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The Talk is Based on Three Papers

• E. Gorbunov, N. Loizou, G. Gidel. Extragradient Method: O(1/K)

Last-Iterate Convergence for Monotone Variational Inequalities and

Connections With Cocoercivity. AISTATS 2022

• E. Gorbunov, A. Taylor, G. Gidel. Last-Iterate Convergence of Optimistic

Gradient Method for Monotone Variational Inequalities. NeurIPS 2022

• E. Gorbunov, A. Taylor, S. Horváth, G. Gidel. Convergence of Proximal

Point and Extragradient-Based Methods Beyond Monotonicity: the Case

of Negative Comonotonicity. ICML 2023
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Variational Inequalities and

Extragradient-Based Methods



Variational Inequality Problem

find x∗ ∈ Q ⊆ Rd such that ⟨F (x∗), x − x∗⟩ ≥ 0, ∀x ∈ Q (VIP-C)

• F : Q → Rd is L-Lipschitz operator: ∀x , y ∈ Q

∥F (x)− F (y)∥ ≤ L∥x − y∥ (1)

• F is monotone: ∀x , y ∈ Q

⟨F (x)− F (y), x − y⟩ ≥ 0 (2)
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Variational Inequality Problem: Examples

• Min-max problems:

min
u∈U

max
v∈V

f (u, v) (3)

If f is convex-concave, then (3) is equivalent to finding

(u∗, v∗) ∈ U × V such that ∀(u, v) ∈ U × V

⟨∇uf (u
∗, v∗), u − u∗⟩ ≥ 0, −⟨∇v f (u

∗, v∗), v − v∗⟩ ≥ 0,

which is equivalent to (VIP-C) with Q = U × V , x = (u⊤, v⊤)⊤,

and

F (x) =

(
∇uf (u, v)

−∇v f (u, v)

)
These problems appear in various applications such as robust

optimization (Ben-Tal et al., 2009) and control (Hast et al., 2013),

adversarial training (Goodfellow et al., 2015; Madry et al., 2018) and

generative adversarial networks (GANs) (Goodfellow et al., 2014).
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Variational Inequality Problem: Examples

• Minimization problems:

min
x∈Q

f (x) (4)

If f is convex, then (4) is equivalent to finding a solution of (VIP-C)

with

F (x) = ∇f (x)
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Variational Inequality Problem: Unconstrained Case

When Q = Rd (VIP-C) can be rewritten as

find x∗ ∈ Rd such that F (x∗) = 0 (VIP)

For simplicity, we first consider (VIP) rather than (VIP-C)
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How to Solve VIP?

Näıve approach – Gradient Descent (GD):

xk+1 = xk − γF (xk) (GD)

✓ GD seems very natural and it is well-studied for minimization

✗ GD does not converge for simple convex-concave min-max problems
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Non-Convergence of GD

Figure 1: Behavior of GD on the problem min
u∈R

max
v∈R

uv (Gidel et al., 2019)
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Popular Alternatives to GD

• Extragradient method (EG) (Korpelevich, 1976)

xk+1 = xk − γF (xk − γF (xk))

• Optimistic Gradient method (OG) (Popov, 1980)

xk+1 = xk − 2γF (xk) + γF (xk−1)
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Measures of Convergence

• Restricted gap function:
GapF (x

K ) = max
y∈Rd :∥y−x∗∥≤R

⟨F (y), xK − y⟩, where R ∼ ∥x0 − x∗∥

(Nesterov, 2007)

✓ GapF (x
K ) can be seen as a natural extension of optimization error for

(VIP), when F is monotone

✗ It is unclear how to tightly estimate GapF (x
K ) in practice and how to

generalize it to non-monotone case

• Squared norm of the operator: ∥F (xK )∥2

✗ In general, it provides weaker guarantees than GapF (x
K )

✓ ∥F (xK )∥2 is easier to compute than GapF (x
K )

