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The Talk is Based on Three Papers

e E. Gorbunov, N. Loizou, G. Gidel. Extragradient Method: O(1/K)
Last-Iterate Convergence for Monotone Variational Inequalities and
Connections With Cocoercivity. AISTATS 2022

e E. Gorbunov, A. Taylor, G. Gidel. Last-Iterate Convergence of Optimistic
Gradient Method for Monotone Variational Inequalities. NeurlPS 2022

e E. Gorbunov, A. Taylor, S. Horvéth, G. Gidel. Convergence of Proximal
Point and Extragradient-Based Methods Beyond Monotonicity: the Case
of Negative Comonotonicity. ICML 2023



Variational Inequalities and
Extragradient-Based Methods



Variational Inequality Problem

find x* € @ CRY such that (F(x*),x —x*) >0, Vx€ Q (VIP-C)

e F:Q — R?is L-Lipschitz operator: Vx,y € Q

IF(x) = FWII < Llix = vl (1)

e [ is monotone: Vx,y € Q

(F(x) = F(y),x—y) 20 ()



Variational Inequality Problem: Examples

e Min-max problems:

e ) &



Variational Inequality Problem: Examples

e Min-max problems:

e feY) e

If f is convex-concave, then (3) is equivalent to finding
(u*,v*) € U x V such that V(u,v) € U x V

(V') u—u") >0, —(V,f(u",v"),v = v*) >0,
which is equivalent to (VIP-C) with Q = U x V, x = (u",v")T,
and

Vuf(u,v)
F =
(X) (—va(u, V))
These problems appear in various applications such as robust
optimization (Ben-Tal et al., 2009) and control (Hast et al., 2013),

adversarial training (Goodfellow et al., 2015; Madry et al., 2018) and
generative adversarial networks (GANs) (Goodfellow et al., 2014).



Variational Inequality Problem: Examples

e Minimization problems:

Lneig f(x) (4)

If £ is convex, then (4) is equivalent to finding a solution of (VIP-C)
with
F(x) = Vf(x)



Variational Inequality Problem: Unconstrained Case

When Q = R9 (VIP-C) can be rewritten as

find x* € R? such that F(x*) =0 (VIP)

For simplicity, we first consider (VIP) rather than (VIP-C)



How to Solve VIP?

Naive approach — Gradient Descent (GD):

XKL = Xk v F(xK) (GD)

v/ GD seems very natural and it is well-studied for minimization

X GD does not converge for simple convex-concave min-max problems



Non-Convergence of GD

Lo el = Start

—&— Adam with v = 0.01 —#—  Extrapolation from the past v = 0.5
radient method v = 0.1 —4— Extrapolation vy = 0.6

Figure 1: Comparison of the basic gradient method (as well as
Adam) with the techniques presented in §3 on the optimization
of (9). Only the algorithms advocated in this paper (Averag-
ing, Extrapolation and Extrapolation from the past) converge
quickly to the solution. Each marker represents 20 iterations.
We compare these algorithms on a non-convex objective in §G.1.

Figure 1: Behavior of GD on the problem min max uv (Gidel et al., 2019)

ueR veR



Popular Alternatives to GD

e Extragradient method (EG) (Korpelevich, 1976)
X = XK =y F(x* = yF(x"))
e Optimistic Gradient method (0G) (Popov, 1980)

XKL = xk 2y F(xk) + yF(xk71)



Measures of Convergence

e Restricted gap function:

Gapr(xK) = max F(y),xX —y), where R ~ ||x° — x*
Pe() = max (F(y).x<~y) I = x°|

(Nesterov, 2007)
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Measures of Convergence

e Restricted gap function:

Gap-(xKX) = max F 7xK— . where R ~ ||x9 — x*
Pe() = max (F(y).x<~y) I = x°|

(Nesterov, 2007)
v Gapg(x") can be seen as a natural extension of optimization error for
(VIP), when F is monotone
X It is unclear how to tightly estimate Gap,(x") in practice and how to
generalize it to non-monotone case
e Squared norm of the operator: ||F(xX)|?

