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Outline

1. Byzantine-robust training

2. Robust aggregation

3. Variance reduction and Byzantine-robustness
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The Problem

model parameters

"\ min {f(x) = :LZfz'(SC)}
i=1
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model parameters
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loss on the data accessible on worker i
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The Problem

model parameters

min, § fla) =23 fil@

# of workers/clients

loss on the data accessible on worker i

J Key features:

|

n workers/clients

 The problem is hard to solve for one client
Clients do not know each other



Parallel SGD

Iteration k:
1. Server broadcasts x*
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Parallel SGD

Iteration k:
1. Server broadcasts x*
2. Workers compute stochastic gradients
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Parallel SGD

Iteration k:

1. Server broadcasts x*

2. Workers compute stochastic gradients

3. Server averages the stochastic gradients and
makes an SGD step
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Iteration k:

1.
2.
3.

Server broadcasts x*

Good workers compute stochastic gradients

Parallel SGD Is Fragile

Server averages the received vectors and

makes an SGD step
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The Refined Problem Formulation

min {f(-fv) = é Zfz-(ﬂf)}

1€G

Good workers form the majority:
* G —good workers
* B —Byzantines (see the page “Byzantine

fault” in Wikipedia)
- GU B=|n], |G| =G, |B|=B
« B <én, 6< 1/,
* Byzantines are omniscient
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The Refined Problem Formulation

min { f(z) = = 3 fila)

rcRA )
1€G

Good workers form the majority:

* G —good workers

* B —Byzantines (see the page “Byzantine
fault” in Wikipedia)

* GUB=|n], IGl=6G, |Bl=B

« B <én, 6< 1/,

* Byzantines are omniscient

I I
S S
filz)  folx) = Sl

On the heterogeneity:
) e Loss functions on good peers cannot be
arbitrary heterogeneous
* |n this talk, we will assume that

ViegG o fi=f

=
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The Refined Problem Formulation

min { f(z) = = 3 fila)

rcRA )
1€G

Good workers form the majority:

* G —good workers

* B —Byzantines (see the page “Byzantine
fault” in Wikipedia)

* GUB=In], Ig|=G, |B|=B

« B <én, 6< 1/,

* Byzantines are omniscient

s U O

S S
arbitrary heterogeneous

filz)  folw) = fn(
* |n this talk, we will assume that

Question: how to solve such problems? Vieg - fi=f

On the heterogeneity:
) * Loss functions on good peers cannot be

=
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“Middle-Seekers” Aggregators

Natural idea: replace the averaging with more robust aggregation rule!

1 _ gk gk o Rl = b 4G

L

1 n
k k ~
¢" =29 =) §°=RAgg (97,95, -
1=1

Question: how to choose aggregator?

» In
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“Middle-Seekers” Aggregators

Geometric median (RFA):

Pillutla, K., Kakade, S. M., & Harchaoui, Z. (2019). Robust aggregation for
“wie federated learning. arXiv preprint arXiv:1912.13445.

= arg min
eRd

Z ”g 9; HQ

18



“Middle-Seekers” Aggregators

Geometric median (RFA):

Pillutla, K., Kakade, S. M., & Harchaoui, Z. (2019). Robust aggregation for

“wie federated learning. arXiv preprint arXiv:1912.13445.

Coordinate-wise median (CM):

Yin, D., Chen, Y., Kannan, R., & Bartlett, P. (2018, July). Byzantine-robust
“mee distributed learning: Towards optimal statistical rates. /n /nternational
Conference on Machine Learning (pp. 5650-5659). PMLR.

~k k
g" = arg min E ﬁllg g; |2
geR '

9" = arg min Z lg — g%l
geR?
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“Middle-Seekers” Aggregators

* Geometric median (RFA):

Pillutla, K., Kakade, S. M., & Harchaoui, Z. (2019). Robust aggregation for
“wie federated learning. arXiv preprint arXiv:1912.13445.

* Coordinate-wise median (CM):

Yin, D., Chen, Y., Kannan, R., & Bartlett, P. (2018, July). Byzantine-robust
“mee distributed learning: Towards optimal statistical rates. /n /nternational
Conference on Machine Learning (pp. 5650-5659). PMLR.

e Krum estimator:

Blanchard, P., El Mhamdi, E. M., Guerraoui, R., & Stainer, J. (2017, December).