In this part of the talk talk, we focus on the guarantees for ∥F (xK )∥2
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Convergence Guarantees for EG

When F is monotone and L-Lipschitz the following results are known for

EG:

• Averaged- and best-iterate guarantees:

• GapF (x
K ) = O(1/K) for xK = 1

K+1

∑K
k=0 x

k(Nemirovski, 2004;

Mokhtari et al., 2019; Hsieh et al., 2019; Monteiro and Svaiter,

2010; Auslender and Teboulle, 2005)

• min
k=0,1,...,K

∥F (xk)∥2 = O(1/K)(Solodov and Svaiter, 1999; Ryu et al.,

2019)

• Lower bounds for the last-iterate (Golowich et al., 2020):

• GapF (x
K ) = Ω(1/

√
K)

• ∥F (xK )∥2 = Ω(1/K)

• Upper bounds for the last-iterate (Golowich et al., 2020): if

additionally the Jacobian ∇F (x) is Λ-Lipschitz, then

• GapF (x
K ) = O(1/

√
K)

• ∥F (xK )∥2 = O(1/K)
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Convergence Guarantees for EG: Resolved Question

Q1: Is it possible to prove last-iterate ∥F (xK )∥2 = O(1/K) convergence rate

for EG when F is monotone and L-Lipschitz without additional assumptions?

We address this question with the help of a computer
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Performance Estimation

Problems and Last-Iterate

Convergence of Extragradient



Performance Estimation Problems

• A powerful technique for deriving tight convergence guarantees,

obtaining proofs and even designing new optimal methods

• First work: (Drori and Teboulle, 2014)

• Some later works: (Kim and Fessler, 2016; Lessard et al., 2016;

Taylor et al., 2017a,b; De Klerk et al., 2017; Ryu et al., 2020; Taylor

and Bach, 2019)

13



Performance Estimation Problem: A General Form

PEP for method M applied to solve a problem p from some class P:

max Convergence Criterion(xK ) (5)

s.t. p ∈ P, x0 ∈ Rd ,

Initial Conditions(x0),

xK is an output of method M after K iterations
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Example: PEP for the Last-Iterate of EG

max ∥F (xK )∥2 (6)

s.t. F is monotone and L-Lipschitz, x0 ∈ Rd ,

∥x0 − x∗∥2 ≤ 1,

xk+1 = xk − γ2F
(
xk − γ1F (x

k)
)
, k = 0, 1, . . . ,K − 1
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Another Example for EG

• Another example of what we could solve:

• Check whether ∥F (xk+1)∥2 ≤ ∥F (xk)∥2

• Associated PEP problem:

∆EG(L, γ) = max ∥F (xk+1)∥2 − ∥F (xk)∥2 (7)

s.t. F is monotone and L-Lipschitz, xk ∈ Rd ,

xk+1/2 = xk − γF (xk)

xk+1 = xk − γF (xk+1/2)

• Problems (7) and (6) are hard to solve since they are infinitely

dimensional

• Key idea: replace the intial problem by an “easier” problem.

• The quantities ”mattering” are xk , xk+
1
2 , xk+1,F (xk),F (xk+

1
2 ) and

F (xk+1).

• Key point: consider monotonicity and Lipchitzness at these points

16



Another Example for EG

• Another example of what we could solve:

• Check whether ∥F (xk+1)∥2 ≤ ∥F (xk)∥2

• Associated PEP problem:

∆EG(L, γ) = max ∥F (xk+1)∥2 − ∥F (xk)∥2 (7)

s.t. F is monotone and L-Lipschitz, xk ∈ Rd ,

xk+1/2 = xk − γF (xk)

xk+1 = xk − γF (xk+1/2)

• Problems (7) and (6) are hard to solve since they are infinitely

dimensional

• Key idea: replace the intial problem by an “easier” problem.

• The quantities ”mattering” are xk , xk+
1
2 , xk+1,F (xk),F (xk+

1
2 ) and

F (xk+1).