X In general, it provides weaker guarantees than Gap,_-(xK)
v ||F(x¥)||? is easier to compute than Gap,(x*)

In this part of the talk talk, we focus on the guarantees for ||F(x¥)|?
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Convergence Guarantees for EG

When F is monotone and L-Lipschitz the following results are known for
EG:
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Convergence Guarantees for EG: Resolved Question

Q1: /s it possible to prove last-iterate |F(x")||> = O(1/k) convergence rate

for EG when F is monotone and L-Lipschitz without additional assumptions?

We address this question with the help of a computer

12



Performance Estimation
Problems and Last-lterate
Convergence of Extragradient



Performance Estimation Problems

e A powerful technique for deriving tight convergence guarantees,
obtaining proofs and even designing new optimal methods

e First work: (Drori and Teboulle, 2014)

e Some later works: (Kim and Fessler, 2016; Lessard et al., 2016;
Taylor et al., 2017a,b; De Klerk et al., 2017; Ryu et al., 2020; Taylor
and Bach, 2019)

13



Performance Estimation Problem: A General Form

PEP for method M applied to solve a problem p from some class P:

max Convergence Criterion(x”) (5)
st. peP, x"eRq,
Initial_Conditions(x?),

xK is an output of method M after K iterations

14



Example: PEP for the Last-Iterate of EG

max  ||F(x")|? (6)
s.t. F is monotone and L-Lipschitz, x° € RY,
Ix° = x*|? < 1,

= Xk o F (= F() k=01, K1

15



Another Example for EG

e Another example of what we could solve:
o Check whether ||F(x**1)||2 < ||F(x")]?

e Associated PEP problem:
Ago(L,y) = max [[F()2 = [[F(x)] (7)
s.t.  F is monotone and L-Lipschitz, x* € RY,

Xk+1/2 _ Xk _ ’yF(Xk)

Xk+1 _ Xk _ ’}/F(Xk_H/Z)

e Problems (7) and (6) are hard to solve since they are infinitely
dimensional

16
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Another Example for EG

e Another example of what we could solve:
o Check whether ||F(x**1)||2 < ||F(x")]?

e Associated PEP problem:

Ago(L,y) = max [[F()2 = [[F(x)] (7)
s.t.  F is monotone and L-Lipschitz, x* € RY,
Xk+1/2 _ Xk _ ’yF(Xk)

Xk+1 _ Xk _ ’}/F(Xk_H/Z)

e Problems (7) and (6) are hard to solve since they are infinitely
dimensional

e Key idea: replace the intial problem by an “easier” problem.
e The quantities " mattering” are x*, xk*2, xk+1 F(xk), F(x**2) and
F(Xk+1)_

e Key point: consider monotonicity and Lipchitzness at these points
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Finite-Dimensional Relaxation

max || Ficsa|* = || Fil (8)
s.t.d and x*, Fy, Fii1, Firy € RY,
S RV ~F, (extrapolation step)
SRk VFii1, (update step)
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Finite-Dimensional Relaxation

max || Ficer||* = || Fill? (8)
s.t.d and x*, Fy, Fii1, Firy € RY,
X*TE = xk vFx, (extrapolation step)
X = xR il (update step)
A 0 < (Fe — Fk+1 x* — Xk+%>, (monotonicity in (xk,xH%))
X2 10 < (Fi — Fipr, x¥ — XM, (monotonicity in (x*,x*t))
A3 10 < (Frg1 — Fk+1 Xk — xkF1/2y (monotonicity in (xk+1,xk+%))
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Finite-Dimensional Relaxation

max || Fiea || — || Fil (8)
s.t.d and x*, Fy, Fii1, Firy € RY,
X*TE = xk vFx, (extrapolation step)
X =k il (update step)
: k k+1 C ok kgl

AL .0§<kaFk+%,x —x2), (monotonicity in (x*,x“"2))
X2 10 < (Fi — Fipr, x¥ — XM, (monotonicity in (x*,x*t))
Az 10 < (Fkp1 — F g, xK = xk“/2>7 (monotonicity in (xk+1,xk+% )

k+3

)
)

