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Compression Operators
In this talk, we focus on biased compression operators

Example: TopT (for T = 2)

Pick T = 2 components with largest absolute value
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2. Error-Compensated SGD
and Absolute Compression 
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1 Server broadcasts new parametersStep k+1

2 Workers compute stochastic 
gradients in parallel

3 Compression

4 Devices send compressed 
vectors and update unsent 
information

5 Server gathers 
the information 
and updates the 
parameters

6 Repeat steps 
1 – 5
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Revisiting EC-SGD
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"Rethinking gradient sparsification as total error minimization." Advances in Neural Information 
Processing Systems 34 (2021): 8133-8146.

In the analysis of EC-SGD, the following quantity («total error») appears (n = 1):
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Sahu, Atal, Aritra Dutta, Ahmed M Abdelmoniem, Trambak Banerjee, Marco Canini, and Panos Kalnis. 
"Rethinking gradient sparsification as total error minimization." Advances in Neural Information 
Processing Systems 34 (2021): 8133-8146.

In the analysis of EC-SGD, the following quantity («total error») appears (n = 1):

TopT compression minimizes error on each iteration for given budget of components

Minimization of total error is intractable

Nevertheless, in the class of absolute compressors, for a fixed {a
k
}

k≥0
 one can minimize



  

Absolute Compression
28

Biased compressors

Contractive compressors

Example: TopT (for T = 2)

Pick T = 2 components with largest abs. value
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Biased compressors
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Absolute Compression
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Biased compressors

Contractive compressors

Example: TopT (for T = 2)

Pick T = 2 components with largest abs. value

Absolute compressors

Example: Hard Threshold sparsifier (HT )

Pick components with abs. value at least λ = 7



  

EC-SGD with Absolute Compression
31

Sahu, Atal, Aritra Dutta, Ahmed M Abdelmoniem, Trambak Banerjee, Marco Canini, and Panos Kalnis. 
"Rethinking gradient sparsification as total error minimization." Advances in Neural Information 
Processing Systems 34 (2021): 8133-8146.

Better performance in practice

Better theoretical guarantees in some regimes under (M, σ2)-bounded noise



  

EC-SGD with Absolute Compression
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Sahu, Atal, Aritra Dutta, Ahmed M Abdelmoniem, Trambak Banerjee, Marco Canini, and Panos Kalnis. 
"Rethinking gradient sparsification as total error minimization." Advances in Neural Information 
Processing Systems 34 (2021): 8133-8146.

Better performance in practice

Better theoretical guarantees in some regimes under (M, σ2)-bounded noise

Only standard gradient estimators are analyzed, i.e., arbitrary sampling and 
variance reduction are not considered

Our work addresses this limitation



  

3. EC-SGD with Arbitrary Sampling 
and Absolute Compression 



  

Arbitrary Sampling
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Finite sums on workers:
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Finite sums on workers:

Stochastic reformulation:



  

Arbitrary Sampling
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Finite sums on workers:

Stochastic reformulation:

Sampling vector:
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We assume that for all i = 1, … , n
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EC-SGD with Arbitrary Sampling
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. . .

1 Server broadcasts new parameters

2 Workers compute stochastic 
gradients in parallel

3 Compression

4 Devices send compressed 
vectors and update unsent 
information

5 Server gathers 
the information 
and updates the 
parameters

6 Repeat steps 
1 – 5



  

EC-SGD with Arbitrary Sampling
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The same method with the following estimator:



  

Additional Assumptions
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Lipschitz gradients

Strong convexity
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Sampling may improve the convergence on the early stages

Better performance for HT sparsifier in comparison to TopT, when heterogeneity is 
large: this is verified by Sahu et al. (2021)

Implications



  

Experiment 1
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Logistic regression with l
2
-regularization

Datasets

a9a: n = 20, m = 1600, d = 123 

gisette: n = 20, m = 300, d = 5000 

w8a: n = 20, m = 2485, d = 300 



  

Experiment 1
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As expected, EC-SGD-IS converges faster than EC-SGD-US on w8a dataset.
On a9a and gisette the methods perform similarly.



  

4. EC-SGD with Variance Reduction 
and Absolute Compression 



  

EC-SGD with Arbitrary Sampling: Reminder
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Convergence of EC-SGD with Arbitrary Sampling:

One can speed up the methood via removing the variance term



  

EC-SGD with Variance Reducation
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We consider the same algorithmic scheme, but now with estimator of
Loopless Stochastic Variance Reduced Gradient (LSVRG):

We consider the same algorithmic scheme, but now with estimator of
Loopless Stochastic Variance Reduced Gradient (LSVRG):
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We consider the same algorithmic scheme, but now with estimator of
Loopless Stochastic Variance Reduced Gradient (LSVRG):

We consider the same algorithmic scheme, but now with estimator of
Loopless Stochastic Variance Reduced Gradient (LSVRG):

Updated with small probability p ~ 1/m



  

Convergence
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Faster convergence than EC-SGD on later stages

As for EC-SGD, the theory predicts better performance for HT sparsifier in comparison 
to TopT, when heterogeneity is large 

Implications



  

Experiment 2
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As expected, EC-LSVRG achieves better accuracy than EC-SGD.

We test EC-SGD and EC-LSVRG with HT sparsifier. We use the same stepsize for 
both methods.



  

Experiment 3
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EC-LSVRG with HT sparsifier achieves reasonable accuracy of the solution faster than 
EC-LSVRG with TopT sparsifier

EC-LSVRG with HT sparsifier achieves reasonable accuracy of the solution faster than 
EC-LSVRG with TopT sparsifier



  

5. Unified Analysis
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Key Assumption
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Reflects smoothness properties of the problem and noises introduced by 
compressions and stochastic gradients



  

Key Assumption
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Reflects smoothness properties of the problem and noises introduced by 
compressions and stochastic gradients

Describes the process of variance reduction of the variance coming from stochastic 
gradients



  

General Theorem
59

Let f be μ-strongly convex and L-smooth. Let the assumption from the previous slide 
hold. Then, there exists a choice of stepsize such that EC-SGD with absolute 
compression satisfies



  

General Theorem
60

Let f be μ-strongly convex and L-smooth. Let the assumption from the previous slide 
hold. Then, there exists a choice of stepsize such that EC-SGD with absolute 
compression satisfies

Covers EC-SGD with Arbitrary Sampling and EC-LSVRG

Covers the original analysis by Sahu et al. (2021)

Can be applied for different gradient estimators satisfying the key assumption



  

Conclusion



  

Conclusion
62

The first analysis of EC-SGD with arbitrary sampling and absolute compression

The first analysis of EC-LSVRG with arbitrary sampling and absolute compression

The general theoretical framework for analyzing EC-SGD-type methods with absolute 
compression is proposed

Numerical experiments support the theoretical findings

In the paper, we also consider (non-strongly) convex case (μ = 0)

See more details in the paper: https://arxiv.org/abs/2203.02383
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Distributed Optimization

Some problems cannot be solved on a single a machine in a reasonable time 
(deep learning models with billions of parameters and gigabytes of data)

There exist such problems where the data that defines the optimization problem is 
private and distributed among several machines (federated learning)

These problems are typically solved in a distributed way



  

Convergence of EC-SGD
65

Assumptions

Lipschitz gradients

Strong convexity

Convergence rate
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