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Outline

1. Byzantine-robust training

2. Robust aggregation

3. Variance reduction and Byzantine-robustness
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The Problem

model parameters

"\ min {f(f) = %Zfi(x)}
i=1
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The Problem

model parameters
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W # of parameters /
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filz)  folx) f3(w)

loss on the data accessible on worker i
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m # of parameters /

filz)  folz)  fa(zx)

The Problem

model parameters

min, § f(a) == fil@

n -

# of workers/clients

loss on the data accessible on worker i

’ Key features:

|

n workers/clients

 The problem is hard to solve for one client
Clients do not know each other



Iteration k:

1.

Server broadcasts x¥

Parallel SGD
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Iteration k:

1.
2.

Server broadcasts x*
Workers compute stochastic gradients

Parallel SGD
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Parallel SGD

Iteration k:

1. Server broadcasts x*

2. Workers compute stochastic gradients

3. Server averages the stochastic gradients and
makes an SGD step

12




Parallel SGD Is Fragile

Iteration k:

1. Server broadcasts x*¥
2. Good workers compute stochastic gradients
3. Server averages the received vectors and

makes an SGD step

k k : :
D53 g; | = sz(aj ) fori €§ arbitrary bad
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The Refined Problem Formulation

min {f(fv) = é > fz-(fc)}

1€G

Good workers form the majority:
* G —good workers
B —Byzantines (see the page “Byzantine

fault” in Wikipedia)
 GU B=|n], |G]|=G, |B|=B
e B S5n, 0 < 1/2
* Byzantines are omniscient

14



The Refined Problem Formulation

min { f(z) = = 3 fila)

rER4A )
1€G

Good workers form the majority:

* G —good workers

B —Byzantines (see the page “Byzantine
fault” in Wikipedia)

* GUB=In], |g|=6G, |B|=B

« B <én, 6< 1/,

* Byzantines are omniscient

e [ O
S S
file)  folz) =

On the heterogeneity:
) * Loss functions on good peers cannot be
arbitrary heterogeneous
* In this talk, we will assume that

Vieg - fi=f

fn(

=
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The Refined Problem Formulation

min 4 £(2) == = > fila)

rERA

Good workers form the majority:

* G —good workers

B —Byzantines (see the page “Byzantine
fault” in Wikipedia)

* GUB=In], |g|=6G, |B|=B

« B <én, 6< 1/,

* Byzantines are omniscient

e U OO -
& S
filz)  fa(z) * Il

Question: how to solve such problems? Vieg - fi=f

On the heterogeneity:
) * Loss functions on good peers cannot be
arbitrary heterogeneous
* In this talk, we will assume that

=

16
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“Middle-Seekers” Aggregators

Natural idea: replace the averaging with more robust aggregation rule!

S L. .

1 n
k k .
" =—-) 4 =) §" =RAgg (97,95,
1=1

Question: how to choose aggregator?

y In
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“Middle-Seekers” Aggregators

Geometric median (RFA): g — arg min E H g — gk HZ
Pillutla, K., Kakade, S. M., & Harchaoui, Z. (2019). Robust aggregation for d l
“/use federated learning. arXiv preprint arXiv:1912.13445. g 6

19



L/

“Middle-Seekers” Aggregators

Geometric median (RFA):

Pillutla, K., Kakade, S. M., & Harchaoui, Z. (2019). Robust aggregation for
“/use federated learning. arXiv preprint arXiv:1912.13445.

Coordinate-wise median (CM):

Yin, D., Chen, Y., Kannan, R., & Bartlett, P. (2018, July). Byzantine-robust
mie distributed learning: Towards optimal statistical rates. /n International

Conference on Machine Learning (pp. 5650-5659). PMLR.

g" = arg mmdz lg = gllo
geR

& k
g" = arg min § ﬁHg g9; 11
geRI "~ :
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“Middle-Seekers” Aggregators

* Geometric median (RFA):

3 Pillutla, K., Kakade, S. M., & Harchaoui, Z. (2019). Robust aggregation for
“/use federated learning. arXiv preprint arXiv:1912.13445.

* Coordinate-wise median (CM):

Yin, D., Chen, Y., Kannan, R., & Bartlett, P. (2018, July). Byzantine-robust
mie distributed learning: Towards optimal statistical rates. /n International
Conference on Machine Learning (pp. 5650-5659). PMLR.

e Krum estimator:

Blanchard, P., El Mhamdi, E. M., Guerraoui, R., & Stainer, J. (2017, December).

