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I am on the job market for Assistant Professor position!
• Postdoc at MBZUAI (Abu Dhabi, UAE) hosted by 

Samuel Horváth and Martin Takáč (from September 2022) 

• Previous positions: - junior researcher at MIPT (2020-2022)
                                   - remote postdoc at Mila (2022),
                                     hosted by Gauthier Gidel 

• PhD in Computer Science, MIPT (2020-2021),
Supervisors: Alexander Gasnikov and Peter Richtárik

• Research interests: Stochastic Optimization, Distributed Optimization, 
Variational Inequalities, Derivative-Free Optimization 

• Selected awards: Ilya Segalovich Award 2019 (highly selective), best 
reviewer award (ICLR 2021, ICML 2021-2022, NeurIPS 2020-2022)

• See more about me on my website: eduardgorbunov.github.io
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Outline

1. Byzantine-robust training

2. Robust aggregation

3. Variance reduction and Byzantine-robustness
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Byzantine-Robust Training



The Problem
model parameters

# of parameters

. . .
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# of parameters
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loss on the data accessible on worker 𝑖
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The Problem
model parameters

# of parameters

# of workers/clients

𝑛 workers/clients

. . .

loss on the data accessible on worker 𝑖

Key features:
• The problem is hard to solve for one client
• Clients do not know each other
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Parallel SGD

. . .

Iteration 𝒌:
1. Server broadcasts 𝑥!
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Parallel SGD

. . .

Iteration 𝒌:
1. Server broadcasts 𝑥! 
2. Workers compute stochastic gradients
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Parallel SGD

. . .

Iteration 𝒌:
1. Server broadcasts 𝑥! 
2. Workers compute stochastic gradients
3. Server averages the stochastic gradients and 

makes an SGD step
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Parallel SGD Is Fragile

. . .

Iteration 𝒌:
1. Server broadcasts 𝑥! 
2. Good workers compute stochastic gradients
3. Server averages the received vectors and 

makes an SGD step

for 𝑖	 ∈ 𝒢 arbitrary bad
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The Refined Problem Formulation

. . .

*

Good	workers	form	the	majority:
• 𝒢 – good workers
• ℬ	– Byzantines (see the page “Byzantine 

fault” in Wikipedia)
• 𝒢 ⊔ 	ℬ = 𝑛 , 𝒢 = 𝐺, ℬ = 𝐵
• 𝐵	 ≤ 𝛿𝑛, 	𝛿 < 	 ⁄" #
• Byzantines are omniscient
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The Refined Problem Formulation
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Good	workers	form	the	majority:
• 𝒢 – good workers
• ℬ	– Byzantines (see the page “Byzantine 

fault” in Wikipedia)
• 𝒢 ⊔ 	ℬ = 𝑛 , 𝒢 = 𝐺, ℬ = 𝐵
• 𝐵	 ≤ 𝛿𝑛, 	𝛿 < 	 ⁄" #
• Byzantines are omniscient

On	the	heterogeneity:
• Loss functions on good peers cannot be 

arbitrary heterogeneous
• In this talk, we will assume that

∀	𝑖	 ∈ 	𝒢	 → 	𝑓$	= 𝑓
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The Refined Problem Formulation

. . .

*

Good	workers	form	the	majority:
• 𝒢 – good workers
• ℬ	– Byzantines (see the page “Byzantine 

fault” in Wikipedia)
• 𝒢 ⊔ 	ℬ = 𝑛 , 𝒢 = 𝐺, ℬ = 𝐵
• 𝐵	 ≤ 𝛿𝑛, 	𝛿 < 	 ⁄" #
• Byzantines are omniscient

On	the	heterogeneity:
• Loss functions on good peers cannot be 

arbitrary heterogeneous
• In this talk, we will assume that

∀	𝑖	 ∈ 	𝒢	 → 	𝑓$	= 𝑓Question:	how	to	solve	such	problems?
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Robust Aggregation



“Middle-Seekers” Aggregators

Natural	idea:	replace	the	averaging	with	more	robust	aggregation	rule!