X [Pk — Fk+%||2 < 22X - x<2 1%, (Lipschitzness in (xk,x”%))
As :||Fk — Fk+1H2 < LZ’Y2HXk — XkHHZ7 (Lipschitzness in (xk,x )
)

Ao ¢ || Fisr — Fk+%H2 < L2’yz||Xk _ Xk+%||2. (Lipschitzness in (xk7x

17



Finite-Dimensional Relaxation: Bad News

X Problem (8) is not equivalent to (7)
e There might exist a solution of (8) such that no monotone Lipschitz
operator F can interpolate it (Ryu et al., 2020)
e In general, for the class of monotone Lipschitz operators
interpolation conditions are unknown
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Finite-Dimensional Relaxation: Bad News

X Problem (8) is not equivalent to (7)

e There might exist a solution of (8) such that no monotone Lipschitz
operator F can interpolate it (Ryu et al., 2020)

e In general, for the class of monotone Lipschitz operators
interpolation conditions are unknown

v/ But we can still solve (8) numerically
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Towards SDP Formulation

1
e The unknown parameters are (x*, x 2 xk*1 F,. Fiqs, Fri1).

e Consider the Gram matrix of these vectors:

. k k+3 k+1
(X X X Fk Fk+% Fk+1)
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Towards SDP Formulation

1
e The unknown parameters are (x*, x 2 xk*1 F,. Fiqs, Fri1).

e Consider the Gram matrix of these vectors:

. k k+3 k+1
(X X X Fk Fk+% Fk+1)

e One can easily show that for all d > 4

1 . .
G e S§ <= I xK xF2 xR Firys Fir1 € RY : G is Gram matrix.

19



Primal SDP

e Therefore, problem (8) is equivalent to the following SDP problem:

max Tr(MgG) (9)
st. GeSt,
Tr(M;G) <0, i=1,2,....6,

where Mg, ..., Mg are some symmetric matrices.
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Primal SDP

e Therefore, problem (8) is equivalent to the following SDP problem:

max Tr(MgG) (9)
st. GeSt,
Tr(M;G) <0, i=1,2,....6,

where Mg, ..., Mg are some symmetric matrices.

e In that case, the dual problem is very simple:

6
Find Ap,...,X6 >0 suchthat » \M; =M,  (10)

i=1

If we solve the dual, we get "a proof”:

0> ATr(M;G) > Tr(MoG) (11)

20



Analysis of the Solution

e In the numerical tests, we observed that Agg(L,~y) =~ 0 for all tested
pairs of L and ~

21



Analysis of the Solution

e In the numerical tests, we observed that Agg(L,~y) =~ 0 for all tested
pairs of L and ~

e Moreover, we have

A1~ ) >\2%27 )\3:0a >\4:07 )\5:07 Aﬁ%%’

N—=
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Analysis of the Solution

e In the numerical tests, we observed that Agg(L,~y) =~ 0 for all tested
pairs of L and ~

e Moreover, we have

lw

)\1% s )\2%2, )\3:0, )\4:0, )\5:07 /\6%

N—=

e Duality of SDPs says that
1 1
IFGENZ = IFGIP < As(IF () = FF2) P = 242 )1x" = X2 |?)
— A (F(xF) = F(x2), x* — xk*2)
— M (F(x) = F(x*),x* = x**)
<0

21



Last-Iterate O(!/k) Rate for EG

Theorem 1

Let F: R? — RY be monotone and L-Lipschitz, 0 < v < 1/v2L. Then
for all k > 0 the iterates produced by EG satisfy ||F(x**1)|| < ||[F(x¥)|.

22



Last-Iterate O(!/k) Rate for EG

Theorem 1

Let F: R? — RY be monotone and L-Lipschitz, 0 < v < 1/v2L. Then
for all k > 0 the iterates produced by EG satisfy ||F(x**1)|| < ||[F(x¥)|.