= Machine learning with adversaries: Byzantine tolerant gradient descent. /n
Proceedings of the 31st International Conference on Neural Information
Processing Systems (pp. 118-128).

g" = arg mmdz lg = gllo
geR

~k k
g - =argmin » |lg— g1
geRdZ ;

indices of the closest n - B - 2 workers to g
21



Simple Example When “Middle-Seekers” Are Good

letd =1,G = {1,2,3,4},B = {5,6}, gf = 1.5,g§ = 2,g§ = 2.5,gf}C = 3, and Byzantines are trying to shift
the estimator via sending gé‘ = gé‘ = 1000. In this case,

22



Simple Example When “Middle-Seekers” Are Good

letd =1,6 = {1,2,3,4},B = {5,6},g% = 1.5,g5 = 2,g§ = 2.5, g¥ = 3, and Byzantines are trying to shift
the estimator via sending gé‘ = gé‘ = 1000. In this case,
* Average of the good workers: g~ = %Z;ngff = 2.25

* Average estimator: g = %Z?ﬂ gk =335

« Median: g% —any number from [2.5, 3]

« Krum estimator: §% = 2 or 2.5
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Simple Example When “Middle-Seekers” Are Good

letd =1,G = {1,2,3,4},B = {5,6},9% = 1.5,g% = 2, gé‘ = 2.5, g¥ = 3, and Byzantines are trying to shift
the estimator via sending gé‘ = gé‘ = 1000. In this case,

* Average of the good workers: g~ = %Z;ngff = 2.25

* Average estimator: g = %Z?ﬂ gk =335

« Median: g% —any number from [2.5, 3]

« Krum estimator: §% = 2 or 2.5

“Middle-seekers” can be good for reducing the effect of outliers

24



When “Middle-Seekers” Can Be Bad

Karimireddy, S. P., He, L., & Jaggi, M. (2021, July). Learning from history for byzantine robust

‘,ﬂ optimization. /n International Conference on Machine Learning (pp. 5311-5319). PMLR.
1
100 1— median
1
- mean
X 804 class 1&2 i
> ignored
© 60-
= Aggr
O — M
< 40- —— RFA _ :
— Krum Figure 2: For fat-tailed
200 400 600 800 distributions, median
Iterations based aggregators
Figure 1: Failure of existing methods on imbalanced ~ ignore the tail. This
MNIST dataset. Only the head classes (class 1 and 2 here) ~ bias remains even if we

are learnt, and the rest 8 classes are ignored. See Sec. 7.1. have infinite samples.



A Little Is Enough (ALIE) Attack

Baruch, G., Baruch, M,, & Goldberg, Y. (2019). A little is enough: Circumventing defenses for
¥ distributed learning. Advances in Neural Information Processing Systems, 32.

Adobe

Correct worker

' ‘ﬂsupporters

<, o';; . “ ® 0: 4 o g - | .

L R E AR LN Byzantine workers
True mean AP SR 056 Lo AR MR .
:"...i ".' :‘.. i .ﬁ; 0'.::' "x' s, o
YR Y ‘j.‘ :3 .i’:o" 34 :'
05 oW 2 el o

opposers > .t v

Byzantines send the following vectors: gf — UG — <0G
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Byzantines send the following vectors: gf — |,ug

A Little Is Enough (ALIE) Attack

Baruch, G., Baruch, M., & Goldberg, Y. (2019). A little is enough: Circumventing defenses for
¥ distributed learning. Advances in Neural Information Processing Systems, 32.
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mean of the good workers

coordinate-wise standard deviation of good workers

Byzantines choose z such that they are close to the “boundary of the cloud”
Since Byzantines are closer to the mean, “middle-seekers” will treat opposers as outliers
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The Result of ALIE Attack on the Training @ CIFAR10

Baruch, G., Baruch, M,, & Goldberg, Y. (2019). A little is enough: Circumventing defenses for
‘,ﬂ distributed learning. Advances in Neural Information Processing Systems, 32.
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“No defense” strategy is more robust! Formal definition of robust aggregation is required!
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Robust Aggregation Formalism

Karimireddy, S. P., He, L., & Jaggi, M. (2021, July). Learning from history for byzantine robust
‘Aﬂ optimization. /n International Conference on Machine Learning (pp. 5311-5319). PMLR.

