetric $(L_0, L_1)$ -smoothness or general smoothness

The function f(x) is symmetrically  $(L_0, L_1)$ -smooth (generally smooth) if

$$\|\nabla f(x) - \nabla f(y)\| \le (L_0 + L_1 \sup_{u \in [x, u]} \|\nabla f(u)\|) \|x - y\|, \quad \forall x, y \in \mathbb{R}^d.$$
 (2)

If f is twice-differentiable, this is equivalent to

$$\left\|\nabla^2 f(x)\right\| \le L_0 + L_1 \left\|\nabla f(x)\right\|, \ \forall x \in \mathbb{R}^d.$$

#### Motivation

- $\bullet$  Often real-life problems do not suit under regular L-smoothness condition.
- In Figure to the right we show, that Hessian of  $x^4$  can be bounded by  $L_0 + L_1 \|\nabla f(x)\|$ , but can't be bounded by some L.
- In [1, 2] authors introduce concept of generalized smoothness and empirically show that it accurately represents real-world problems.
- Such problem class is largely unexplored in context of federated learning.
- Generalized smoothness shows strong connection with clipping.



Figure: Gen. smoothness of  $x^4$ .

# Generalized Smoothness and Clipping

## Generalized Smoothness step size:

$$\gamma_k \equiv \frac{1}{L_0 + L_1 \|\nabla f(x_k)\|} \le \min\left\{\frac{1}{2L_0}, \frac{1}{2L_1 \|\nabla f(x_k)\|}\right\} = \frac{1}{2L_0} \min\left\{1, \frac{L_0}{L_1 \|\nabla f(x_k)\|}\right\}. \tag{4}$$

Clipped step size:

$$\gamma_k \equiv \frac{\gamma}{\eta} \min \left\{ 1, \frac{\lambda}{\|\nabla f(x_k)\|} \right\}.$$
(5)

#### Main Contribution

| ${f Algorithm}$ | Local Steps  | Data Reshuffling | Client Participation | Server Step | Server LR |
|-----------------|--------------|------------------|----------------------|-------------|-----------|
| Clip-LocalGDJ   | <b>√</b>     | _                | Full                 | Aggregated  | Clipped   |
| CLERR           | $\checkmark$ | Global           | Full                 | Aggregated  | Clipped   |
| Clipped-RR-CLI  | $\checkmark$ | Local            | Partial              | Aggregated  | Clipped   |

#### Algorithm CLERR: Clipped once in an Epoch Random Reshuffling

: **Input:** Starting point  $x_0 \in \mathbb{R}^d$ , number of epochs T, constants  $c_0, c_1 > 0$ . for  $t=0,\ldots,T-1$  do > cycle over communication rounds Choose global stepsize  $\gamma_t = \frac{1}{c_0 + c_1 \|\nabla f(x_t)\|}$ . clipping of global stepsize Choose small inner stepsize  $\alpha_t > 0$ . Sample a permutation  $\pi_t = \{\pi_t(1), \dots, \pi_t(N)\}$ .  $\triangleright$  permute data once in a communication round for  $m=1,\ldots,M$  do > cycle over clients  $x_{t,0}^{m} = x_{t}$ for j = 0, ..., N - 1 do cycle over data points  $x_{t,j+1}^m = x_{t,j}^m - \alpha_t \nabla f_{m,\pi_t(j)}(x_{t,j}^m).$ > update client point  $g_t^m = \frac{1}{\alpha_t N} (x_t - x_{t,N}^m)$  $\triangleright$  aggregate gradient for m-th client end for  $\triangleright$  aggregate gradient over all the M clients □ aggregated server step (jumping)  $x_{t+1} = x_t - \gamma_t g_t.$ 

# Convergence Analysis

- If  $T \ge \frac{256\delta_0}{\zeta\varepsilon}$  and  $\alpha_t$  is small enough, then  $\mathbb{E}\left[\min_{t=1...T}\left\{\min\left\{\frac{\|\nabla f(x_t)\|^2}{L_0}, \frac{\|\nabla f(x_t)\|}{L_1}\right\}\right\}\right] \le \varepsilon$ .
- In standard smooth case, we recover rate  $O\left(\frac{L_0\delta_0}{\varepsilon}\right)$  of RR from [4].
- In standard smooth case with PL-condition, we recover  $O\left(\frac{L_0}{\mu}\ln\frac{2\delta_0}{\varepsilon}\right)$  of RR from [4].