• Key point: consider monotonicity and Lipchitzness at these points

16



Another Example for EG

• Another example of what we could solve:

• Check whether ∥F (xk+1)∥2 ≤ ∥F (xk)∥2

• Associated PEP problem:

∆EG(L, γ) = max ∥F (xk+1)∥2 − ∥F (xk)∥2 (7)

s.t. F is monotone and L-Lipschitz, xk ∈ Rd ,

xk+1/2 = xk − γF (xk)

xk+1 = xk − γF (xk+1/2)

• Problems (7) and (6) are hard to solve since they are infinitely

dimensional

• Key idea: replace the intial problem by an “easier” problem.

• The quantities ”mattering” are xk , xk+
1
2 , xk+1,F (xk),F (xk+

1
2 ) and

F (xk+1).

• Key point: consider monotonicity and Lipchitzness at these points

16



Another Example for EG

• Another example of what we could solve:

• Check whether ∥F (xk+1)∥2 ≤ ∥F (xk)∥2

• Associated PEP problem:

∆EG(L, γ) = max ∥F (xk+1)∥2 − ∥F (xk)∥2 (7)

s.t. F is monotone and L-Lipschitz, xk ∈ Rd ,

xk+1/2 = xk − γF (xk)

xk+1 = xk − γF (xk+1/2)

• Problems (7) and (6) are hard to solve since they are infinitely

dimensional

• Key idea: replace the intial problem by an “easier” problem.

• The quantities ”mattering” are xk , xk+
1
2 , xk+1,F (xk),F (xk+

1
2 ) and

F (xk+1).

• Key point: consider monotonicity and Lipchitzness at these points

16



Finite-Dimensional Relaxation

max ∥Fk+1∥2 − ∥Fk∥2 (8)

s.t. d and xk ,Fk ,Fk+1,Fk+ 1
2
∈ Rd ,

xk+ 1
2 = xk − γFk , (extrapolation step)

xk+1 = xk − γFk+ 1
2
, (update step)

λ1 : 0 ≤ ⟨Fk − Fk+ 1
2
, xk − xk+ 1

2 ⟩, (monotonicity in (xk , xk+ 1
2 ))

λ2 : 0 ≤ ⟨Fk − Fk+1, x
k − xk+1⟩, (monotonicity in (xk , xk+1))

λ3 : 0 ≤ ⟨Fk+1 − Fk+ 1
2
, xk − xk+1/2⟩, (monotonicity in (xk+1, xk+ 1

2 ))

λ4 : ∥Fk − Fk+ 1
2
∥2 ≤ L2γ2∥xk − xk+ 1

2 ∥2, (Lipschitzness in (xk , xk+ 1
2 ))

λ5 : ∥Fk − Fk+1∥2 ≤ L2γ2∥xk − xk+1∥2, (Lipschitzness in (xk , xk+1))

λ6 : ∥Fk+1 − Fk+ 1
2
∥2 ≤ L2γ2∥xk − xk+ 1

2 ∥2. (Lipschitzness in (xk , xk+ 1
2 ))
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2
, (update step)

λ1 : 0 ≤ ⟨Fk − Fk+ 1
2
, xk − xk+ 1

2 ⟩, (monotonicity in (xk , xk+ 1
2 ))

λ2 : 0 ≤ ⟨Fk − Fk+1, x
k − xk+1⟩, (monotonicity in (xk , xk+1))

λ3 : 0 ≤ ⟨Fk+1 − Fk+ 1
2
, xk − xk+1/2⟩, (monotonicity in (xk+1, xk+ 1

2 ))

λ4 : ∥Fk − Fk+ 1
2
∥2 ≤ L2γ2∥xk − xk+ 1

2 ∥2, (Lipschitzness in (xk , xk+ 1
2 ))