¥/u Machine learning with adversaries: Byzantine tolerant gradient descent. /n
Proceedings of the 31st International Conference on Neural Information
Processing Systems (pp. 118-128).

~k k
g" = arg min E ﬁllg g; |2
eRd ‘

e k
g" = arg min ||g 9;' 11

indices of the closest n - B — 2 workers to g
20



Simple Example When “Middle-Seekers” Are Good

letd =1,G = {1,2,3,4},B = {5,6},g% = 1.5,9% = 2, g% = 2.5, g¥ = 3, and Byzantines are trying to shift
the estimator via sending gé‘ = g¥ = 1000. In this case,

21



Simple Example When “Middle-Seekers” Are Good

letd =1,G = {1,2,3,4},B = {5,6},g% = 1.5,9% = 2, g% = 2.5, g¥ = 3, and Byzantines are trying to shift
the estimator via sending gé‘ = g¥ = 1000. In this case,

1

* Average of the good workers: gt = =

4 i=195 = 2.25

* Average estimator: g¥ = %Z?ﬂg{‘ = 335
* Median: ¥ —any number from [2.5, 3]

* Krum estimator: g% = 2 or 2.5
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Simple Example When “Middle-Seekers” Are Good

letd =1,G = {1,2,3,4},B = {5,6},g% = 1.5,9% = 2, g% = 2.5, g¥ = 3, and Byzantines are trying to shift
the estimator via sending gé‘ = g¥ = 1000. In this case,

1

* Average of the good workers: gt = =

4 i=195 = 2.25

* Average estimator: g¥ = %Z?zlg{‘ = 335
* Median: ¥ —any number from [2.5, 3]

* Krum estimator: g% = 2 or 2.5

“Middle-seekers” can be good for reducing the effect of outliers

23



When “Middle-Seekers” Can Be Bad

Karimireddy, S. P, He, L., & Jaggi, M. (2021, July). Learning from history for byzantine robust
“/wwe Optimization. /n International Conference on Machine Learning (pp. 5311-5319). PMLR.

100

1— median
= : mean
x 8- class 1&2 ' -
> ignored
O
© 60
= Aggr
O —_CM
< 40+ —— RFA . .
— Krum Figure 2: For fat-tailed
200 400 600 800 distributions, median
Iterations based aggregators
Figure 1: Failure of existing methods on imbalanced  ignore the tail. This
MNIST dataset. Only the head classes (class 1 and 2 here) bias remains even if we

are learnt, and the rest 8 classes are ignored. See Sec. 7.1. have infinite samples.



A Little Is Enough (ALIE) Attack

Baruch, G., Baruch, M., & Goldberg, Y. (2019). A little is enough: Circumventing defenses for
"/um distributed learning. Advances in Neural Information Processing Systems, 32.

Correct worker o supporters
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Byzantines send the following vectors: gf — Ug — 20¢G
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A Little Is Enough (ALIE) Attack

Baruch, G., Baruch, M., & Goldberg, Y. (2019). A little is enough: Circumventing defenses for
"/um distributed learning. Advances in Neural Information Processing Systems, 32.

Correct worker

| ﬂsupporters
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opposers .t e

Byzantines send the following vectors: gf _— |[J,g — Z0g

mean of the good workers coordinate-wise standard deviation of good workers

* Byzantines choose z such that they are close to the “boundary of the cloud”

* Since Byzantines are closer to the mean, “middle-seekers” will treat opposers as outliers
26



The Result of ALIE Attack on the Training @ CIFAR10

Baruch, G., Baruch, M., & Goldberg, Y. (2019). A little is enough: Circumventing defenses for
"/um distributed learning. Advances in Neural Information Processing Systems, 32.

70 Krum
—=—Bulyan

60 ==Trimmed Mean

No Defense

50 No Attack

accuracy

“No defense” strategy is more robust! Formal definition of robust aggregation is required!

27



Robust Aggregation Formalism

r'| Karimireddy, S. P., He, L., & Jaggi, M. (2021, July). Learning from history for byzantine robust
"/wme Optimization. /n International Conference on Machine Learning (pp. 5311-5319). PMLR.

Definition of (&, c)-robust aggregator

Let g4 ..., g, be random variables such that there exist a good subset G € [n] of size G = (1 — §)n > "/,
such that {g; }(;eg) are independent and for all fixed pairs of good workers i,j € G we have

[ lgi — g51%] < 0*.