#### Theorem 1

15: end for

Let  $f \equiv \sum_{m=1}^{M} f_m(x)$ ,  $f_m \equiv \sum_{j=0}^{N-1} f_{mj}(x)$  and  $f_{mj}(x)$  be lower bounded and  $(L_0, L_1)$ -smooth. Choose small client stepsizes  $\alpha_t$ , global stepsizes  $\gamma_t: \frac{\zeta}{\hat{a}_t} \leq \gamma_t \leq \frac{1}{4\hat{a}_t}$ , where  $\hat{a}_t \equiv L_0 + L_1 \|\nabla f(x_t)\|$  Then, the iterates  $\{x_t\}_{t=0}^{T-1}$  of Algorithm 2 satisfy

$$\mathbb{E}\left[\min_{t=0,\dots,T-1} \left\{ \frac{\zeta}{8} \min\left\{ \frac{\|\nabla f(x_t)\|^2}{L_0}, \frac{\|\nabla f(x_t)\|}{L_1} \right\} \right\} \right]$$

$$\leq \frac{8\left(1 + \frac{3\alpha_t^2 \tilde{a}_t^3}{8\hat{a}_t} ((N-1)(2N-1) + 2(N+1))\right)^T}{T} \delta_0 + \frac{6\alpha_t^2 \tilde{a}_t^3}{\hat{a}_t} (N+1)\Delta^*, (6)$$
where  $\hat{a}_t \equiv L_0 + L_1 \|\nabla f(x_t)\|$ ,  $a_t \equiv L_0 + L_1 \max_m \|\nabla f_m(x_t)\|$ ,  $\tilde{a}_t \equiv L_0 + L_1 \max_{m,j} \|\nabla f_{mj}(x_t)\|$ ,  $\Delta^* \equiv f^* - \frac{1}{M} \sum_{m=1}^{M} f_m^*, \ \delta_0 \equiv f(x_0) - f^*.$ 

#### Experiments

$$f(x) = \frac{1}{N} \sum_{i=1}^{N} \|x - x_i\|^4, \ x_i \in [-10, 10]^d$$
 (7)

- Comparison of the Shuffle-Once (SO) methods, that shuffle data once before train loop, on generallysmooth (2) problem (7).
- Comparison of methods with local steps  $(\mathbf{LS})$  on (7).
- Comparison of methods with random reshuffling ( $\mathbf{R}\mathbf{R}$ ), LS and partial participation ( $\mathbf{P}\mathbf{P}$ ) on (7).
- Comparison of the SO methods on ResNet-18 on CIFAR-10 problem.



Figure: Problem (7) for  $x_0=(1,...,1)$  (left) and  $x_0=(10,...,10)$  (right) and different number of local steps  $\tau$ 



Figure: SO methods on ResNet-18 on CIFAR-10 problem

- [1] Jingzhao Zhang, Tianxing He, Suvrit Sra, Ali Jadbabaie, Why gradient clipping accelerates training: A theoretical justification for adaptivity, 2020. [2] Ziyi Chen, Yi Zhou, Yingbin Liang, and Zhaosong Lu. Generalized-smooth nonconvex optimization is as efficient as smooth nonconvex optimization,
- [3] Grigory Malinovsky, Konstantin Mishchenko, and Peter Richtárik. Server-side stepsizes and sampling without replacement provably help in federated optimization, 2023.
- [4] Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Random reshuffling: Simple analysis with vast improvements. 2020.

<sup>\* -</sup> These authors contributed equally to this work.