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Problem Setup

We consider a standard distributed optimization problem

min
x∈Rd

f (x) := 1
M

M∑
m=1

fm(x)

 . (1)

• [M ] := {1, 2, . . . , M} is a set of workers, fm : Rd → R is a non-
convex loss function, computed on the data available on client m for
the current model x ∈ Rd;
• workers compute ∇fm(x) or ∇fmj(x) (in this case we assume that
functions {fm}M

m=1 have the finite-sum form). Figure: Federated Learning illustration

Assumption: Symmetric (L0, L1)-smoothness or general smoothness
The function f(x) is symmetrically (L0, L1)-smooth (generally smooth) if

∥∇f (x) − ∇f (y)∥ ≤ (L0 + L1 sup
u∈[x,y]

∥∇f (u)∥)∥x − y∥, ∀x, y ∈ Rd. (2)

If f is twice-differentiable, this is equivalent to∥∥∥∇2f (x)
∥∥∥ ≤ L0 + L1 ∥∇f (x)∥ , ∀x ∈ Rd. (3)

Motivation

• Often real-life problems do not suit under regular L-smoothness
condition.
• In Figure to the right we show, that Hessian of x4 can be bounded
by L0 + L1 ∥∇f (x)∥, but can’t be bounded by some L.
• In [1, 2] authors introduce concept of generalized smoothness and
empirically show that it accurately represents real-world problems.
• Such problem class is largely unexplored in context of federated
learning.
• Generalized smoothness shows strong connection with clipping. Figure: Gen. smoothness of x4.

Generalized Smoothness and Clipping

Generalized Smoothness step size:

γk ≡ 1
L0 + L1 ∥∇f (xk)∥

≤ min
{

1
2L0

,
1

2L1 ∥∇f (xk)∥

}
= 1

2L0
min

{
1,

L0

L1 ∥∇f (xk)∥

}
. (4)

Clipped step size:

γk ≡ γ min
{

1,
λ

∥∇f (xk)∥

}
. (5)

Main Contribution

Algorithm Local Steps Data Reshuffling Client Participation Server Step Server LR
Clip-LocalGDJ ✓ - Full Aggregated Clipped
CLERR ✓ Global Full Aggregated Clipped
Clipped-RR-CLI ✓ Local Partial Aggregated Clipped

Algorithm CLERR: Clipped once in an Epoch Random Reshuffling
1: Input: Starting point x0 ∈ Rd, number of epochs T, constants c0, c1 > 0.
2: for t = 0, . . . , T − 1 do ▷ cycle over communication rounds
3: Choose global stepsize γt = 1

c0+c1∥∇f (xt)∥. ▷ clipping of global stepsize
4: Choose small inner stepsize αt > 0.
5: Sample a permutation πt = {πt(1), . . . , πt(N)}. ▷ permute data once in a communication round
6: for m = 1, . . . , M do ▷ cycle over clients
7: xm

t,0 = xt

8: for j = 0, . . . , N − 1 do ▷ cycle over data points
9: xm

t,j+1 = xm
t,j − αt∇fm,πt(j)(xm

t,j). ▷ update client point
10: end for
11: gm

t = 1
αtN

(xt − xm
t,N) ▷ aggregate gradient for m-th client

12: end for
13: gt = 1

M

∑M
m=1 gm

t . ▷ aggregate gradient over all the M clients
14: xt+1 = xt − γtgt. ▷ aggregated server step (jumping)
15: end for

Convergence Analysis

• If T ≥ 256δ0
ζε and αt is small enough, then E

[
mint=1...T

{
min

{
∥∇f (xt)∥2

L0
, ∥∇f (xt)∥

L1

}}]
≤ ε.

• In standard smooth case, we recover rate O
(

L0δ0
ε

)
of RR from [4].

• In standard smooth case with PL-condition, we recover O
(

L0
µ ln 2δ0

ε

)
of RR from [4].

Theorem 1
Let f ≡

∑M
m=1 fm(x), fm ≡

∑N−1
j=0 fmj(x) and fmj(x) be lower bounded and (L0, L1)-smooth. Choose

small client stepsizes αt, global stepsizes γt : ζ
ât

≤ γt ≤ 1
4ât

, where ât ≡ L0 + L1 ∥∇f (xt)∥ Then, the
iterates {xt}T−1

t=0 of Algorithm 2 satisfy

E
[

min
t=0,...,T−1

{
ζ

8
min

{
∥∇f (xt)∥2

L0
,
∥∇f (xt)∥

L1

}}]

≤
8
(
1 + 3α2

t ã
3
t

8ât
((N − 1)(2N − 1) + 2(N + 1))

)T

T
δ0 + 6α2

t ã
3
t

ât
(N + 1)∆⋆, (6)

where ât ≡ L0+L1 ∥∇f (xt)∥ , at ≡ L0+L1 maxm ∥∇fm(xt)∥ , ãt ≡ L0+L1 maxm,j ∥∇fmj(xt)∥ , ∆∗ ≡
f ∗ − 1

M

∑M
m=1 f ∗

m, δ0 ≡ f (x0) − f ∗.

∗ - These authors contributed equally to this work.

Experiments

f (x) = 1
N

N∑
i=1

∥x − xi∥4 , xi ∈ [−10, 10]d (7)

• Comparison of the Shuffle-Once (SO) methods, that shuffle data once before train loop, on generally-
smooth (2) problem (7).
• Comparison of methods with local steps (LS) on (7).
• Comparison of methods with random reshuffling (RR), LS and partial participation (PP) on (7).
• Comparison of the SO methods on ResNet-18 on CIFAR-10 problem.

(a) SO methods on problem (7) (b) Methods with RR, LS (τ ) and PP

Figure: Problem (7) for x0 = (1, ..., 1) (left) and x0 = (10, ..., 10) (right) and different number of local steps τ

Figure: SO methods on ResNet-18 on CIFAR-10 problem
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