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1. Preliminaries 3. Our Contributions
Problem: unconstrained variational inequality problem (VIP) @ O(1/K) last-iterate convergence rate for EG in terms of the squared
norm of the operator for monotone and Lipschitz VIPs
find ™ € RY  guch that F (gj*) — () ® No additional assumptions are used
® The proof is obtained via computer
Examples: ‘ Min-max problems mlg mac)z( f ( ) . New connections for several known methods with cocoercivity
ueR"1 velR™2 when the original operator is monotone and Lipschitz
‘ Minimization problems min f( ) ® Fundamental mathematical differences between EG and
P 2eRY Optimistic Gradient method that are usualy considered as

: approximations of Proximal Point method
Assumptions:

@ Lipschizness ||F(z) — F (2))|| < L|jz — 2| Vz,2’ € RY 4. Last-Iterate Convergence of EG

.. / / / d
@ Monotonicity (F(z)—F(2"),x—2)>0 Vr,z' €R Key Lemma: if 0 < v < ﬁ then for all k > 0
Measures of convergence:

k+1 xk
o Cor ) (Pl ef ) 1P (@) < | (o)

yeR®|ly—a*||<[a" 2|

. L ® This result was unknown even under Lipschitzness of the Jacobian
® Natural extension of optimization error for VIPs

_ _ _ _ Using this lemma in the standard analysis of EG, we derive the new result
€ Hard to estimate in practice and to generalize to non-monotone case

HF(ZCK)HQ Main Theorem: if O<ﬂy§ﬁ then for all £ > 0
€ Provides weaker guarantees than the Gap-function HF ( ) H2 < on — " 2
® Easier to compute than the Gap-function . o ’)/2 (1 — LQ’)/Q) (K + 1)

2. Eth‘agl‘adieﬂt Method ® The above theorem implies GapF (:L‘K) =0 (1/\/?)
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5. Connections with Cocoercivity
Cocoercivity: HF(:)C) — F (:IZ’)HQ </ <F(LE) — F (:ZZ’) s U — LL”)

Gradient Descent (GD) phtl = b — ’)/F(Ll?k) has a simple proof of
O(1/K) last-iterate convergence rate when operator F Is cocoercive.

Idea: consider EG as GD with a special operator

ﬂjk_l_l — ij — ’YQFEG,’M (:Ek)j FEG,’}’l( ) — F(ﬂj - /YlF('I.))

If we manage to prove that EG-operator is cocoercive, then O(1/K) last-iterate
convergence rate will easily follow from the corresponding result for GD!

Good news:

® When F is affine, EG-operator is cocoercive

® EG- i
star-%%i?:r)éi\llse HFEG?’“( )H — <FEG;’}’1( ) L — 37*)

® Operator corresponding to the update of Proximal Point method

:L“k_H _ {L‘k o ’}/F(:L“k+1)
IS cocoercive

Bad news: EG-operator can be non-cocoercive even if F is cocoercive!
The proof is based on the following fact from [2]:

F' is f-cocoercive <= Id — %F IS non-expansive

That Is, it is sufficient to find cocoercive operator F and points x, y such that

|z — Yo Fucq, () — (v — Y2 Freq ()] > ||z — v

for any meaningful choices of the stepsizes.

Non-cocoercivity of EG-operator: forall/ > () andy; € (0j 1 / f] there
exists { -cocoercive operator F such that EG-operator is non-cocoercive.

Extragradient method (EG) is one of the most popular methods for VIPs ® Rates match the lower bounds for EG from [1]
x/ﬁLl _ .Cl?‘k L ,YF (Zl?‘k L ’)/F (Cl?k)) The proof is guided by numerical results
1\ [|2 0) |2
max || F' () || = [|F" (") |
Known convergence results ; y
s.t. F'is monotone and L-Lipschitz, ¥ € R Spp
. . ) ) problem
. Averaged- and best-iterate rates ‘ Last-iterate rates [1] 0 112 <1 ﬁ (easy 10 solve)
—K KY __
Gapy (7°) = O (1/K) Gapy (2") = O (1/VK) ! = 20— AF (20 — A F (9))
. 12 K\ |2
I1111) HF (37 )H — O(l/K) HF (55 )H = O(1/K) The proof: sum up the inequalities @
k=01,... corresponding to the constraints with weights <i Dual solution
Lipschitz continuity of the Jacobian being equal to the dual solution
is assumed and rearrange the terms

® The proof is obtained numerically via solving a special SDP [3,4]
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