Let g = %Zi e Ji- Then g = RAgg(g, ..., gn) is called (9, c)—-robust aggregator if for some ¢ > 0

& (]9 —91I°] < cdo?

28




Robust Aggregation Formalism

r'| Karimireddy, S. P., He, L., & Jaggi, M. (2021, July). Learning from history for byzantine robust
"/wme Optimization. /n International Conference on Machine Learning (pp. 5311-5319). PMLR.

Definition of (&, c)-robust aggregator

Let g4 ..., g, be random variables such that there exist a good subset G € [n] of size G = (1 — §)n > "/,
such that {g; }(;eg) are independent and for all fixed pairs of good workers i,j € G we have

[ lgi — g51%] < 0*.

Let g = %Zi e Ji- Then g = RAgg(g, ..., gn) is called (9, c)—-robust aggregator if for some ¢ > 0

& (]9 —91I°] < cdo?

* Medians and Krum estimators do not satisfy this definition
* Question: do such aggregators exist?

29




Bucketing Fixes “Middle-Seekers”

Karimireddy, S. P, He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous
"/um Datasets via Bucketing. /n International Conference on Learning Representations.

Bucketing takes {g4, ..., g,,}, positive integer s, and aggregator Aggr as an input and returns

g = Aggr(y1,...,Yrn/s])

30



Bucketing Fixes “Middle-Seekers”

Karimireddy, S. P., He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous
"/um Datasets via Bucketing. /n International Conference on Learning Representations.

Bucketing takes {g4, ..., g,,}, positive integer s, and aggregator Aggr as an input and returns

g = Aggr(y1,...,Yrn/s])

min{si,n}
where Y; = g Z Lr(k) and T = (71‘(1), . ,W(n)) is a random permutation of [n]
k=s(i—1)+1
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Bucketing Fixes “Middle-Seekers”

Karimireddy, S. P., He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous
"/um Datasets via Bucketing. /n International Conference on Learning Representations.

Bucketing takes {g4, ..., g,,}, positive integer s, and aggregator Aggr as an input and returns

g = Aggr(y1,...,Yrn/s])

min{si,n}
where Y; = g Z Lr(k) and T = (71‘(1), . ,W(n)) is a random permutation of [n]
k=s(i—1)+1

Forany 6 < Opax and s = [6“13"/5]

« Krum o Bucketing is (8, c)—robust aggregator with ¢ = O(1) and 6. < /4
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Bucketing Fixes “Middle-Seekers”

Karimireddy, S. P., He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous
"/um Datasets via Bucketing. /n International Conference on Learning Representations.

Bucketing takes {g4, ..., g,,}, positive integer s, and aggregator Aggr as an input and returns

g = Aggr(y1,...,Yrn/s])

min{si,n}

where Y; = — Z Lr(k) and T = (71‘(1), . ,W(n)) is a random permutation of [n]
) k=s(i—1)4+1

Forany § < §pax and s = [6“13"/5]
« Krum o Bucketing is (8, c)—robust aggregator with ¢ = O(1) and 6. < /4

* RFA o Bucketing is (8, ¢)—robust aggregator with c = O(1) and 6ppax < />
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Bucketing Fixes “Middle-Seekers”

Karimireddy, S. P., He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous
"/um Datasets via Bucketing. /n International Conference on Learning Representations.

Bucketing takes {g4, ..., g,,}, positive integer s, and aggregator Aggr as an input and returns

g = Aggr(y1,...,Yrn/s])

min{si,n}
where Y; = g Z Lr(k) and T = (71‘(1), . ,W(n)) is a random permutation of [n]
k=s(i—1)+1

Forany § < §pax and s = [6“13"/5]

« Krum o Bucketing is (8, c)—robust aggregator with ¢ = O(1) and 6. < /4
* RFA o Bucketing is (8, ¢)—robust aggregator with c = O(1) and 6ppax < />

* CM o Bucketing is (8, c)-robust aggregator with ¢ = 0(d) and 6ppax < />

Moreover, these estimators are agnostic to 0! .
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Why Variance Reduction?

Wu, Z, Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient
"“/us descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.