λ5 : ∥Fk − Fk+1∥2 ≤ L2γ2∥xk − xk+1∥2, (Lipschitzness in (xk , xk+1))

λ6 : ∥Fk+1 − Fk+ 1
2
∥2 ≤ L2γ2∥xk − xk+ 1

2 ∥2. (Lipschitzness in (xk , xk+ 1
2 ))
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Finite-Dimensional Relaxation: Bad News

✗ Problem (8) is not equivalent to (7)

• There might exist a solution of (8) such that no monotone Lipschitz

operator F can interpolate it (Ryu et al., 2020)

• In general, for the class of monotone Lipschitz operators

interpolation conditions are unknown

✓ But we can still solve (8) numerically
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Towards SDP Formulation

• The unknown parameters are (xk , xk+
1
2 , xk+1,Fk ,Fk+ 1

2
,Fk+1).

• Consider the Gram matrix of these vectors:

G =



(xk)⊤

(xk+
1
2 )⊤

(xk+1)⊤

(Fk)
⊤

(Fk+ 1
2
)⊤

(Fk+1)
⊤


·
(
xk xk+

1
2 xk+1 Fk Fk+ 1

2
Fk+1

)

• One can easily show that for all d ≥ 4

G ∈ S6+ ⇐⇒ ∃ xk , xk+
1
2 , xk+1,Fk ,Fk+ 1

2
,Fk+1 ∈ Rd : G is Gram matrix.
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Primal SDP

• Therefore, problem (8) is equivalent to the following SDP problem:

max Tr(M0G) (9)

s.t. G ∈ S4+,

Tr(MiG) ≤ 0, i = 1, 2, . . . , 6,

where M0, . . . ,M6 are some symmetric matrices.

• In that case, the dual problem is very simple:

Find λ1, . . . , λ6 ≥ 0 such that
6∑

i=1

λiMi ⪰ M0 (10)

If we solve the dual, we get ”a proof”:

0 ≥ λiTr(MiG ) ≥ Tr(M0G ) (11)
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Analysis of the Solution

• In the numerical tests, we observed that ∆EG(L, γ) ≈ 0 for all tested

pairs of L and γ

• Moreover, we have

λ1 ≈ 1
2 , λ2 ≈ 2 , λ3 = 0 , λ4 = 0 , λ5 = 0 , λ6 ≈ 3

2 ,

• Duality of SDPs says that

∥F (xk)∥2 − ∥F (xk+1)∥2 ≤ λ6(∥F (xk+1)− F (xk+ 1
2 )∥2 − L2γ2∥xk − xk+ 1

2 ∥2)

− λ1⟨F (xk)− F (xk+ 1
2 ), xk − xk+ 1

2 ⟩

− λ2⟨F (xk)− F (xk+1), xk − xk+1⟩

≤ 0
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Last-Iterate O(1/K) Rate for EG

Theorem 1

Let F : Rd → Rd be monotone and L-Lipschitz, 0 < γ ≤ 1/
√
2L. Then

for all k ≥ 0 the iterates produced by EG satisfy ∥F (xk+1)∥ ≤ ∥F (xk)∥.

Using this result, it is quite trivial to derive last-iterate O(1/K) rate.

Theorem 2

Let F : Rd → Rd be monotone and L-Lipschitz. Then for all K ≥ 0

∥F (xK )∥2 ≤ ∥x0 − x∗∥2

γ2(1− L2γ2)(K + 1)
, (12)

where xK is produced by EG with stepsize 0 < γ ≤ 1/
√
2L. Moreover,

GapF (x
K ) = max

y∈Rd :∥y−x∗∥≤∥x0−x∗∥
⟨F (y), xK − y⟩ ≤ 2∥x0 − x∗∥2

γ
√
1− L2γ2

√
K + 1

.
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Last-Iterate Convergence of

Optimistic Gradient



Going Back to the Constrained Setting

• Problem:

find x∗ ∈ Q ⊆ Rd such that ⟨F (x∗), x − x∗⟩ ≥ 0, ∀x ∈ Q

(VIP-C)

