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Byzantine-Robust Training
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The Problem

model parameters

# of parameters

# of workers/clients

𝑛 workers/clients

. . .

loss on the data accessible on worker 𝑖

Key features:
• The problem is hard to solve for one client
• Clients do not know each other



9

Parallel SGD
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Parallel SGD

. . .

Iteration 𝒌:
1. Server broadcasts 𝑥𝑘

2. Workers compute stochastic gradients
3. Server averages the stochastic gradients and 

makes an SGD step
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Parallel SGD Is Fragile

. . .

Iteration 𝒌:
1. Server broadcasts 𝑥𝑘

2. Good workers compute stochastic gradients
3. Server averages the received vectors and 

makes an SGD step

for 𝑖 ∈ 𝒢 arbitrary bad
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The Refined Problem Formulation

. . .

*

Good workers form the majority:
• 𝒢 – good workers
• ℬ – Byzantines (see the page “Byzantine 

fault” in Wikipedia)
• 𝒢 ⊔ ℬ = 𝑛 , 𝒢 = 𝐺, ℬ = 𝐵
• 𝐵 ≤ 𝛿𝑛, 𝛿 < Τ1

2

• Byzantines are omniscient



14

The Refined Problem Formulation

. . .

*

Good workers form the majority:
• 𝒢 – good workers
• ℬ – Byzantines (see the page “Byzantine 

fault” in Wikipedia)
• 𝒢 ⊔ ℬ = 𝑛 , 𝒢 = 𝐺, ℬ = 𝐵
• 𝐵 ≤ 𝛿𝑛, 𝛿 < Τ1

2

• Byzantines are omniscient

On the heterogeneity:
• Loss functions on good peers cannot be 

arbitrary heterogeneous
• In this talk, we will assume that

∀ 𝑖 ∈ 𝒢 → 𝑓𝑖 = 𝑓



15

The Refined Problem Formulation

. . .

*

Good workers form the majority:
• 𝒢 – good workers
• ℬ – Byzantines (see the page “Byzantine 

fault” in Wikipedia)
• 𝒢 ⊔ ℬ = 𝑛 , 𝒢 = 𝐺, ℬ = 𝐵
• 𝐵 ≤ 𝛿𝑛, 𝛿 < Τ1

2

• Byzantines are omniscient

On the heterogeneity:
• Loss functions on good peers cannot be 

arbitrary heterogeneous
• In this talk, we will assume that

∀ 𝑖 ∈ 𝒢 → 𝑓𝑖 = 𝑓
Question: how to solve such problems?
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Robust Aggregation



“Middle-Seekers” Aggregators

Natural idea: replace the averaging with more robust aggregation rule!

Question: how to choose aggregator?
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“Middle-Seekers” Aggregators

• Geometric median (RFA):
Pillutla, K., Kakade, S. M., & Harchaoui, Z. (2019). Robust aggregation for 
federated learning. arXiv preprint arXiv:1912.13445.
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“Middle-Seekers” Aggregators

• Geometric median (RFA):
Pillutla, K., Kakade, S. M., & Harchaoui, Z. (2019). Robust aggregation for 
federated learning. arXiv preprint arXiv:1912.13445.

• Coordinate-wise median (CM):
Yin, D., Chen, Y., Kannan, R., & Bartlett, P. (2018, July). Byzantine-robust 
distributed learning: Towards optimal statistical rates. In International 
Conference on Machine Learning (pp. 5650-5659). PMLR.
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“Middle-Seekers” Aggregators

• Geometric median (RFA):
Pillutla, K., Kakade, S. M., & Harchaoui, Z. (2019). Robust aggregation for 
federated learning. arXiv preprint arXiv:1912.13445.

• Coordinate-wise median (CM):
Yin, D., Chen, Y., Kannan, R., & Bartlett, P. (2018, July). Byzantine-robust 
distributed learning: Towards optimal statistical rates. In International 
Conference on Machine Learning (pp. 5650-5659). PMLR.