Definition of (4, c)-robust aggregator

Let g4 ..., g, be random variables such that there exist a good subset G € [n] of size G = (1 — §)n > "/,
such that {g; }(ieg) are independent and for all fixed pairs of good workers i,j € G we have

n 2 2
E (1lgi — g41°] < o,
Let g = %Zieggi. Then g = RAgg(g4, ..., gn) is called (8, c)—robust aggregator if for some c > 0

e (19 —91I°] < cdo”

29




Robust Aggregation Formalism

Karimireddy, S. P., He, L., & Jaggi, M. (2021, July). Learning from history for byzantine robust
‘«nﬂ optimization. /n International Conference on Machine Learning (pp. 5311-5319). PMLR.

Definition of (4, c)-robust aggregator

Let g4 ..., g, be random variables such that there exist a good subset G € [n] of size G = (1 — §)n > "/,
such that {g; }(ieg) are independent and for all fixed pairs of good workers i,j € G we have

n 2 2
E (1lgi — g41°] < o,
Let g = %Zieggi. Then g = RAgg(g4, ..., gn) is called (8, c)—robust aggregator if for some c > 0

e (19 —91I°] < cdo”

* Medians and Krum estimators do not satisfy this definition
* Question: do such aggregators exist?

30




Bucketing Fixes “Middle-Seekers”

Karimireddy, S. P., He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous
‘Aﬂ Datasets via Bucketing. /n International Conference on Learning Representations.

Bucketing takes {g, ..., g»,}, positive integer s, and aggregator Aggr as an input and returns

g =Aggr(yi,...,Yrn/s)

31



Bucketing Fixes “Middle-Seekers”

Karimireddy, S. P., He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous
‘Aﬂ Datasets via Bucketing. /n International Conference on Learning Representations.

Bucketing takes {g, ..., g»,}, positive integer s, and aggregator Aggr as an input and returns

g =Aggr(yi,...,Yrn/s)

min{si,n}
where Y; = g Z Tr(k) and T = (7T(1), . ,w(n)) is a random permutation of [n]
k=s(i—1)+1

32



Bucketing Fixes “Middle-Seekers”

Karimireddy, S. P., He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous
‘Aﬂ Datasets via Bucketing. /n International Conference on Learning Representations.

Bucketing takes {g, ..., g»,}, positive integer s, and aggregator Aggr as an input and returns

g =Aggr(yi,...,Yrn/s)

min{si,n}
where Y; = E Z Tr(k) and T = (7T(1), . ,w(n)) is a random permutation of [n]
k=s(i—1)+1

Forany 60 < Opaxand s = lSmaX/é‘J

« Krum o Bucketing is (8, ¢)-robust aggregator with c = O(1) and dppax < 4
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Bucketing Fixes “Middle-Seekers”

Karimireddy, S. P., He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous
‘Aﬂ Datasets via Bucketing. /n International Conference on Learning Representations.

Bucketing takes {g, ..., g»,}, positive integer s, and aggregator Aggr as an input and returns

g =Aggr(yi,...,Yrn/s)

min{si,n}

where Y; = — Z Tr(k) and T = (7T(1), . ,W(n)) is a random permutation of [n]
) k=s(i—1)4+1

Forany 60 < Opaxand s = lSmaX/é‘J
« Krum o Bucketing is (8, ¢)-robust aggregator with c = O(1) and dppax < 4

* RFA o Bucketing is (&, ¢)—robust aggregator with c = 0(1) and dppax < /5
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Bucketing Fixes “Middle-Seekers”

Karimireddy, S. P., He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous
‘Aﬂ Datasets via Bucketing. /n International Conference on Learning Representations.

Bucketing takes {g, ..., g»,}, positive integer s, and aggregator Aggr as an input and returns

g =Aggr(yi,...,Yrn/s)

min{si,n}

where Y; = — Z Tr(k) and T = (7T(1), . ,W(n)) is a random permutation of [n]
) k=s(i—1)4+1

Forany 6 < Opax and s = lSmaX/é‘J

« Krum o Bucketing is (8, ¢)-robust aggregator with c = O(1) and dppax < 4
* RFA o Bucketing is (&, ¢)—robust aggregator with c = 0(1) and dppax < /5

* CM o Bucketing is (8, c)-robust aggregator with ¢ = 0(d) and 6ppax < /5
21

Moreover, these estimators are agnostic to o .
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Why Variance Reduction?