Natural idea: if the variance of good vectors gets smaller, it becomes progressively harder for Byzantines to
shift the result of the aggregation from the true mean

® — good workers o

® — Byzantines

e Large variance allows Byzantines to * Small variance does not allow Byzantines
hide in noise and still create large bias to create large bias easily
 Hard to detect outliers * Easy to detect outliers 36



Byrd-SAGA: Byzantine-Robust SAGA

Wu, Z, Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient

’@ descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.
\
m .
_ 1 # of samples in the dataset
Finite-sum optimization: min f(a:) = = fj (x) )
rERA m|<— :
J=1 ) loss on j-th sample

37



Byrd-SAGA: Byzantine-Robust SAGA

ﬂﬂﬂﬂﬂ

Finite-sum optimization:

Byrd-SAGA:

Good workers compute
SAGA-estimators
Server uses geometric
median aggregator

Wu, Z, Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient
descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.

\
, = # of samples in the dataset
min €T) = — (x
min & (@) = = > lfy(a) |
7=1 ) loss on j-th sample
Sl?k_H - :Ck . 7/9%
~k k k
g° =RFA(g7,...,9,)
™m
1 .
gk . vf,]zk (xk) vszk( fﬂ%k) + - Zl ij( ﬁj), if 1 € G,
i = j=
*, ifee B
k .f 5 3
k+1 _ 1,77 117 %]Zkﬁ Vi e G
¢Z,] {Zlfk, lfj _ ]'Lk: .



Complexity of Byrd-SAGA

Wu, Z, Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient
"“/us descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.

Assumptions:
u—strong convexity of f: fly) > flz) +(Vf(zx),y — )+ %Hy —z||* Vz,y € R?

 Lesmoothnessof fi, o fr: |V f5(y) = V(@) < Ly —xl| Va,y € R%,j € [m]

39



Complexity of Byrd-SAGA

'} Wu, Z, Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient
"“/us descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.

Assumptions:

u—strong convexity of f: fly) > flz) +(Vf(zx),y — )+ %Hy —z||* Vz,y € R?
. Lesmoothnessof fu e fut [V 5(0) — V@) < Llly — 2| Ve,y € R € m)
Theorem:

Let § < 1/, and the above assumptions hold. Then, there exists a choice of the stepsize y such that the mini-

batched version of Byrd-SAGA (with batchsize b) produces x* satisfying E [”xk — X" 2] < ¢ after

m?2 L2 1
O 1 —_ iterations
R—_20)2 ce)

40



Reflecting on the Complexities

e Complexity of Byrd-SAGA (b =1, 6§ > 0):

* Complexity of Byrd-SAGA (b =1, 6§ = 0):

 Complexity of SAGA(b =1, § = 0):

m?212 1
O log —
((1 —20)u2 ° 6)
212 1
@, (m — log —)
L4 3

(et
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Reflecting on the Complexities

e Complexity of Byrd-SAGA (b =1, 6§ > 0):

* Complexity of Byrd-SAGA (b =1, 6§ = 0):

 Complexity of SAGA(b =1, § = 0):

m?212 1
O log —
((1 —20)u2 ° 6)
212 1
@, (m — log —)
L4 3

(et

The reason for such a dramatic deterioration in the complexity of Byrd-SAGA in comparison to SAGA:

x[0"] # V f(2F)

Analysis of SAGA/SVRG-based methods is very sensitive to unbiasedness!

42



Biased VR: You Cannot “Brake” What Is Already “Broken”!

SARAH/Geom-SARAH/PAGE (1 node case):

Nguyen, L. M,, Liu, ]., Scheinberg, K., & Taka¢, M. (2017, July). SARAH: A novel method for machine
learning problems using stochastic recursive gradient. In International Conference on Machine
Learning (pp. 2613-2621). PMLR.

Horvath, S., Lei, L., Richtarik, P., & Jordan, M. I. (2022). Adaptivity of stochastic gradient methods for
nonconvex optimization. SIAM Journal on Mathematics of Data Science, 4(2), 634-648.

Li, Z., Bao, H., Zhang, X., & Richtarik, P. (2021, July). PAGE: A simple and optimal probabilistic
gradient estimator for nonconvex optimization. In International Conference on Machine Learning 43
(pp- 6286-6295). PMLR.




Biased VR: You Cannot “Brake” What Is Already “Broken”!