• Krum estimator:
Blanchard, P., El Mhamdi, E. M., Guerraoui, R., & Stainer, J. (2017, December). 
Machine learning with adversaries: Byzantine tolerant gradient descent. In 
Proceedings of the 31st International Conference on Neural Information 
Processing Systems (pp. 118-128).

indices of the closest 𝑛 – 𝐵 – 2 workers to 𝑔
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Simple Example When “Middle-Seekers” Are Good

Let 𝑑 = 1, 𝒢 = 1, 2, 3, 4 , ℬ = 5, 6 , 𝑔1
𝑘 = 1.5, 𝑔2

𝑘 = 2, 𝑔3
𝑘 = 2.5, 𝑔4

𝑘 = 3, and Byzantines are trying to shift 

the estimator via sending 𝑔5
𝑘 = 𝑔6

𝑘 = 1000. In this case,
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Simple Example When “Middle-Seekers” Are Good

Let 𝑑 = 1, 𝒢 = 1, 2, 3, 4 , ℬ = 5, 6 , 𝑔1
𝑘 = 1.5, 𝑔2

𝑘 = 2, 𝑔3
𝑘 = 2.5, 𝑔4

𝑘 = 3, and Byzantines are trying to shift 

the estimator via sending 𝑔5
𝑘 = 𝑔6

𝑘 = 1000. In this case,

• Average of the good workers: ҧ𝑔𝑘 =
1

4
σ𝑖=1

4 𝑔4
𝑘 = 2.25

• Average estimator: 𝑔𝑘 =
1

6
σ𝑖=1

6 𝑔𝑖
𝑘 = 335

• Median: ො𝑔𝑘 – any number from 2.5, 3

• Krum estimator: ො𝑔𝑘 = 2 or 2.5

“Middle-seekers” can be good for reducing the effect of outliers
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When “Middle-Seekers” Can Be Bad
Karimireddy, S. P., He, L., & Jaggi, M. (2021, July). Learning from history for byzantine robust 
optimization. In International Conference on Machine Learning (pp. 5311-5319). PMLR.
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A Little Is Enough (ALIE) Attack
Baruch, G., Baruch, M., & Goldberg, Y. (2019). A little is enough: Circumventing defenses for 
distributed learning. Advances in Neural Information Processing Systems, 32.

Byzantines send the following vectors: 
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A Little Is Enough (ALIE) Attack
Baruch, G., Baruch, M., & Goldberg, Y. (2019). A little is enough: Circumventing defenses for 
distributed learning. Advances in Neural Information Processing Systems, 32.

• Byzantines choose 𝑧 such that they are close to the “boundary of the cloud”
• Since Byzantines are closer to the mean, “middle-seekers” will treat opposers as outliers

Byzantines send the following vectors: 

mean of the good workers coordinate-wise standard deviation of good workers
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The Result of ALIE Attack on the Training @ CIFAR10
Baruch, G., Baruch, M., & Goldberg, Y. (2019). A little is enough: Circumventing defenses for 
distributed learning. Advances in Neural Information Processing Systems, 32.

“No defense” strategy is more robust! Formal definition of robust aggregation is required!
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Robust Aggregation Formalism
Karimireddy, S. P., He, L., & Jaggi, M. (2021, July). Learning from history for byzantine robust 
optimization. In International Conference on Machine Learning (pp. 5311-5319). PMLR.

Let 𝑔1 … , 𝑔𝑛 be random variables such that there exist a good subset 𝒢 ⊆ 𝑛 of size 𝐺 ≥ 1 − 𝛿 𝑛 > Τ𝑛
2

such that {𝑔𝑖} 𝑖∈𝒢 are independent and for all fixed pairs of good workers 𝑖, 𝑗 ∈ 𝒢 we have

Let ҧ𝑔 =
1

𝐺
σ𝑖 ∈ 𝒢 𝑔𝑖. Then ො𝑔 = RAgg(𝑔1, … , 𝑔𝑛) is called (𝛿, 𝑐)–robust aggregator if for some 𝑐 > 0

Definition of (𝜹, 𝒄)–robust  aggregator
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Karimireddy, S. P., He, L., & Jaggi, M. (2021, July). Learning from history for byzantine robust 
optimization. In International Conference on Machine Learning (pp. 5311-5319). PMLR.

Let 𝑔1 … , 𝑔𝑛 be random variables such that there exist a good subset 𝒢 ⊆ 𝑛 of size 𝐺 ≥ 1 − 𝛿 𝑛 > Τ𝑛
2

such that {𝑔𝑖} 𝑖∈𝒢 are independent and for all fixed pairs of good workers 𝑖, 𝑗 ∈ 𝒢 we have

Let ҧ𝑔 =
1

𝐺
σ𝑖 ∈ 𝒢 𝑔𝑖. Then ො𝑔 = RAgg(𝑔1, … , 𝑔𝑛) is called (𝛿, 𝑐)–robust aggregator if for some 𝑐 > 0

Definition of (𝜹, 𝒄)–robust  aggregator

• Medians and Krum estimators do not satisfy this definition
• Question: do such aggregators exist?
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Bucketing Fixes “Middle-Seekers”
Karimireddy, S. P., He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous 
Datasets via Bucketing. In International Conference on Learning Representations.