Wu, Z,, Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient
/um descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.

Natural idea: if the variance of good vectors gets smaller, it becomes progressively harder for Byzantines to
shift the result of the aggregation from the true mean

® — good workers o

® — Byzantines

* Large variance allows Byzantines to * Small variance does not allow Byzantines
hide in noise and still create large bias to create large bias easily
 Hard to detect outliers e Easy to detect outliers 37



Byrd-SAGA: Byzantine-Robust SAGA

Wu, Z,, Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient
descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.

AAAAA

Finite-sum optimization:

min
rcER4

f(z) :

1

m

fi(x)

# of samples in the dataset

loss on j-th sample

38




Byrd-SAGA: Byzantine-Robust SAGA

AAAAA

Finite-sum optimization:

Byrd-SAGA:

Good workers compute
SAGA-estimators
Server uses geometric
median aggregator

Wu, Z,, Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient
descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.

\
. 1 — # of samples in the dataset
min { f(z) = = f;() }
x€R4 | 4 .
J=1 ) loss on j-th sample
pFHl — gk _ gk

98

( m
o= Vi (@) = Vi, (855 )+ 21ij( k), ifieg,
T T 7=

§" =RFA(gy, .-

St if2€eB

k+1 __ ﬁj? lf] #.]’Lk?
qb’i,j ) gk

= Vieg
) lf]:]zk
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Complexity of Byrd-SAGA

Wu, Z,, Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient
‘Aﬂ descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.

Assumptions:
* u-strong convexity of f: fly) > flz)+(Vf(z),y —x) + %Hy —z||* Va,y € RY

 Lesmoothness of fy . fui  ||Vf;(y) = V@) < Ly —al| Va,y € RYj € [m

40



Complexity of Byrd-SAGA

Wu, Z,, Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient
‘,ﬂ descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.
y g 8

Assumptions:

* u—strong convexity of f: fly) > f(x) +(Vf(x),y —x) + %Hy —z||* Vz,y¢€ R
* L-smoothness of fi, ..., fm: IVfi(y) = V@) < Llly—=| Vo,yeR?j € [m]
Theorem:

Let § < 1/, and the above assumptions hold. Then, there exists a choice of the stepsize y such that the mini-
2
batched version of Byrd-SAGA (with batchsize b) produces x* satisfying E [”xk — X" ] < ¢ after

m?212 1
O l —_— iterations
RA—20)2 Ce)

41



Reflecting on the Complexities

* Complexity of Byrd-SAGA (b =1, 6 > 0):

* Complexity of Byrd-SAGA (b =1, 6§ = 0):

* Complexity of SAGA (b =1, 6§ = 0):

m?L? 1
] n
: <(1 —20)u2 ° 6>

m? L? 1
(’)( ; log—>

1 3

o( (et
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Reflecting on the Complexities

Complexity of Byrd-SAGA (b =1, 6§ > 0):

Complexity of Byrd-SAGA (b =1, 6§ = 0):

Complexity of SAGA (b =1, § = 0):

m? L? 1
] n
: ((1 —20)u2 ° 6>

2.2 1
@, <m — log —>
v 3

o( (st

The reason for such a dramatic deterioration in the complexity of Byrd-SAGA in comparison to SAGA:

k(0" # V f(2")

Analysis of SAGA/SVRG-based methods is very sensitive to unbiasedness!
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Biased VR: You Cannot “Break” What Is Already “Broken”!

SARAH/Geom-SARAH/PAGE (1 node case):

Nguyen, L. M,, Liu, J., Scheinberg, K., & Taka¢, M. (2017, July). SARAH: A novel method for machine
learning problems using stochastic recursive gradient. In International Conference on Machine

Learning (pp. 2613-2621). PMLR.

Horvath, S., Lei, L., Richtarik, P., & Jordan, M. I. (2022). Adaptivity of stochastic gradient methods for
nonconvex optimization. SIAM Journal on Mathematics of Data Science, 4(2), 634-648.