SARAH/Geom-SARAH/PAGE (1 node case):

Vf(:vk), with prob. p
J€Ji

Nguyen, L. M,, Liu, ]., Scheinberg, K., & Taka¢, M. (2017, July). SARAH: A novel method for machine
learning problems using stochastic recursive gradient. In International Conference on Machine
Learning (pp. 2613-2621). PMLR.

Horvath, S., Lei, L., Richtarik, P., & Jordan, M. I. (2022). Adaptivity of stochastic gradient methods for
nonconvex optimization. SIAM Journal on Mathematics of Data Science, 4(2), 634-648.

Li, Z., Bao, H., Zhang, X., & Richtarik, P. (2021, July). PAGE: A simple and optimal probabilistic
gradient estimator for nonconvex optimization. In International Conference on Machine Learning 44
(pp- 6286-6295). PMLR.




Biased VR: You Cannot “Brake” What Is Already “Broken”!

SARAH/Geom-SARAH/PAGE (1 node case):

9 =9\g" 1+@ Z (Vfi(a®) = Vf(*1)), with prob. 1 —p

Jix—indices in the mini-batch, [/| = b

Nguyen, L. M,, Liu, ]., Scheinberg, K., & Taka¢, M. (2017, July). SARAH: A novel method for machine
learning problems using stochastic recursive gradient. In International Conference on Machine
Learning (pp. 2613-2621). PMLR.

Horvath, S., Lei, L., Richtarik, P., & Jordan, M. I. (2022). Adaptivity of stochastic gradient methods for
nonconvex optimization. SIAM Journal on Mathematics of Data Science, 4(2), 634-648.

Adi

Adi

Li, Z., Bao, H., Zhang, X., & Richtarik, P. (2021, July). PAGE: A simple and optimal probabilistic
gradient estimator for nonconvex optimization. In International Conference on Machine Learning 45
(pp- 6286-6295). PMLR.
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Biased VR: You Cannot “Brake” What Is Already “Broken”

SARAH/Geom-SARAH/PAGE (1 node case):

Vf(-ka)
(ij (z*)

Jix—indices in the mini-batch, [/| = b

Nguyen, L. M,, Liu, ]., Scheinberg, K., & Taka¢, M. (2017, July). SARAH: A novel method for machine
learning problems using stochastic recursive gradient. In International Conference on Machine
Learning (pp. 2613-2621). PMLR.

Horvath, S., Lei, L., Richtarik, P., & Jordan, M. I. (2022). Adaptivity of stochastic gradient methods for
nonconvex optimization. SIAM Journal on Mathematics of Data Science, 4(2), 634-648.

Adi

Adi

Li, Z., Bao, H., Zhang, X., & Richtarik, P. (2021, July). PAGE: A simple and optimal probabilistic
gradient estimator for nonconvex optimization. In International Conference on Machine Learning
(pp- 6286-6295). PMLR.

Ad

— V fi(zh~

h)

p ~ P/ — probability of
computing the full gradient

with prob. | p

with prob. 1 —p
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Biased VR: You Cannot “Brake” What Is Already “Broken”

SARAH/Geom-SARAH/PAGE (1 node case):

k+1  _k k p ~ P/ — probability of
computing the full gradient

9 =9\g" 1+@ Z (Vfi(@*) = V(@) with prob. 1 —p

Jx—indices in the mini-batch, |J;| = b Ek [gk] # Vf(ﬂfk)

Nguyen, L. M,, Liu, ., Scheinberg, K., & Taka&, M. (2017, July). SARAH: A novel method for machine Estimator is biased from the beginning!

learning problems using stochastic recursive gradient. In International Conference on Machine
Learning (pp. 2613-2621). PMLR.

Horvath, S., Lei, L., Richtarik, P., & Jordan, M. I. (2022). Adaptivity of stochastic gradient methods for
nonconvex optimization. SIAM Journal on Mathematics of Data Science, 4(2), 634-648.