Using this result, it is quite trivial to derive last-iterate O(1/k) rate.
Theorem 2
Let F : R — RY be monotone and L-Lipschitz. Then for all K >0

Ix® = x*|2

IFCNE < e ey

(12)

where x¥ is produced by EG with stepsize 0 < v < 1/v/3L. Moreover,

2[x° — x*||?

— < .
v < vy/1—[292/K + 1

Gapp(x") = F(y), x

= max
YERY: ||y —x* || <[ x0—xx||

22



Last-Iterate Convergence of
Optimistic Gradient




Going Back to the Constrained Setting

e Problem:

find x* € @ CRY such that (F(x*),x —x*) >0, Vx € Q
(VIP-C)
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Going Back to the Constrained Setting

e Problem:

find x* € @ CRY such that (F(x*),x —x*) >0, Vx € Q
(VIP-C)

e Projected Extragradient:
X = proj[x — yF(x)],  x**t = projlx* —vF(x¥)] (Proj-Ec)
e Projected Past Extragradient:

X% = proj[xk—yF(x*1)], x**! = proj[x*—vF(x¥)] (Proj-PEG)
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Going Back to the Constrained Setting

Problem:

find x* € @ CRY such that (F(x*),x —x*) >0, Vx € Q
(VIP-C)

Projected Extragradient:
% = projlx* — yF(x")], x**! = projlx* — yF()] (Proj-EG)
e Projected Past Extragradient:

X% = proj[xk—yF(x*1)], x**! = proj[x*—vF(x¥)] (Proj-PEG)

e Convergence metric: |[x*1 — xk||2,
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Past Extragradient and Optimistic Gradient

In the unconstrained case, PEG and 0G are equivalent

e Past Extragradient (PEG)
)?k _ Xk _ ,y’,_-()’?kfl)7 Xk+1 _ Xk _ ,YF()?k)
e Optimistic Gradient method (0G)

XL = 3K — 2y F(X¥) 4+ vF (X< 1)

24



PEP for PEG

IF(x™)II?
Grs(v.LN) = max 5 —p (12)
;07 7)—2N
I
s.t. F is monotone and L-Lipschitz,

R0 =x%eR? x! = x0 — yF(x?)
XK= xK —yF(x*71), for k=1,...,N,
XKL = xk —~F(XK), for k=1,...,N — 1.

25



PEP for PEG: Relaxation

EPEG(% L,N) = MRS HgN||2 (14)
deN,x*eR
{(<",g") }=o CRY xR?
{(**,8") 1o CRIxR?
st(g—hx—y)>0 V(x,g),(y;h) €S (15)
lg — Al < L2|Ix —yl* V¥(x.g),(y,h)€S  (16)
X =x%ecRI x! :XOf'ng
XK =xk—~gkt fork=1,...,N,
XK = xk 45k fork=1,...,N—1,

I = x*? < 1 (17)

e Following the same steps as in the previous examples, one can
reformulate this problem as SDP

26



PEP for 0G

IF(XM)IIP
Goa(7, L, N) = IED 1 —x|P (18)
>~<°>~<’V
s.t. F is monotone and L-Lipschitz,

X eR? X =3 —~F(X),
KA =X — 29F(X) + P (X7,
fork=1,....,.N—1,

27



PEP for 0G: Relaxation

GUG(% L,N) = max ||g’\’||2 (19)
deN,x*eR
{(F &)} CRY xR
stlg—hx—y)20 V(xg)(y.h)eS (20)

lg = hl? < Plx—yIP ¥(xg)(vh)eS  (21)
R R =2 ",

;k—}—l _ ~k—1

X< —2yg* + v,
fork=1,....,N—1,
Ix° = x*|I> <1 (22)

e Following the same steps as in the previous examples, one can
reformulate this problem as SDP

28



Both Relaxations Show O(1/n) Convergence

10°

1071

Figure 2: épgc(’}/, L, N) and gog(fy, L, N) for different values of v and N
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PEP for PEG and 0G: Existence of Simple Proofs?

e Typical proof — some clever combination of inequalities
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PEP for PEG and 0G: Existence of Simple Proofs?

e Typical proof — some clever combination of inequalities
e Those inequalities typically involve consecutive iterates and/or x*

e We can explicitly drop constraints for the iterates with indices /7, j
such that |i —j| <t
e We denote the corresponding problems as EPEG('y, L,N,t) and
Goe(, L, N, t)
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PEP for PEG and 0G: Existence of Simple Proofs?