Li, Z., Bao, H., Zhang, X., & Richtarik, P. (2021, July). PAGE: A simple and optimal probabilistic
gradient estimator for nonconvex optimization. In International Conference on Machine Learning 44
(pp- 6286-6295). PMLR.




Biased VR: You Cannot “Break” What Is Already “Broken”!

SARAH/Geom-SARAH/PAGE (1 node case):

Vf(xh), with prob. p

g = gk_l—k% ZJ (ij(a:k)—ij(:ck_l)), with prob. 1 —p
J€JK

ﬁ Nguyen, L. M,, Liu, J., Scheinberg, K., & Taka¢, M. (2017, July). SARAH: A novel method for machine
‘Aﬂ learning problems using stochastic recursive gradient. In International Conference on Machine

Learning (pp. 2613-2621). PMLR.

ﬁ Horvath, S., Lei, L., Richtarik, P., & Jordan, M. I. (2022). Adaptivity of stochastic gradient methods for
¥ wm honconvex optimization. SIAM Journal on Mathematics of Data Science, 4(2), 634-648.

ﬁ Li, Z., Bao, H., Zhang, X., & Richtarik, P. (2021, July). PAGE: A simple and optimal probabilistic
A wn gradient estimator for nonconvex optimization. In International Conference on Machine Learning 45
(pp. 6286-6295). PMLR.




Biased VR: You Cannot “Break” What Is Already “Broken”!

SARAH/Geom-SARAH/PAGE (1 node case):

Vf(xh), with prob. p

g = gk_l—ké ZJ (Vfi(@®) =V fi(z51)), with prob. 1 —p
7€k

Ji—indices in the mini-batch, || = b

ﬁ Nguyen, L. M,, Liu, J., Scheinberg, K., & Taka¢, M. (2017, July). SARAH: A novel method for machine
‘Aﬂ learning problems using stochastic recursive gradient. In International Conference on Machine

Learning (pp. 2613-2621). PMLR.

ﬁ Horvath, S., Lei, L., Richtarik, P., & Jordan, M. I. (2022). Adaptivity of stochastic gradient methods for
¥ wm honconvex optimization. SIAM Journal on Mathematics of Data Science, 4(2), 634-648.

ﬁ Li, Z., Bao, H., Zhang, X., & Richtarik, P. (2021, July). PAGE: A simple and optimal probabilistic
A wn gradient estimator for nonconvex optimization. In International Conference on Machine Learning 46
(pp. 6286-6295). PMLR.




Biased VR: You Cannot “Break” What Is Already “Broken”!

SARAH/Geom-SARAH/PAGE (1 node case):

Vf(x"),
g 2

(Vfi(zF) = V("))

p ~ b/, — probability of
computing the full gradient

with prob. p

with prob. 1 —p

J €k

Ji—indices in the mini-batch, || = b

Nguyen, L. M,, Liu, J., Scheinberg, K., & Taka¢, M. (2017, July). SARAH: A novel method for machine
learning problems using stochastic recursive gradient. In International Conference on Machine

Learning (pp. 2613-2621). PMLR.

Horvath, S., Lei, L., Richtarik, P., & Jordan, M. I. (2022). Adaptivity of stochastic gradient methods for
nonconvex optimization. SIAM Journal on Mathematics of Data Science, 4(2), 634-648.

Li, Z., Bao, H., Zhang, X., & Richtarik, P. (2021, July). PAGE: A simple and optimal probabilistic
gradient estimator for nonconvex optimization. In International Conference on Machine Learning 47
(pp- 6286-6295). PMLR.




Biased VR: You Cannot “Break” What Is Already “Broken”!

SARAH/Geom-SARAH/PAGE (1 node case):

k+1 __ .k k p ~ P/m — probability of
computing the full gradient

Vf(xh), with prob. |p

TV T e 2, (VAEY - V@), with prob. 1p
71€lJk

Ji.— indices in the mini-batch, [J,| = b Ek [gk] 75 Vf(ﬂjk)

ﬁ Nguyen, L. M,, Liu, ], Scheinberg, K., & Taka¢, M. (2017, July). SARAH: A novel method for machine Estimator is biased from the begi n ning!

"/um learning problems using stochastic recursive gradient. In International Conference on Machine
Learning (pp. 2613-2621). PMLR.