Bucketing takes 𝑔1, … , 𝑔𝑛 , positive integer 𝑠, and aggregator Aggr as an input and returns
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Datasets via Bucketing. In International Conference on Learning Representations.

Bucketing takes 𝑔1, … , 𝑔𝑛 , positive integer 𝑠, and aggregator Aggr as an input and returns

where and is a random permutation of [𝑛]
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4
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Bucketing Fixes “Middle-Seekers”
Karimireddy, S. P., He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous 
Datasets via Bucketing. In International Conference on Learning Representations.

Bucketing takes 𝑔1, … , 𝑔𝑛 , positive integer 𝑠, and aggregator Aggr as an input and returns

where and is a random permutation of [𝑛]

For any 𝛿 ≤ 𝛿max and 𝑠 = ൗ𝛿max
𝛿

• Krum ∘ Bucketing is (𝛿, 𝑐)–robust aggregator with 𝑐 = 𝒪(1) and 𝛿max < Τ1
4

• RFA ∘ Bucketing is (𝛿, 𝑐)–robust aggregator with 𝑐 = 𝒪(1) and 𝛿max < Τ1
2
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Bucketing Fixes “Middle-Seekers”
Karimireddy, S. P., He, L., & Jaggi, M. (2022). Byzantine-Robust Learning on Heterogeneous 
Datasets via Bucketing. In International Conference on Learning Representations.

Bucketing takes 𝑔1, … , 𝑔𝑛 , positive integer 𝑠, and aggregator Aggr as an input and returns

where and is a random permutation of [𝑛]

For any 𝛿 ≤ 𝛿max and 𝑠 = ൗ𝛿max
𝛿

• Krum ∘ Bucketing is (𝛿, 𝑐)–robust aggregator with 𝑐 = 𝒪(1) and 𝛿max < Τ1
4

• RFA ∘ Bucketing is (𝛿, 𝑐)–robust aggregator with 𝑐 = 𝒪(1) and 𝛿max < Τ1
2

• CM ∘ Bucketing is (𝛿, 𝑐)–robust aggregator with 𝑐 = 𝒪(𝑑) and 𝛿max < Τ1
2

Moreover, these estimators are agnostic to 𝝈𝟐!



35

Variance Reduction
and Byzantine-Robustness
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Why Variance Reduction?

Natural idea: if the variance of good vectors gets smaller, it becomes progressively harder for Byzantines to 
shift the result of the aggregation from the true mean

– good workers

– Byzantines

• Large variance allows Byzantines to 
hide in noise and still create large bias

• Hard to detect outliers

• Small variance does not allow Byzantines 
to create large bias easily

• Easy to detect outliers

Wu, Z., Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient 
descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.
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Byrd-SAGA: Byzantine-Robust SAGA
Wu, Z., Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient 
descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.

Finite-sum optimization:
# of samples in the dataset

loss on 𝑗-th sample
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Byrd-SAGA: Byzantine-Robust SAGA
Wu, Z., Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient 
descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.

Finite-sum optimization:
# of samples in the dataset

loss on 𝑗-th sample

Byrd-SAGA:

• Good workers compute 
SAGA-estimators

• Server uses geometric 
median aggregator
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Complexity of Byrd-SAGA
Wu, Z., Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient 
descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.

Assumptions:

• 𝜇–strong convexity of 𝑓:

• 𝐿–smoothness of 𝑓1, … , 𝑓𝑚:
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Complexity of Byrd-SAGA
Wu, Z., Ling, Q., Chen, T., & Giannakis, G. B. (2020). Federated variance-reduced stochastic gradient 
descent with robustness to byzantine attacks. IEEE Transactions on Signal Processing, 68, 4583-4596.

Assumptions:

• 𝜇–strong convexity of 𝑓:

• 𝐿–smoothness of 𝑓1, … , 𝑓𝑚:

Theorem:
Let 𝛿 < Τ1

2 and the above assumptions hold. Then, there exists a choice of the stepsize 𝛾 such that the mini-

batched version of Byrd-SAGA (with batchsize 𝑏) produces 𝑥𝑘 satisfying 𝔼 𝑥𝑘 − 𝑥∗ 2
≤ 𝜀 after

iterations
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Reflecting on the Complexities

• Complexity of Byrd-SAGA 𝑏 = 1, 𝛿 > 0 :

• Complexity of Byrd-SAGA 𝑏 = 1, 𝛿 = 0 :

• Complexity of SAGA 𝑏 = 1, 𝛿 = 0 :
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Reflecting on the Complexities

• Complexity of Byrd-SAGA 𝑏 = 1, 𝛿 > 0 :

• Complexity of Byrd-SAGA 𝑏 = 1, 𝛿 = 0 :

• Complexity of SAGA 𝑏 = 1, 𝛿 = 0 :

The reason for such a dramatic deterioration in the complexity of Byrd-SAGA in comparison to SAGA: 

Analysis of SAGA/SVRG-based methods is very sensitive to unbiasedness!
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Biased VR: You Cannot “Brake” What Is Already “Broken”!