100 e\\

—— Geeo(gr Lk l) >y p p

—>— GOG(er K, 1)

—— GOG(3L'L k, 2)
50G(3L'L k, 4)
1071 —— 2
10!
k

Figure 3: We > report GpEc(’y, L,N,1) and Goc(’y, L,N,t) for t =1,2,4. It
suggest that Geee(7, L, N, 1) ~ 1w but not Goe(7, L, N, t) (even for t = 4).
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PEP for PEG and 0G: Existence of Simple Proofs?

100 e\\

—— Geeo(gr Lk l) >y p p

—>— GOG(er K, 1)

—— GOG(3L'L k, 2)
Goo(a L, k. 4)
1071 —— 2
101
k

Figure 3: We > report GpEc(’y, L,N,1) and Goc(’y, L,N,t) for t =1,2,4. It
suggest that Geee(7, L, N, 1) ~ 1w but not Goe(7, L, N, t) (even for t = 4).

Since interpolation is not guaranteed, extra points are crucial!
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Can We Prove that the Norm Monotonically Decrease?

IFCMHIP = IIF M)
Al L N) = e [0 — x*||2 23)
;(0’ 7;(/v
<
s.t. F is monotone and L-Lipschitz,

;{0 :XO ERd, X1 :XO_’YF(XO)v
<k :Xk,,yF()?kfl), fork=1,...,N,
X = xk —yF(XF), for k=1,...,N—1,
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Can We Prove that the Norm Monotonically Decrease?

IFCMHIP = IIF M)
Al L N) = e [0 — x*||2 23)
;(07 7;(/v
<
s.t. F is monotone and L-Lipschitz,

;{0 :XO ERd, X1 :XO_’YF(XO)v
<k :Xk,,yF()?kfl), fork=1,...,N,
X = xk —yF(XF), for k=1,...,N—1,

. 5(7, L, N) — value of SDP relaxation

e We also consider another version of (23) for L-cocoercive operator F
(i.e., (g —h,x—y) >0and ||g — h||* < L?||x — y||? are replaced by
lg — h||? < L{g — h,x — y)), the corresponding values are denoted
as 0(v, L, N) and 5~(7, L,N)

e Guaranteed interpolation (Ryu et al., 2020): (v, L, N) = d(~, L, N)
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Can We Prove that the Norm Monotonically Decrease? No
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Figure 4: Evolution of A(v, L, N), A(v, L, N),é(v, L, N),d(v, L, N)
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Can We Prove that the Norm Monotonically Decrease? No
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Figure 4: Evolution of A(v, L, N), A(v, L, N),é(v, L, N),d(v, L, N)

Need to find other potentials to prove the last-iterate convergence



Some Intuition from the Numerical Results

e Inequality ||F(x")||> < ||F(x"=1)||? does not hold for PEG...
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Some Intuition from the Numerical Results

e Inequality ||F(x")||> < ||F(x"=1)||? does not hold for PEG...
e ... but we see that ||F(x")||? — ||F(xN~1)||? decreases

e l|dea: try to find such sequence {An}n>o that
IFCM1? + An < [[FOND1? + An-a
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Some Intuition from the Numerical Results

Inequality ||F(xM)||? < [|F(xN~1)||? does not hold for PEG...

e ... but we see that ||F(x")||? — ||F(xN~1)||? decreases

Idea: try to find such sequence {An}n>0o that
IFMIP + An < [IFGMHZ + Ayt

e After several (educated) guess and trials we found numerically:

IFGMIP20IF (M) = FEMIZ < IFGM)P20F(xM) = F 112
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Potential for PEG: Unconstrained Problems

Theorem 3

Let F : R — R? be monotone and L-Lipschitz, 0 < «. Then for all
k > 0 the iterates produced by PEG satisfy

IFCC DI+ 21l FOT) = FRIP < IFGAI + 211 F(x*) = FR)IP?