Adi

Adi

Li, Z., Bao, H., Zhang, X., & Richtarik, P. (2021, July). PAGE: A simple and optimal probabilistic
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New Method: Byz-PAGE

(6, c)—robust aggregator agnostic to the variance, e.g., Krum/RFA/CM o Bucketing

k+1 k ~k ~k

= 2F — 7§ g" = ARAggr(gy,...,g;)

X
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New Method: Byz-PAGE

(6, c)—robust aggregator agnostic to the variance, e.g., Krum/RFA/CM o Bucketing

M =af — 49" " = ARAggr(gr, ..., gp)
Vf(z"), with prob. p
) g + 3 ZJ (ij(a; ) —Vfix )), with prob. 1 —p
YASOD”

Geom-SARAH/PAGE—estimator

Vi e g

50



Complexity of Byz-PAGE (Simplified)

Assumptions:
* fislower-bounded:

* L-smoothness of f1, ..., fin:

fi = inf f(x) > —c
reR4

IVfi(y) = V@) < Ly — x| Yo,y e R j € [m]
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Complexity of Byz-PAGE (Simplified)

Assumptions:

f is lower-bounded: fe = inf f(x) > —¢
reR4
+ Lmsmoothnessof fi, o fi [|Vfi(y) = V(@) < Llly — 2| Va,y e RY,j € [m]
Theorem 1:

Let the above assumptions hold and ARAggr be (8, c)—robust aggregator. Then, there exists a choice of the
2
stepsize ¥ such that Byz-PAGE produces £* satisfying E [”Vf()?k)” ] < &2 after
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Complexity of Byz-PAGE (Simplified)

Assumptions:

f is lower-bounded: fe= mIéd f(x) > —
L-smoothness of fu, .. fm:  [[Vf;(y) = Vi ()|l < Llly —all Va,y € RY,j € [m]
Theorem 1:

Let the above assumptions hold and ARAggr be (8, c)—robust aggregator. Then, there exists a choice of the
2
stepsize ¥ such that Byz-PAGE produces £* satisfying E [”Vf()?k)” ] < &2 after

(1 /3 ) L) - 1)

O iterations
82
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Remarks on the Results and One Extension

Remarks on the results:

We achieve new SOTA theoretical results for Byzantine-robust learning

When 6 = 0 (no Byzantines), the derived complexity bounds recover the known ones for
Geom-SARAH/PAGE

Therefore, the terms that are not affected by 6 are unimprovable

Open question: are the derived upper bounds optimal?
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Remarks on the results:

We achieve new SOTA theoretical results for Byzantine-robust learning

When 6 = 0 (no Byzantines), the derived complexity bounds recover the known ones for
Geom-SARAH/PAGE

Therefore, the terms that are not affected by 6 are unimprovable

Open question: are the derived upper bounds optimal?

The extension to the compressed communication case:

er (a:k) : with prob. p

Byz-PAGE: G =Yg+ 1 Y (Vf (#%) - VF; (z5Y), with prob. 1—p
X JEJk
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Remarks on the Results and One Extension

Remarks on the results:

We achieve new SOTA theoretical results for Byzantine-robust learning

When 6 = 0 (no Byzantines), the derived complexity bounds recover the known ones for
Geom-SARAH/PAGE

Therefore, the terms that are not affected by 6 are unimprovable

Open question: are the derived upper bounds optimal?

The extension to the compressed communication case:

7 hdobe

. er (a:k) : with prob. p
Byz-PAGE: 9i = 9 g1 + % S (ij (ack) —Vf; (xk_l)) ,  with prob. 1 —1p
X JEJk
(V[ (xk) ’ with prob. p
Byz-VR-MARINA: k
" TR ) ) ) 1
Gorbunov, E., Burlachenko, K. P,, Li, Z., & \ J€ Jk

Richtérik, P. (2021, July). MARINA: Faster non-
convex distributed learning with compression.

In International Conference on Machine un b ia Sed comp ression o pe rator
Learning (pp. 3788-3798). PMLR.
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Numerical Results

We tested the proposed method on the logistic
regression tasks

-2
In this experiment, we have 4 good workers and 1 10
Byzantine e
L 10~
As predicted by the derived results, the proposed =
method has linear convergence
10-°

Competitors struggle to achieve better loss

The results are consistent for all tested attacks

CM | ALIE

——

SGD
BR-SGDm

~#— Byz-VR-MARINA

._\,I;\P/A,\‘

10
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In the Paper We Also Have

Analysis of the version with compression (Byz-VR-MARINA)

Analysis under bounded heterogeneity

Non-uniform sampling of stochastic gradients

Analysis takes into account data-similarity Link to the paper

Additional experiments

Thank you!