• Projected Extragradient:

x̃k = proj[xk − γF (xk)], xk+1 = proj[xk − γF (x̃k)] (Proj-EG)

• Projected Past Extragradient:

x̃k = proj[xk−γF (x̃k−1)], xk+1 = proj[xk−γF (x̃k)] (Proj-PEG)

• Convergence metric: ∥xk+1 − xk∥2.
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Past Extragradient and Optimistic Gradient

In the unconstrained case, PEG and OG are equivalent

• Past Extragradient (PEG)

x̃k = xk − γF (x̃k−1), xk+1 = xk − γF (x̃k)

• Optimistic Gradient method (OG)

x̃k+1 = x̃k − 2γF (x̃k) + γF (x̃k−1)

24



PEP for PEG

GPEG(γ, L,N) = max
F ,d,x∗

x̃0,...,x̃N

x0,...,xN

∥F (xN)∥2

∥x0 − x∗∥2
(13)

s.t. F is monotone and L-Lipschitz,

x̃0 = x0 ∈ Rd , x1 = x0 − γF (x0)

x̃k = xk − γF (x̃k−1), for k = 1, . . . ,N,

xk+1 = xk − γF (x̃k), for k = 1, . . . ,N − 1.
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PEP for PEG: Relaxation

G̃PEG(γ, L,N) = max
d∈N,x∗∈Rd

{(xk ,gk )}N
k=0⊂Rd×Rd

{(x̃k ,g̃k )}N
k=0⊆Rd×Rd

∥gN∥2 (14)

s.t.⟨g − h, x − y⟩ ≥ 0 ∀(x , g), (y , h) ∈ S (15)

∥g − h∥2 ≤ L2∥x − y∥2 ∀(x , g), (y , h) ∈ S (16)

x̃0 = x0 ∈ Rd , x1 = x0 − γg0

x̃k = xk − γg̃k−1, for k = 1, . . . ,N,

xk+1 = xk − γg̃k , for k = 1, . . . ,N − 1,

∥x0 − x∗∥2 ≤ 1 (17)

• Following the same steps as in the previous examples, one can

reformulate this problem as SDP
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PEP for OG

GOG(γ, L,N) = max
F ,d,x∗

x̃0,...,x̃N

∥F (x̃N)∥2

∥x̃0 − x∗∥2
(18)

s.t. F is monotone and L-Lipschitz,

x̃0 ∈ Rd , x̃1 = x̃0 − γF (x̃0),

x̃k+1 = x̃k − 2γF (x̃k) + γF (x̃k−1),

for k = 1, . . . ,N − 1,
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PEP for OG: Relaxation

G̃OG(γ, L,N) = max
d∈N,x∗∈Rd

{(x̃k ,g̃k )}N
k=0⊆Rd×Rd

∥gN∥2 (19)

s.t.⟨g − h, x − y⟩ ≥ 0 ∀(x , g), (y , h) ∈ S (20)

∥g − h∥2 ≤ L2∥x − y∥2 ∀(x , g), (y , h) ∈ S (21)

x̃0 ∈ Rd , x̃1 = x̃0 − γg̃0,

x̃k+1 = x̃k − 2γg̃k + γg̃k−1,

for k = 1, . . . ,N − 1,

∥x0 − x∗∥2 ≤ 1 (22)

• Following the same steps as in the previous examples, one can

reformulate this problem as SDP
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Both Relaxations Show O(1/N) Convergence

101

k

10 1

100

GPEG( 1
3L , L, k)

GPEG( 1
4L , L, k)

GOG( 1
3L , L, k)

GOG( 1
4L , L, k)

5
k

Figure 2: G̃PEG(γ, L,N) and G̃OG(γ, L,N) for different values of γ and N
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PEP for PEG and OG: Existence of Simple Proofs?