3 (L2 2_ g) IF() — FEP.

The last term is non-positive for 0 < v < \/§/3L.
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Last-Iterate Convergence of PEG for Unconstrained Problems

Theorem 4

Let F : R? — R? be monotone and L-Lipschitz, 0 < ~. Then for all

k > 0 the iterates produced by PEG with v < 1/3L satisfy @y 1 < &y
with ®, defined as

Ly k32 "
Oi =[x =x 7+ == (IFCO)IP + 2 FOF) = FEH]1) - (24)
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Last-Iterate Convergence of PEG for Unconstrained Problems

Theorem 4

Let F : R? — R? be monotone and L-Lipschitz, 0 < ~. Then for all
k > 0 the iterates produced by PEG with v < 1/3L satisfy @y 1 < &y
with ®, defined as

k+32 ,

Oi =[x =x 7+ == (IFCO)IP + 2 FOF) = FEH]1) - (24)

In particular, for all N > 0 and v < 1/3L the above formula implies

31+ 20220 — x* P2

v2(N + 32) ’
2v/41(1 + 32L%4%)||x° — x*||2
V3N + 96 '

IFGMIE - <

GaPF(Xk) <
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From Unconstrained to Constrained Problems

e Different metric: instead of ||F(x")||> we consider ||xN — xN—1||2
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ained to Constrained Problems

e Different metric: instead of ||F(x")||> we consider ||xN — xN—1||2

e |t is non-trivial to directly extend previous potential to the
constrained case

We need more help from the computer
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PEP for Searching Potentials

Guided by the approach from Taylor and Bach (2019) of computer-aided
search of the potentials for the methods applied to stochastic
minimization problems, we consider the following problem

find F,d,x*, %% ..., &V x0 ... xN, op, dy_1 (25)

s.t.

F is monotone and L-Lipschitz,

&y and $py_1 are quadratic w.r.t. iterates and operator values,
®py and Py _; have same structure,

[xN = xN7H2 < by, Oy — Py_y <0,

X =x0eRY, xt =x0 — yF(x0),

XK = xk —yF(xX*71), for k=1,...,N,

xF = xk _~F(X%), for k=1,...,N—1
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PEP for Searching Potentials

Guided by the approach from Taylor and Bach (2019) of computer-aided
search of the potentials for the methods applied to stochastic
minimization problems, we consider the following problem

find F,d,x*, %% ..., &V x0 ... xN, op, dy_1 (25)

s.t.

F is monotone and L-Lipschitz,

&y and $py_1 are quadratic w.r.t. iterates and operator values,
®py and Py _; have same structure,

[xN = xN7H2 < by, Oy — Py_y <0,

X =x0eRY, xt =x0 — yF(x0),

XK = xk —yF(xX*71), for k=1,...,N,

xF = xk _~F(X%), for k=1,...,N—1

The dual SDP relaxation can be efficiently solved!
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Potential for PEG: Constrained Problems

Solving the corresponding dual SDP relaxation and imposing additional
constraints (to make potential and proof easier), we found the following
potential (for v < 1/v5L).

Theorem 5

Let F : R? — R? be monotone and L-Lipschitz, 0 < ~. Then for all
k > 0 the iterates produced by PEG satisfy

Vi1 < Wi — (1= 5L%9%) X" = XK|12 — 42| F(x*1) — F(X)|1%, (26)
where

W =[x = xTHZ 4 IxF =TT = 29(F(xF) = FR*H)I%.
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Last-Iterate Convergence of PEG for Constrained Problems

Theorem 6

Let F: RY — R? be monotone and L-Lipschitz, 0 < ~. Then for all
k > 0 the iterates produced by PEG with v < 1/aL satisfy &y 1 < &y
with ®, defined as

3k + 32
24

* 1 = SAN=
i =[x = x| 4 K =X + Vi, (27)

where Wy = ||x% — xk=1|2 4+ ||xk — xk=1 — 29(F(x¥) — F(x*71))]2.
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Last-Iterate Convergence of PEG for Constrained Problems