Question:	how	to	choose	aggregator?

18
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“Middle-Seekers” Aggregators

• Geometric	median	(RFA):
Pillutla,	K.,	Kakade,	S.	M.,	&	Harchaoui,	Z.	(2019).	Robust	aggregation	for	
federated	learning.	arXiv	preprint	arXiv:1912.13445.
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“Middle-Seekers” Aggregators

• Geometric	median	(RFA):
Pillutla,	K.,	Kakade,	S.	M.,	&	Harchaoui,	Z.	(2019).	Robust	aggregation	for	
federated	learning.	arXiv	preprint	arXiv:1912.13445.

• Coordinate-wise	median	(CM):
Yin,	D.,	Chen,	Y.,	Kannan,	R.,	&	Bartlett,	P.	(2018,	July).	Byzantine-robust	
distributed	learning:	Towards	optimal	statistical	rates.	In	International	
Conference	on	Machine	Learning	(pp.	5650-5659).	PMLR.
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“Middle-Seekers” Aggregators

• Geometric	median	(RFA):
Pillutla,	K.,	Kakade,	S.	M.,	&	Harchaoui,	Z.	(2019).	Robust	aggregation	for	
federated	learning.	arXiv	preprint	arXiv:1912.13445.

• Coordinate-wise	median	(CM):
Yin,	D.,	Chen,	Y.,	Kannan,	R.,	&	Bartlett,	P.	(2018,	July).	Byzantine-robust	
distributed	learning:	Towards	optimal	statistical	rates.	In	International	
Conference	on	Machine	Learning	(pp.	5650-5659).	PMLR.

• Krum	estimator:
Blanchard,	P.,	El	Mhamdi,	E.	M.,	Guerraoui,	R.,	&	Stainer,	J.	(2017,	December).	
Machine	learning	with	adversaries:	Byzantine	tolerant	gradient	descent.	In	
Proceedings	of	the	31st	International	Conference	on	Neural	Information	
Processing	Systems	(pp.	118-128).

indices of the closest 𝑛	– 𝐵	– 	2	workers to 𝑔
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Simple Example When “Middle-Seekers” Are Good

Let	𝑑 = 1, 𝒢	 = 	 1, 2, 3, 4 , ℬ = 5, 6 , 𝑔"! = 1.5, 𝑔#! = 2, 𝑔%! = 2.5, 𝑔&! = 3, and Byzantines are trying to shift 
the estimator via sending 𝑔'! = 𝑔(! = 1000. In this case,
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Simple Example When “Middle-Seekers” Are Good

Let	𝑑 = 1, 𝒢	 = 	 1, 2, 3, 4 , ℬ = 5, 6 , 𝑔"! = 1.5, 𝑔#! = 2, 𝑔%! = 2.5, 𝑔&! = 3, and Byzantines are trying to shift 
the estimator via sending 𝑔'! = 𝑔(! = 1000. In this case,

• Average of the good workers: 𝑔̅! = "
&
∑$)"& 𝑔&! = 2.25

• Average estimator: 𝑔! = "
(
∑$)"( 𝑔$! = 335	

• Median: i𝑔! – any number from 2.5, 3 	

• Krum estimator: i𝑔! = 2	or 2.5
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Simple Example When “Middle-Seekers” Are Good

Let	𝑑 = 1, 𝒢	 = 	 1, 2, 3, 4 , ℬ = 5, 6 , 𝑔"! = 1.5, 𝑔#! = 2, 𝑔%! = 2.5, 𝑔&! = 3, and Byzantines are trying to shift 
the estimator via sending 𝑔'! = 𝑔(! = 1000. In this case,