• Typical proof – some clever combination of inequalities

• Those inequalities typically involve consecutive iterates and/or x∗

• We can explicitly drop constraints for the iterates with indices i , j

such that |i − j | ≤ t

• We denote the corresponding problems as G̃PEG(γ, L,N, t) and

G̃OG(γ, L,N, t)
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PEP for PEG and OG: Existence of Simple Proofs?

101

k

10 1

100
GPEG( 1

3L , L, k, 1)
GOG( 1

3L , L, k, 1)
GOG( 1

3L , L, k, 2)
GOG( 1

3L , L, k, 4)
5
k

Figure 3: We report G̃PEG(γ, L,N, 1) and G̃OG(γ, L,N, t) for t = 1, 2, 4. It

suggest that G̃PEG(γ, L,N, 1) ∼ 1/N but not G̃OG(γ, L,N, t) (even for t = 4).

Since interpolation is not guaranteed, extra points are crucial!
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Can We Prove that the Norm Monotonically Decrease?

∆(γ, L,N) = max
F ,d,x∗

x̃0,...,x̃N

x0,...,xN

∥F (xN+1)∥2 − ∥F (xN)∥2

∥x0 − x∗∥2
(23)

s.t. F is monotone and L-Lipschitz,

x̃0 = x0 ∈ Rd , x1 = x0 − γF (x0),

x̃k = xk − γF (x̃k−1), for k = 1, . . . ,N,

xk+1 = xk − γF (x̃k), for k = 1, . . . ,N − 1,

• ∆̃(γ, L,N) – value of SDP relaxation

• We also consider another version of (23) for L-cocoercive operator F

(i.e., ⟨g − h, x − y⟩ ≥ 0 and ∥g − h∥2 ≤ L2∥x − y∥2 are replaced by

∥g − h∥2 ≤ L⟨g − h, x − y⟩), the corresponding values are denoted

as δ(γ, L,N) and δ̃(γ, L,N)

• Guaranteed interpolation (Ryu et al., 2020): δ(γ, L,N) = δ̃(γ, L,N)
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Can We Prove that the Norm Monotonically Decrease? No

5 10 15 20 25 30
k

10 7

10 6

10 5

10 4

10 3

10 2

10 1 ( 1
4L , L, k)

( 1
4L , L, k)

( 1
4L , L, k)

( 1
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( 1
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( 1
6L , L, k)

( 1
4L , L, k)

Figure 4: Evolution of ∆(γ, L,N), ∆̃(γ, L,N), δ(γ, L,N), δ̃(γ, L,N)

Need to find other potentials to prove the last-iterate convergence
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Some Intuition from the Numerical Results

• Inequality ∥F (xN)∥2 ≤ ∥F (xN−1)∥2 does not hold for PEG...

• ... but we see that ∥F (xN)∥2 − ∥F (xN−1)∥2 decreases

• Idea: try to find such sequence {AN}N≥0 that

∥F (xN)∥2 + AN ≤ ∥F (xN−1)∥2 + AN−1

• After several (educated) guess and trials we found numerically:

∥F (xN+1)∥2+2∥F (xN+1)−F (x̃N)∥2 ≤ ∥F (xN)∥2+2∥F (xN)−F (x̃N−1)∥2
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Potential for PEG: Unconstrained Problems

Theorem 3

Let F : Rd → Rd be monotone and L-Lipschitz, 0 < γ. Then for all

k ≥ 0 the iterates produced by PEG satisfy

∥F (xk+1)∥2 + 2∥F (xk+1)− F (x̃k)∥2 ≤ ∥F (xk)∥2 + 2∥F (xk)− F (x̃k−1)∥2

+ 3

(
L2γ2 − 2

9

)
∥F (x̃k)− F (x̃k−1)∥2.