ﬁ Horvath, S., Lei, L., Richtarik, P., & Jordan, M. I. (2022). Adaptivity of stochastic gradient methods for
¥ wm honconvex optimization. SIAM Journal on Mathematics of Data Science, 4(2), 634-648.

ﬁ Li, Z., Bao, H., Zhang, X., & Richtarik, P. (2021, July). PAGE: A simple and optimal probabilistic
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New Method: Byz-PAGE

b1 gk agk GF = ARAggr(gh,..., gb)



New Method: Byz-PAGE

(6, c)—-robust aggregator agnostic to the variance, e.g., Krum/RFA/CM o Bucketing

k+1

P =gk At 5% —ARAger(d®, ... gF)
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New Method: Byz-PAGE

(6, c)—-robust aggregator agnostic to the variance, e.g., Krum/RFA/CM o Bucketing

2"t = 2% — 4G g° = ARAggr(gy, ..., gy
, V f(z"), with prob. p |
9i = Vg1 + % ZJ (ij([l?k) — ij(:zzk_l)) . with prob. 1 —p Viceg
J€Jk

Geom-SARAH/PAGE—estimator
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Complexity of Byz-PAGE (Simplified)

Assumptions:
* fislower-bounded:

 L-smoothness of f1, ..., fin:

fo = inf f(z)> —oo

IVfily) = V@) <Llly—z|| Y,y eR%j € [m]
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Complexity of Byz-PAGE (Simplified)

Assumptions:

* fis lower-bounded: f« = inf f(z) > —o0

reRd
* L-smoothness of fi, ..., fi: IVfi(y) = V(@) <Llly—=z| Ve,ye R ;e [m]
Theorem 1:

Let the above assumptions hold and ARAggr be (6, c)—robust aggregator. Then, there exists a choice of the
2
stepsize ¥ such that Byz-PAGE produces x* satisfying E [”Vf()?k)” ] < &2 after
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Complexity of Byz-PAGE (Simplified)

Assumptions:

* fis lower-bounded: Jx = 1nﬂ£ f(x) > —o0

xeRa
. Losmoothnessof f o fri |V £5(y) = V(@) < Lly—al| Va,y € RYj € [m
Theorem 1:

Let the above assumptions hold and ARAggr be (6, c)—robust aggregator. Then, there exists a choice of the
2
stepsize ¥ such that Byz-PAGE produces x* satisfying E [”Vf()?k)” ] < &2 after

((1+ V3 + ) L) - 1)

@, iterations
82

\ /
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Complexity of Byz-PAGE: Pt Case (Simplified)

Assumptions:
* f has a minimizer:
* L—smoothness of f1, ..., fmm:

* fis u—Pt function:

¥ = arg min f(x
g min f(z)
IVfily) = V@) <Llly—z|| Y,y eR%j € [m]

IVf@)? = 20 (f(z) = f(27))
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Complexity of Byz-PAGE: Pt Case (Simplified)

Assumptions:

* f has a minimizer: r" = arg min f(x)
rxeR4
. Lesmoothnessof fu o fui V5() — V@) < Lily— 2|l Yo,y € RYj € [m]
 fis u—Pk function: IVf(2)]|? > 2u (f(x) — f(2*))
Theorem 2:

Let the above assumptions hold and ARAggr be (6, c)—robust aggregator. Then, there exists a choice of the
stepsize ¥ such that Byz-PAGE produces x* satisfying [E[f(xk) — f(x*)] < ¢ after
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Complexity of Byz-PAGE: Pt Case (Simplified)

Assumptions:

* f has a minimizer: r" = arg min f(x)
rxeR4
+ L-smoothnessof fy, ... fu: [V fj(y) = Vfj(@)|| < Llly —z|| Vx,y € R?,j € [m]
 fis u—Pk function: IVf(2)]|? > 2u (f(x) — f(2*))
Theorem 2:

Let the above assumptions hold and ARAggr be (6, c)—robust aggregator. Then, there exists a choice of the
stepsize ¥ such that Byz-PAGE produces x* satisfying [E[f(xk) — f(x*)] < ¢ after

(- (mea w)) )

log — iterations

\ ) ) 57
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Comparison with SOTA Results