• Average of the good workers: 𝑔̅! = "
&
∑$)"& 𝑔&! = 2.25

• Average estimator: 𝑔! = "
(
∑$)"( 𝑔$! = 335	

• Median: i𝑔! – any number from 2.5, 3 	

• Krum estimator: i𝑔! = 2	or 2.5

“Middle-seekers”	can	be	good	for	reducing	the	effect	of	outliers
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When “Middle-Seekers” Can Be Bad
Karimireddy,	S.	P.,	He,	L.,	&	Jaggi,	M.	(2021,	July).	Learning	from	history	for	byzantine	robust	
optimization.	In	International	Conference	on	Machine	Learning	(pp.	5311-5319).	PMLR.
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A Little Is Enough (ALIE) Attack
Baruch,	G.,	Baruch,	M.,	&	Goldberg,	Y.	(2019).	A	little	is	enough:	Circumventing	defenses	for	
distributed	learning.	Advances	in	Neural	Information	Processing	Systems,	32.

Byzantines send the following vectors: 
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A Little Is Enough (ALIE) Attack
Baruch,	G.,	Baruch,	M.,	&	Goldberg,	Y.	(2019).	A	little	is	enough:	Circumventing	defenses	for	
distributed	learning.	Advances	in	Neural	Information	Processing	Systems,	32.

• Byzantines choose 𝑧 such that they are close to the “boundary of the cloud”
• Since Byzantines are closer to the mean, “middle-seekers” will treat opposers as outliers

Byzantines send the following vectors: 

mean of the good workers coordinate-wise standard deviation of good workers
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The Result of ALIE Attack on the Training @ CIFAR10
Baruch,	G.,	Baruch,	M.,	&	Goldberg,	Y.	(2019).	A	little	is	enough:	Circumventing	defenses	for	
distributed	learning.	Advances	in	Neural	Information	Processing	Systems,	32.

“No	defense”	strategy	is	more	robust!	Formal	definition	of	robust	aggregation	is	required!
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Robust Aggregation Formalism
Karimireddy,	S.	P.,	He,	L.,	&	Jaggi,	M.	(2021,	July).	Learning	from	history	for	byzantine	robust	
optimization.	In	International	Conference	on	Machine	Learning	(pp.	5311-5319).	PMLR.

Let 𝑔"… , 𝑔* be random variables such that there exist a good subset 𝒢 ⊆ 𝑛  of size 𝐺 ≥ 1 − 𝛿 𝑛	 > 	 ⁄* # 
such that {𝑔$} $∈𝒢  are independent and for all fixed pairs of good workers 𝑖, 𝑗	 ∈ 	𝒢 we have

Let 𝑔̅ = "
-
∑$	∈	𝒢𝑔$. Then i𝑔 = RAgg(𝑔", … , 𝑔*) is called (𝛿, 𝑐)–robust aggregator if for some 𝑐 > 0  

Definition of (𝜹, 𝒄)–robust  aggregator
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Robust Aggregation Formalism
Karimireddy,	S.	P.,	He,	L.,	&	Jaggi,	M.	(2021,	July).	Learning	from	history	for	byzantine	robust	
optimization.	In	International	Conference	on	Machine	Learning	(pp.	5311-5319).	PMLR.

Let 𝑔"… , 𝑔* be random variables such that there exist a good subset 𝒢 ⊆ 𝑛  of size 𝐺 ≥ 1 − 𝛿 𝑛	 > 	 ⁄* # 
such that {𝑔$} $∈𝒢  are independent and for all fixed pairs of good workers 𝑖, 𝑗	 ∈ 	𝒢 we have

Let 𝑔̅ = "
-
∑$	∈	𝒢𝑔$. Then i𝑔 = RAgg(𝑔", … , 𝑔*) is called (𝛿, 𝑐)–robust aggregator if for some 𝑐 > 0  

Definition of (𝜹, 𝒄)–robust  aggregator

• Medians and Krum estimators do not satisfy this definition
• Question: do such aggregators exist?
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Bucketing Fixes “Middle-Seekers”
Karimireddy,	S.	P.,	He,	L.,	&	Jaggi,	M.	(2022).	Byzantine-Robust	Learning	on	Heterogeneous	
Datasets	via	Bucketing.	In	International	Conference	on	Learning	Representations.