The last term is non-positive for 0 < γ ≤
√
2/3L.
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Last-Iterate Convergence of PEG for Unconstrained Problems

Theorem 4

Let F : Rd → Rd be monotone and L-Lipschitz, 0 < γ. Then for all

k ≥ 0 the iterates produced by PEG with γ ≤ 1/3L satisfy Φk+1 ≤ Φk

with Φk defined as

Φk = ∥xk −x∗∥2+ k + 32

3
γ2
(
∥F (xk)∥2 + 2∥F (xk)− F (x̃k−1)∥2

)
. (24)

In particular, for all N ≥ 0 and γ ≤ 1/3L the above formula implies

∥F (xN)∥2 ≤ 3(1 + 32L2γ2)∥x0 − x∗∥2

γ2(N + 32)
,

GapF (x
k) ≤ 2

√
41(1 + 32L2γ2)∥x0 − x∗∥2

γ
√
3N + 96

.
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From Unconstrained to Constrained Problems

• Different metric: instead of ∥F (xN)∥2 we consider ∥xN − xN−1∥2

• It is non-trivial to directly extend previous potential to the

constrained case

We need more help from the computer

37



From Unconstrained to Constrained Problems

• Different metric: instead of ∥F (xN)∥2 we consider ∥xN − xN−1∥2

• It is non-trivial to directly extend previous potential to the

constrained case

We need more help from the computer

37



PEP for Searching Potentials

Guided by the approach from Taylor and Bach (2019) of computer-aided

search of the potentials for the methods applied to stochastic

minimization problems, we consider the following problem

find F , d , x∗, x̃0, . . . , x̃N , x0, . . . , xN ,ΦN ,ΦN−1 (25)

s.t. F is monotone and L-Lipschitz,

ΦN and ΦN−1 are quadratic w.r.t. iterates and operator values,

ΦN and ΦN−1 have same structure,

∥xN − xN−1∥2 ≤ ΦN , ΦN − ΦN−1 ≤ 0,

x̃0 = x0 ∈ Rd , x1 = x0 − γF (x0),

x̃k = xk − γF (x̃k−1), for k = 1, . . . ,N,

xk+1 = xk − γF (x̃k), for k = 1, . . . ,N − 1

The dual SDP relaxation can be efficiently solved!
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Potential for PEG: Constrained Problems

Solving the corresponding dual SDP relaxation and imposing additional

constraints (to make potential and proof easier), we found the following

potential (for γ ≤ 1/
√
5L).

Theorem 5

Let F : Rd → Rd be monotone and L-Lipschitz, 0 < γ. Then for all

k ≥ 0 the iterates produced by PEG satisfy

Ψk+1 ≤ Ψk −
(
1− 5L2γ2

)
∥xk+1 − x̃k∥2 − γ2∥F (xk+1)− F (x̃k)∥2, (26)

where

Ψk = ∥xk − xk−1∥2 + ∥xk − xk−1 − 2γ(F (xk)− F (x̃k−1))∥2.
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Last-Iterate Convergence of PEG for Constrained Problems

Theorem 6

Let F : Rd → Rd be monotone and L-Lipschitz, 0 < γ. Then for all

k ≥ 0 the iterates produced by PEG with γ ≤ 1/4L satisfy Φk+1 ≤ Φk

with Φk defined as

Φk = ∥xk − x∗∥2 + 1

16
∥x̃k−1 − x̃k−2∥2 + 3k + 32

24
Ψk , (27)

where Ψk = ∥xk − xk−1∥2 + ∥xk − xk−1 − 2γ(F (xk)− F (x̃k−1))∥2.