Theorem 6
Let F: RY — R? be monotone and L-Lipschitz, 0 < ~. Then for all

k > 0 the iterates produced by PEG with v < 1/aL satisfy &y 1 < &y
with ®, defined as

3k + 32
24

1, -
o) = ||Xk — ><"‘||2 SiE 1 \xk_l — X’(_QH2 4 v, (27)

where W) = ||x* — xk=1|2 4+ || x5 — xk=1 — 29(F(x¥) — F(x*~1))||%.In
particular, for all N > 0 and v < 1/aL the above formula implies

N N—12 24Hs, 8v/3Ho., -H
X =X < s GapF(XN)Sﬁ’ VN =2,

where Hp, Ho, > 0 are such that
Hp = 2(1+ 37°L% + 49 L4)[1x° — x*|12 + (33 + $9°L%) PUF (O,

HE = 3]1x° — x*|* + 3 Il F(<) 1.
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Last-Iterate Convergence Under
Negative-Comonotonicity




Negative Comonotonicity for the Unconstrained Case

find x* € R? such that F(x*) =0 (VIP)

e F:RY — R?is L-Lipschitz operator: Vx,y € R?

IF () = FWII < Llix =yl (28)
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Negative Comonotonicity for the Unconstrained Case

find x* € R? such that F(x*) =0 (VIP)

e F:RY — R?is L-Lipschitz operator: Vx,y € R?

IF () = FWII < Llix =yl (28)

e F is p-negative comonotone: Vx,y € RY

(F(x) = Fy),x —y) = =pllF(x) = F(Y)Il (29)

e p < 0 — cocoercivity
e p =0 — monotonicity
e p > 0 — cohypomonotonicity (Pennanen, 2002)
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Last-Iterate Convergence of EG

Theorem 7

If F:RY — RY is L-Lipschitz and p-negative comonotone with p < /st
and 71 = 72 = 7 such that 4p <~ < /2, then for any k > 0 the
iterates produced by EG satisfy

IFGI < IFG] (30)
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Last-Iterate Convergence of EG

Theorem 7

If F:RY — RY is L-Lipschitz and p-negative comonotone with p < /st
and 71 = 72 = 7 such that 4p <~ < /2, then for any k > 0 the
iterates produced by EG satisfy

IFCADI < IIF G (30)
and for any N >1

28]|x° — x*||?
FxMPP <=2 = 1
[F(x™)[° < NAZ £ 3207p
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Theorem 7

If F:RY — RY is L-Lipschitz and p-negative comonotone with p < /st
and 71 = 72 = 7 such that 4p <~ < /2, then for any k > 0 the
iterates produced by EG satisfy

IFCADI < IIF G (30)
and for any N >1

28||1x° — x*||?
F(xM)|2 < 2212 2 1
IFGAI < N~2 + 320~p

v/ Again, we found the potential via computer

42



Last-Iterate Convergence of EG

Theorem 7

If F:RY — RY is L-Lipschitz and p-negative comonotone with p < /st
and 71 = 72 = 7 such that 4p <~ < /2, then for any k > 0 the
iterates produced by EG satisfy

IFCHI < [IFG (30)

and for any N > 1
28||1x° — x*||?
IFCMII? < 55—

= Nv2+320yp°

v/ Again, we found the potential via computer
v Previous result is derived for p < /161 (Luo and Tran-Dinh, 2022)
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Last-Iterate Convergence of EG

Theorem 7

If F:RY — RY is L-Lipschitz and p-negative comonotone with p < /st
and 71 = 72 = 7 such that 4p <~ < /2, then for any k > 0 the
iterates produced by EG satisfy

IFCADI < IIF G (30)
and for any N >1

28||1x° — x*||?
F(xM)|2 < 2212 2 1
IFGAI < N~2 + 320~p

v/ Again, we found the potential via computer

v Previous result is derived for p < /161 (Luo and Tran-Dinh, 2022)

? Open question: is it possible to show O(1/n) last-iterate
convergence for EG when p € (1/sL,1/2L)?
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Last-Iterate Convergence of 0G

Theorem 8

If F:RY — R?is L-Lipschitz and p-negative comonotone with
p <5/62L and 3 = 2 = 7 such that 4p < v < 10/31/, then for any
k > 0 the iterates produced by 0G satisfy

IFGDIPHIFG) = FEIP < IFCOIP + IF () = FR*)I?