Bucketing takes 𝑔", … , 𝑔* , positive integer 𝑠, and aggregator Aggr as an input and returns
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Bucketing Fixes “Middle-Seekers”
Karimireddy,	S.	P.,	He,	L.,	&	Jaggi,	M.	(2022).	Byzantine-Robust	Learning	on	Heterogeneous	
Datasets	via	Bucketing.	In	International	Conference	on	Learning	Representations.

Bucketing takes 𝑔", … , 𝑔* , positive integer 𝑠, and aggregator Aggr as an input and returns

where and is a random permutation of [𝑛]
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Bucketing Fixes “Middle-Seekers”
Karimireddy,	S.	P.,	He,	L.,	&	Jaggi,	M.	(2022).	Byzantine-Robust	Learning	on	Heterogeneous	
Datasets	via	Bucketing.	In	International	Conference	on	Learning	Representations.

Bucketing takes 𝑔", … , 𝑔* , positive integer 𝑠, and aggregator Aggr as an input and returns

where and is a random permutation of [𝑛]

For any 𝛿 ≤ 	𝛿/01 and 𝑠 = |2!"#
2

• Krum ∘ Bucketing is (𝛿, 𝑐)–robust aggregator with 𝑐 = 	𝒪(1) and 𝛿/01 <	 ⁄" &
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Bucketing Fixes “Middle-Seekers”
Karimireddy,	S.	P.,	He,	L.,	&	Jaggi,	M.	(2022).	Byzantine-Robust	Learning	on	Heterogeneous	
Datasets	via	Bucketing.	In	International	Conference	on	Learning	Representations.

Bucketing takes 𝑔", … , 𝑔* , positive integer 𝑠, and aggregator Aggr as an input and returns

where and is a random permutation of [𝑛]

For any 𝛿 ≤ 	𝛿/01 and 𝑠 = |2!"#
2

• Krum ∘ Bucketing is (𝛿, 𝑐)–robust aggregator with 𝑐 = 	𝒪(1) and 𝛿/01 <	 ⁄" &
• RFA ∘ Bucketing is (𝛿, 𝑐)–robust aggregator with 𝑐 = 	𝒪(1) and 𝛿/01 <	 ⁄" #
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Bucketing Fixes “Middle-Seekers”
Karimireddy,	S.	P.,	He,	L.,	&	Jaggi,	M.	(2022).	Byzantine-Robust	Learning	on	Heterogeneous	
Datasets	via	Bucketing.	In	International	Conference	on	Learning	Representations.

Bucketing takes 𝑔", … , 𝑔* , positive integer 𝑠, and aggregator Aggr as an input and returns

where and is a random permutation of [𝑛]

For any 𝛿 ≤ 	𝛿/01 and 𝑠 = |2!"#
2

• Krum ∘ Bucketing is (𝛿, 𝑐)–robust aggregator with 𝑐 = 	𝒪(1) and 𝛿/01 <	 ⁄" &
• RFA ∘ Bucketing is (𝛿, 𝑐)–robust aggregator with 𝑐 = 	𝒪(1) and 𝛿/01 <	 ⁄" #
• CM ∘ Bucketing is (𝛿, 𝑐)–robust aggregator with 𝑐 = 	𝒪(𝑑) and 𝛿/01 <	 ⁄" #

Moreover, these estimators are agnostic to 𝝈𝟐!
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Variance Reduction
and Byzantine-Robustness
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Why Variance Reduction?