In

particular, for all N ≥ 0 and γ ≤ 1/4L the above formula implies

∥xN − xN−1∥2 ≤ 24H2
0,γ

3N+32 , GapF (x
N) ≤ 8

√
3H0,γ ·H0

γ
√
3N+32

, ∀N ≥ 2 ,

where H0,H0,γ > 0 are such that

H2
0,γ = 2(1 + 3γ2L2 + 4γ4L4)∥x0 − x∗∥2 +

(
41
12 + 19

3 γ
2L2
)
γ2∥F (x0)∥2,

H2
0 = 3∥x0 − x∗∥2 + 1

30L2 ∥F (x0)∥2.
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Last-Iterate Convergence Under

Negative-Comonotonicity



Negative Comonotonicity for the Unconstrained Case

find x∗ ∈ Rd such that F (x∗) = 0 (VIP)

• F : Rd → Rd is L-Lipschitz operator: ∀x , y ∈ Rd

∥F (x)− F (y)∥ ≤ L∥x − y∥ (28)

• F is ρ-negative comonotone: ∀x , y ∈ Rd

⟨F (x)− F (y), x − y⟩ ≥ −ρ∥F (x)− F (y)∥ (29)

• ρ < 0 – cocoercivity

• ρ = 0 – monotonicity

• ρ > 0 – cohypomonotonicity (Pennanen, 2002)
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Last-Iterate Convergence of EG

Theorem 7

If F : Rd → Rd is L-Lipschitz and ρ-negative comonotone with ρ ≤ 1/8L

and γ1 = γ2 = γ such that 4ρ ≤ γ ≤ 1/2L, then for any k ≥ 0 the

iterates produced by EG satisfy

∥F (xk+1)∥ ≤ ∥F (xk)∥ (30)

and for any N ≥ 1

∥F (xN)∥2 ≤ 28∥x0 − x∗∥2

Nγ2 + 320γρ
. (31)

✓ Again, we found the potential via computer

✓ Previous result is derived for ρ < 1/16L (Luo and Tran-Dinh, 2022)

? Open question: is it possible to show O(1/N) last-iterate

convergence for EG when ρ ∈ (1/8L, 1/2L)?
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Last-Iterate Convergence of OG

Theorem 8

If F : Rd → Rd is L-Lipschitz and ρ-negative comonotone with

ρ ≤ 5/62L and γ1 = γ2 = γ such that 4ρ ≤ γ ≤ 10/31L, then for any

k ≥ 0 the iterates produced by OG satisfy

∥F (xk+1)∥2 + ∥F (xk+1)− F (x̃k)∥2 ≤ ∥F (xk)∥2 + ∥F (xk)− F (x̃k−1)∥2

− 1

100
∥F (x̃k)− F (x̃k−1)∥2. (32)

and for any N ≥ 1

∥F (xN)∥2 ≤ 717∥x0 − x∗∥2

Nγ(γ − 3ρ) + 800γ2
. (33)

✓ Again, we found the potential via computer

✓ Previous result is derived for ρ < 8/27
√
6L (Luo and Tran-Dinh, 2022)

? Open question: is it possible to show O(1/N) last-iterate

convergence for OG when ρ ∈ (5/62L, 1/2L)?
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No Convergence for EG and OG when ρ ≥ 1/2L

Theorem 9

For any L > 0, ρ ≥ 1/2L, and any choice of stepsizes γ1, γ2 > 0 there

exists ρ-negative comonotone L-Lipschitz operator F such that EG/OG

does not necessary converges on solving (VIP) with this operator F .

In

particular, for γ1 > 1/L it is sufficient to take F (x) = Lx , and for

0 < γ1 ≤ 1/L one can take F (x) = LAx , where x ∈ R2,

A =

(
cos θ − sin θ

sin θ cos θ

)
, θ =

2π

3
.
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Conclusion



Some Tips and Tricks

• PEP requires to specify numeric values for γ and L. Not a formal

proof, requires post-processing.

• PEP does not try to find a ”simple proof”.

• Can try to remove some of the constraints

• The problem has more freedom (looser upper bound).

• Simpler proof (uses lesser inequality).

• For the analysis of EG in the constrained case we refer to Cai et al.

(2022).

• More generally, you can ”force” the value of any dual constant and

see if PEP still works.
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