Nguyen, L. M., Liu, J., Scheinberg, K., & Takáč, M. (2017, July). SARAH: A novel method for machine 
learning problems using stochastic recursive gradient. In International Conference on Machine 
Learning (pp. 2613-2621). PMLR.

Horváth, S., Lei, L., Richtárik, P., & Jordan, M. I. (2022). Adaptivity of stochastic gradient methods for 
nonconvex optimization. SIAM Journal on Mathematics of Data Science, 4(2), 634-648.

Li, Z., Bao, H., Zhang, X., & Richtárik, P. (2021, July). PAGE: A simple and optimal probabilistic 
gradient estimator for nonconvex optimization. In International Conference on Machine Learning 
(pp. 6286-6295). PMLR.

SARAH/Geom-SARAH/PAGE (1 node case):
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SARAH/Geom-SARAH/PAGE (1 node case):

𝐽𝑘– indices in the mini-batch, |𝐽𝑘| = 𝑏

𝑝 ~ Τ𝑏
𝑚 – probability of 

computing the full gradient 

Estimator is biased from the beginning!
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New Method: Byz-PAGE
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New Method: Byz-PAGE

(𝛿, 𝑐)–robust aggregator agnostic to the variance, e.g., Krum/RFA/CM ∘ Bucketing
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New Method: Byz-PAGE

(𝛿, 𝑐)–robust aggregator agnostic to the variance, e.g., Krum/RFA/CM ∘ Bucketing

Geom-SARAH/PAGE–estimator 
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Complexity of Byz-PAGE (Simplified)

Assumptions:

• 𝑓 is lower-bounded:

• 𝐿–smoothness of 𝑓1, … , 𝑓𝑚:
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Complexity of Byz-PAGE (Simplified)

Assumptions:

• 𝑓 is lower-bounded:

• 𝐿–smoothness of 𝑓1, … , 𝑓𝑚:

Theorem 1:
Let the above assumptions hold and ARAggr be (𝛿, 𝑐)–robust aggregator. Then, there exists a choice of the 

stepsize 𝛾 such that Byz-PAGE produces ො𝑥𝑘 satisfying 𝔼 ∇𝑓( ො𝑥𝑘)
2

≤ 𝜀2 after
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stepsize 𝛾 such that Byz-PAGE produces ො𝑥𝑘 satisfying 𝔼 ∇𝑓( ො𝑥𝑘)
2

≤ 𝜀2 after

iterations
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Remarks on the Results and One Extension
Remarks on the results:
• We achieve new SOTA theoretical results for Byzantine-robust learning
• When 𝛿 = 0 (no Byzantines), the derived complexity bounds recover the known ones for

Geom-SARAH/PAGE
• Therefore, the terms that are not affected by 𝛿 are unimprovable
• Open question: are the derived upper bounds optimal?
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The extension to the compressed communication case:

• Byz-PAGE:



56

Remarks on the Results and One Extension
Remarks on the results:
• We achieve new SOTA theoretical results for Byzantine-robust learning
• When 𝛿 = 0 (no Byzantines), the derived complexity bounds recover the known ones for

Geom-SARAH/PAGE
• Therefore, the terms that are not affected by 𝛿 are unimprovable
• Open question: are the derived upper bounds optimal?

The extension to the compressed communication case:

• Byz-PAGE:

• Byz-VR-MARINA:

unbiased compression operator

Gorbunov, E., Burlachenko, K. P., Li, Z., & 
Richtárik, P. (2021, July). MARINA: Faster non-
convex distributed learning with compression. 
In International Conference on Machine 
Learning (pp. 3788-3798). PMLR.
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Numerical Results

• We tested the proposed method on the logistic 
regression tasks

• In this experiment, we have 4 good workers and 1 
Byzantine

• As predicted by the derived results, the proposed 
method has linear convergence

• Competitors struggle to achieve better loss 

• The results are consistent for all tested attacks
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Concluding Remarks
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In the Paper We Also Have

• Analysis of the version with compression (Byz-VR-MARINA)

• Analysis under bounded heterogeneity

• Non-uniform sampling of stochastic gradients

• Analysis takes into account data-similarity

• Additional experiments

Thank you!

Link to the paper