Natural idea: if the variance of good vectors gets smaller, it becomes progressively harder for Byzantines to 
shift the result of the aggregation from the true mean

– good workers

– Byzantines

• Large variance allows Byzantines to 
hide in noise and still create large bias

• Hard to detect outliers

• Small variance does not allow Byzantines 
to create large bias easily 

• Easy to detect outliers

Wu,	Z.,	Ling,	Q.,	Chen,	T.,	&	Giannakis,	G.	B.	(2020).	Federated	variance-reduced	stochastic	gradient	
descent	with	robustness	to	byzantine	attacks.	IEEE	Transactions	on	Signal	Processing,	68,	4583-4596.
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Byrd-SAGA: Byzantine-Robust SAGA
Wu,	Z.,	Ling,	Q.,	Chen,	T.,	&	Giannakis,	G.	B.	(2020).	Federated	variance-reduced	stochastic	gradient	
descent	with	robustness	to	byzantine	attacks.	IEEE	Transactions	on	Signal	Processing,	68,	4583-4596.

Finite-sum optimization:
# of samples in the dataset

loss on 𝑗-th sample
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Byrd-SAGA: Byzantine-Robust SAGA
Wu,	Z.,	Ling,	Q.,	Chen,	T.,	&	Giannakis,	G.	B.	(2020).	Federated	variance-reduced	stochastic	gradient	
descent	with	robustness	to	byzantine	attacks.	IEEE	Transactions	on	Signal	Processing,	68,	4583-4596.

Finite-sum optimization:
# of samples in the dataset

loss on 𝑗-th sample

Byrd-SAGA:

• Good workers compute 
SAGA-estimators

• Server uses geometric 
median aggregator
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Complexity of Byrd-SAGA
Wu,	Z.,	Ling,	Q.,	Chen,	T.,	&	Giannakis,	G.	B.	(2020).	Federated	variance-reduced	stochastic	gradient	
descent	with	robustness	to	byzantine	attacks.	IEEE	Transactions	on	Signal	Processing,	68,	4583-4596.

Assumptions:

• 𝜇–strong convexity of 𝑓:

• 𝐿–smoothness of 𝑓", … , 𝑓4:
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Complexity of Byrd-SAGA
Wu,	Z.,	Ling,	Q.,	Chen,	T.,	&	Giannakis,	G.	B.	(2020).	Federated	variance-reduced	stochastic	gradient	
descent	with	robustness	to	byzantine	attacks.	IEEE	Transactions	on	Signal	Processing,	68,	4583-4596.

Assumptions:

• 𝜇–strong convexity of 𝑓:

• 𝐿–smoothness of 𝑓", … , 𝑓4:

Theorem:
Let 𝛿 < 	 ⁄" # and the above assumptions hold. Then, there exists a choice of the stepsize 𝛾 such that the mini-
batched version of Byrd-SAGA (with batchsize 𝑏) produces 𝑥! satisfying 𝔼 𝑥! 	− 𝑥∗

#
≤ 	𝜀 after

iterations
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Reflecting on the Complexities

• Complexity of Byrd-SAGA 𝑏 = 1, 𝛿 > 0 :

• Complexity of Byrd-SAGA 𝑏 = 1, 𝛿 = 	0 :

• Complexity of SAGA 𝑏 = 1, 𝛿 = 	0 :
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Reflecting on the Complexities

• Complexity of Byrd-SAGA 𝑏 = 1, 𝛿 > 0 :

• Complexity of Byrd-SAGA 𝑏 = 1, 𝛿 = 	0 :

• Complexity of SAGA 𝑏 = 1, 𝛿 = 	0 :

The reason for such a dramatic deterioration in the complexity of Byrd-SAGA in comparison to SAGA: 

Analysis of SAGA/SVRG-based methods is very sensitive to unbiasedness!
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Biased VR: You Cannot “Break” What Is Already “Broken”!

Nguyen,	L.	M.,	Liu,	J.,	Scheinberg,	K.,	&	Takáč,	M.	(2017,	July).	SARAH:	A	novel	method	for	machine	
learning	problems	using	stochastic	recursive	gradient.	In	International	Conference	on	Machine	
Learning	(pp.	2613-2621).	PMLR.

Horváth,	S.,	Lei,	L.,	Richtárik,	P.,	&	Jordan,	M.	I.	(2022).	Adaptivity	of	stochastic	gradient	methods	for	
nonconvex	optimization.	SIAM	Journal	on	Mathematics	of	Data	Science,	4(2),	634-648.