Method Assumptions Complexity (NC) Complexity (PL)
[Karimireddy et al., 2021, 2022] UBV e2 + bed X
BR-MVR 1 o4/cd+1/n
[Karimireddy et al., 2021] UBY 2 T T 53 X
BTARD'SGD (1) 1 72,250'2 0_2 1 0_2 n250_
[Gorbunov et al., 2021a] UBV e2 T Cbe? T nbe4 m + nbue alre bue
Byrd-SAGA 2
[Wu et al., 2020] Smooth f; ; X b2(1—25)pu2
B 1+\/C5m 4 _m 1+\/06m2+m
yz-VR-MARINA As 2.4 b3 b2 n b3 b2 n
Cor. E.1 & Cor. E.5 T e2 7
b

* Byz-VR-MARINA = version of Byz-PAGE with communication compression

* NC =general non-convex functions

* Pt = Polyak-tojasiewicz-functions (BTARD-SGD and Byrd-SAGA are analyzed under strong convexity)
2

« UBV = uniformly bounded variance assumption: [E [”ij(x) — Vf(x)” ] < ¢?

 As. 2.4 =generalization of smoothness and data-similarity that incorporates non-uniform sampling of
stochastic gradients -




Remarks on the Results and One Extension

Remarks on the results:

We achieve new SOTA theoretical results for Byzantine-robust learning

When 6 = 0 (no Byzantines), the derived complexity bounds recover the known ones for
Geom-SARAH/PAGE

Therefore, the terms that are not affected by § are unimprovable

Open question: are the derived upper bounds optimal?
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Remarks on the Results and One Extension

Remarks on the results:

We achieve new SOTA theoretical results for Byzantine-robust learning

When 6 = 0 (no Byzantines), the derived complexity bounds recover the known ones for
Geom-SARAH/PAGE

Therefore, the terms that are not affected by § are unimprovable

Open question: are the derived upper bounds optimal?

The extension to the compressed communication case:

fo (xk) : with prob. p

Byz-PAGE: g5 =4 g+ 1 > (VS (a%) = Vf; (#F71)), with prob. 1 —p
L JEJk
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Remarks on the Results and One Extension

Remarks on the results:

We achieve new SOTA theoretical results for Byzantine-robust learning

When 6 = 0 (no Byzantines), the derived complexity bounds recover the known ones for
Geom-SARAH/PAGE

Therefore, the terms that are not affected by § are unimprovable

Open question: are the derived upper bounds optimal?

The extension to the compressed communication case:

AAAAA

. fo (xk) : with prob. p
Byz-PAGE: 9 =Vg" 4L S (VS (a%) =V, (571)), with prob. 1—p
L JEJk
(Vf (xk) : with prob. p
Byz-VR-MARINA: k_
v T b5 e v ) i 1
Gorbunov, E., Burlachenko, K. P, Li, Z., & \ J€ Jk

Richtarik, P. (2021, July). MARINA: Faster non-
convex distributed learning with compression.

In International Conference on Machine unbiased compression operator
Learning (pp. 3788-3798). PMLR.
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Numerical Results

We tested the proposed method on the logistic CM | ALIE
regression tasks —e— SGD
5 ¥— BR-SGDm

In this experiment, we have 4 good workers and 1 10 —#— Byz-VR-MARINA
Byzantine .

L 104
As predicted by the derived results, the proposed =
method has linear convergence

10°°
Competitors struggle to achieve better loss
0

The results are consistent for all tested attacks
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In the Paper We Also Have

Analysis of the version with compression (Byz-VR-MARINA)
Analysis under bounded heterogeneity

Non-uniform sampling of stochastic gradients

Analysis takes into account data-similarity

Additional experiments
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Recent Follow Up Works

Ahmad Rammal, Kaja Gruntkowska, Nikita Fedin, Eduard Gorbunov, Peter Richtarik. Communication Compression
wwe f0r Byzantine Robust Learning: New Efficient Algorithms and Improved Rates (AISTATS 2024)

Workers send only compressed vectors
Better complexities when compression is used
Support of biased compression operators and error feedback

Grigory Malinovsky, Peter Richtarik, Samuel Horvath, Eduard Gorbunov. Byzantine Robustness and Partial
wwe Participation Can Be Achieved Simultaneously: Just Clip Gradient Difterences (arXiv:2311.14127)

& Provable convergence even if Byzantine workers can form majority during some rounds!

Thank you!
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