1 ~k ~k—142
100 IF ) = FTI% (32)

43



Last-Iterate Convergence of 0G

Theorem 8
If F:RY — R?is L-Lipschitz and p-negative comonotone with
p <5/62L and 3 = 2 = 7 such that 4p < v < 10/31/, then for any
k > 0 the iterates produced by 0G satisfy
IFCDIP +IFCET) = FENP < IIFGIP + IF () = FRHIP

1 ~k ~k—142
100 IF ) = FTI% (32)

and for any N > 1

717||x° — x*||?
F(xM)|? < .
IFCEI" < N~(y — 3p) + 800+

43



Last-Iterate Convergence of 0G

Theorem 8
If F:RY — R?is L-Lipschitz and p-negative comonotone with
p <5/62L and 3 = 2 = 7 such that 4p < v < 10/31/, then for any
k > 0 the iterates produced by 0G satisfy
IFCDIP +IFCET) = FENP < IIFGIP + IF () = FRHIP

1 ~k ~k—142
100 IF ) = FTI% (32)

and for any N > 1

717||x° — x*||?
F(xM)|? < .
IFCEI" < N~(y — 3p) + 800+

v/ Again, we found the potential via computer

43



Last-Iterate Convergence of 0G

Theorem 8
If F:RY — R?is L-Lipschitz and p-negative comonotone with
p <5/62L and 3 = 2 = 7 such that 4p < v < 10/31/, then for any
k > 0 the iterates produced by 0G satisfy
IFCDIP +IFCET) = FENP < IIFGIP + IF () = FRHIP

1 ~k ~k—142
100 IF ) = FTI% (32)

and for any N > 1

717||x° — x*||?
F(xM)|? < .
IFCEI" < N~(y — 3p) + 800+

v/ Again, we found the potential via computer
v Previous result is derived for p < 8/27v6L (Luo and Tran-Dinh, 2022)

43



Last-Iterate Convergence of 0G
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IFCDIP +IFCET) = FENP < IIFGIP + IF () = FRHIP

1 ~k ~k—142
100 IF ) = FTI% (32)

and for any N > 1

717||x° — x*||?
F(xM)|? < .
IFCEI" < N~(y — 3p) + 800+

v/ Again, we found the potential via computer
v Previous result is derived for p < 8/27v6L (Luo and Tran-Dinh, 2022)
? Open question: is it possible to show O(/n) last-iterate

convergence for 0G when p € (5/62L,1/2L)7
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No Convergence for EG and 0G when p > 1/2;

Theorem 9

For any L > 0, p > /21, and any choice of stepsizes 1,72 > 0 there
exists p-negative comonotone L-Lipschitz operator F such that EG/0G
does not necessary converges on solving (VIP) with this operator F.

a4



No Convergence for EG and 0G when p > 1/2;

Theorem 9

For any L > 0, p > /21, and any choice of stepsizes 1,72 > 0 there
exists p-negative comonotone L-Lipschitz operator F such that EG/0G
does not necessary converges on solving (VIP) with this operator F. In
particular, for 4 > /L it is sufficient to take F(x) = Lx, and for

0 < 71 < 1/L one can take F(x) = LAx, where x € R?,

cosf) —sinf 27
A= 0= —.
(sin& cosf ) ’ 3

a4



Conclusion




Some Tips and Tricks

e PEP requires to specify numeric values for v and L. Not a formal
proof, requires post-processing.

e PEP does not try to find a "simple proof”.

e Can try to remove some of the constraints

e The problem has more freedom (looser upper bound).
e Simpler proof (uses lesser inequality).

e For the analysis of EG in the constrained case we refer to Cai et al.
(2022).

e More generally, you can "force” the value of any dual constant and
see if PEP still works.
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