Li,	Z.,	Bao,	H.,	Zhang,	X.,	&	Richtárik,	P.	(2021,	July).	PAGE:	A	simple	and	optimal	probabilistic	
gradient	estimator	for	nonconvex	optimization.	In	International	Conference	on	Machine	Learning	
(pp.	6286-6295).	PMLR.

SARAH/Geom-SARAH/PAGE (1 node case):
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Nguyen,	L.	M.,	Liu,	J.,	Scheinberg,	K.,	&	Takáč,	M.	(2017,	July).	SARAH:	A	novel	method	for	machine	
learning	problems	using	stochastic	recursive	gradient.	In	International	Conference	on	Machine	
Learning	(pp.	2613-2621).	PMLR.

Horváth,	S.,	Lei,	L.,	Richtárik,	P.,	&	Jordan,	M.	I.	(2022).	Adaptivity	of	stochastic	gradient	methods	for	
nonconvex	optimization.	SIAM	Journal	on	Mathematics	of	Data	Science,	4(2),	634-648.

Li,	Z.,	Bao,	H.,	Zhang,	X.,	&	Richtárik,	P.	(2021,	July).	PAGE:	A	simple	and	optimal	probabilistic	
gradient	estimator	for	nonconvex	optimization.	In	International	Conference	on	Machine	Learning	
(pp.	6286-6295).	PMLR.

SARAH/Geom-SARAH/PAGE (1 node case):
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Biased VR: You Cannot “Break” What Is Already “Broken”!

Nguyen,	L.	M.,	Liu,	J.,	Scheinberg,	K.,	&	Takáč,	M.	(2017,	July).	SARAH:	A	novel	method	for	machine	
learning	problems	using	stochastic	recursive	gradient.	In	International	Conference	on	Machine	
Learning	(pp.	2613-2621).	PMLR.

Horváth,	S.,	Lei,	L.,	Richtárik,	P.,	&	Jordan,	M.	I.	(2022).	Adaptivity	of	stochastic	gradient	methods	for	
nonconvex	optimization.	SIAM	Journal	on	Mathematics	of	Data	Science,	4(2),	634-648.

Li,	Z.,	Bao,	H.,	Zhang,	X.,	&	Richtárik,	P.	(2021,	July).	PAGE:	A	simple	and	optimal	probabilistic	
gradient	estimator	for	nonconvex	optimization.	In	International	Conference	on	Machine	Learning	
(pp.	6286-6295).	PMLR.

SARAH/Geom-SARAH/PAGE (1 node case):

𝐽!– indices in the mini-batch, |𝐽!| = 𝑏
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Biased VR: You Cannot “Break” What Is Already “Broken”!

Nguyen,	L.	M.,	Liu,	J.,	Scheinberg,	K.,	&	Takáč,	M.	(2017,	July).	SARAH:	A	novel	method	for	machine	
learning	problems	using	stochastic	recursive	gradient.	In	International	Conference	on	Machine	
Learning	(pp.	2613-2621).	PMLR.

Horváth,	S.,	Lei,	L.,	Richtárik,	P.,	&	Jordan,	M.	I.	(2022).	Adaptivity	of	stochastic	gradient	methods	for	
nonconvex	optimization.	SIAM	Journal	on	Mathematics	of	Data	Science,	4(2),	634-648.

Li,	Z.,	Bao,	H.,	Zhang,	X.,	&	Richtárik,	P.	(2021,	July).	PAGE:	A	simple	and	optimal	probabilistic	
gradient	estimator	for	nonconvex	optimization.	In	International	Conference	on	Machine	Learning	
(pp.	6286-6295).	PMLR.

SARAH/Geom-SARAH/PAGE (1 node case):

𝐽!– indices in the mini-batch, |𝐽!| = 𝑏

𝑝	~	 ⁄6 4	– probability of 
computing the full gradient 
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gradient	estimator	for	nonconvex	optimization.	In	International	Conference	on	Machine	Learning	
(pp.	6286-6295).	PMLR.

SARAH/Geom-SARAH/PAGE (1 node case):

𝐽!– indices in the mini-batch, |𝐽!| = 𝑏

𝑝	~	 ⁄6 4	– probability of 
computing the full gradient 

Estimator is biased from the beginning!
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(𝛿, 𝑐)–robust aggregator agnostic to the variance, e.g., Krum/RFA/CM ∘ Bucketing

Geom-SARAH/PAGE–estimator 
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stepsize 𝛾 such that Byz-PAGE produces i𝑥! satisfying 𝔼 ∇𝑓(i𝑥!)
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iterations
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Complexity of Byz-PAGE: PŁ Case (Simplified)
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• 𝑓 has a minimizer:
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Comparison with SOTA Results

• Byz-VR-MARINA = version of Byz-PAGE with communication compression
• NC = general non-convex functions
• PŁ = Polyak-Łojasiewicz-functions (BTARD-SGD and Byrd-SAGA are analyzed under strong convexity)
• UBV = uniformly bounded variance assumption: 𝔼 ∇𝑓7 𝑥 −	∇𝑓 𝑥 # ≤	𝜎#

• As. 2.4 = generalization of smoothness and data-similarity that incorporates non-uniform sampling of 
stochastic gradients
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Remarks on the results:
• We achieve new SOTA theoretical results for Byzantine-robust learning
• When 𝛿 = 0 (no Byzantines), the derived complexity bounds recover the known ones for

Geom-SARAH/PAGE
• Therefore, the terms that are not affected by 𝛿 are unimprovable
• Open question: are the derived upper bounds optimal?
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Remarks on the Results and One Extension
Remarks on the results:
• We achieve new SOTA theoretical results for Byzantine-robust learning
• When 𝛿 = 0 (no Byzantines), the derived complexity bounds recover the known ones for

Geom-SARAH/PAGE
• Therefore, the terms that are not affected by 𝛿 are unimprovable
• Open question: are the derived upper bounds optimal?

The extension to the compressed communication case:

• Byz-PAGE:

• Byz-VR-MARINA:

unbiased compression operator

Gorbunov,	E.,	Burlachenko,	K.	P.,	Li,	Z.,	&	
Richtárik,	P.	(2021,	July).	MARINA:	Faster	non-
convex	distributed	learning	with	compression.	
In	International	Conference	on	Machine	
Learning	(pp.	3788-3798).	PMLR.
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Numerical Results

• We tested the proposed method on the logistic 
regression tasks

• In this experiment, we have 4 good workers and 1 
Byzantine

• As predicted by the derived results, the proposed 
method has linear convergence

• Competitors struggle to achieve better loss 

• The results are consistent for all tested attacks
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Concluding Remarks
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In the Paper We Also Have

• Analysis of the version with compression (Byz-VR-MARINA)

• Analysis under bounded heterogeneity

• Non-uniform sampling of stochastic gradients

• Analysis takes into account data-similarity

• Additional experiments
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Recent Follow Up Works

Thank you!

Ahmad	Rammal,	Kaja	Gruntkowska,	Nikita	Fedin,	Eduard	Gorbunov,	Peter	Richtárik.	Communication	Compression	
for	Byzantine	Robust	Learning:	New	Efficient	Algorithms	and	Improved	Rates	(AISTATS	2024)

Grigory	Malinovsky,	Peter	Richtárik,	Samuel	Horváth,	Eduard	Gorbunov.	Byzantine	Robustness	and	Partial	
Participation	Can	Be	Achieved	Simultaneously:	Just	Clip	Gradient	Differences	(arXiv:2311.14127)

Workers	send	only	compressed	vectors
Better	complexities	when	compression	is	used
Support	of	biased	compression	operators	and	error	feedback

🤯 Provable	convergence	even	if	Byzantine	workers	can	form	majority	during	some	rounds!


