Clipped Stochastic Methods for Variational
Inequalities with Heavy-Tailed Noise

1. Preliminaries

Problem: stochastic unconstrained variational inequality problem (VIP)

find z* € R? such that F(2*) =0
F(z) = E[Fe(z)

® Information about the problem is available through the stochastic oracle calls F¢(x)
® Examples include stochastic/finite-sum min-max and minimization problems

Assumptions: all conditions are required only on some ball around the solution, i.e.,
forall x,y € B.(x*), where B.(x*) = {x e R* | ||lx —x*|| <r}andr ~ Ry = |[x° — x*||

® Bounded variance / heavy (non-sub-Gaussian) tails

|Fe(x) - F(2)])*

We consider 6 different classes of problems (4 of them allow non-monotone
problems). Each class is defined by 1-2 of the conditions below.

|F(z) — F(y)|| < Lz — yl|
(F(z) = F(y),z —y) >0

® Lipschitzness (Lip)

® Monotonicity (Mon)

Star-Negative Comonotonicity (SNC)
(F(x),x —a) > —p|[F(2)|[*, p € [0, +o0)
When p = 0 the operator is called Star-Monotone (SM)

® Quasi-Strong Monotonicity (QSM)

* % (|2
(F(z),z —2%) > pllz — 27|

, =0

® Star-Cocoercivity (SC)

||F(a:‘)||2 < {F(z),z —x7)

(Mon) > (SNO)
ﬂ / |
(QSM) == (5C)

Relation between the assumptions on the structured non-monotonicity of the problem

P{Metric <e} >1—-7

® Possible metrics: Gapg(x) = maxyep,x(F), x — ), IFCOII%, lIx — x*||?
® Sensitive to the noise distrib. > more accurately describe the methods’ behavior

High-probability guarantees:
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2. Our Contributions

New high-probability results for variational inequalities with heavy-tailed noise
v’ Allow heavy-tailed noise v’ Unconstrained problem
Tight analysis

\/Logarithmic dependence on 1/f \/Optimal (up to logarithms) results

4 Improvement upon previous best-known result under the light-tails assumption
Weak assumptions

v Key ingredient: we prove that the
considered algorithms do not leave
this ball with high-probability

v Al assumptions are made just
on a ball around the solution

Numerical experiments

v Showed that gradient clipping
significantly improves the results

4 Empirically observed heavy-
tailed noise in GANSs training

3. Clipped SEG and SGDA

We consider standard Stochastic Extragradient (SEG) and Stochastic Gradient
Descent-Ascent (SGDA) with clipping of the update vectors

Clipped Stochastic Extragradient (clipped-SEG)

extrapolation step:

update step:

55k = ;Ck — VY1 - Clip (ngc (:Ek) ,)\1’]@)

T = 2% — 5 - clip (FE’S (Ek) ,)\2,;{)

Clipped Stochastic Gradient Descent-Ascent (clipped-SGDA)

u

el = b — v - clip (ng (a:k) ,)\k)

Clipping operator: clip(x,1) = min {1 ﬂ}x' A — clipping level

Clipping levels are properly chosen: effect of heavy-tailed noise is reduced, while
the bias is not too large

clipped-SEG: ¢, i, ¢, are L1.d. samples independent from prev. steps, y, < y;

clipped-SGDA: &, is independent from previous steps

pdate step:

Summary of the Complexity Results

Setup Method Metric Complexity HT? UD?

Mirror-Prox 1.D2 52p2

(Mompi(Lip) |  Duditsky etal, 2011a] Gapp (avg) max { L=, o=} X X
. 2 2 p2

clipped-SEG GapR(a:avg) max { LE- ‘785{ } v v

(SNC)+(Lip) clipped-SEG K+1 kZO |F(z*)||> L2 max R: | 02612%2 } v v

(QSM)+(Lip) clipped-SEG 2K — &2 max { L o= / v/

(Mon)+(5C) clipped-SGDA Gap R(:cavg max { LB o R } v /

(SC) clipped-SGDA : S IEGE) 2 6 max iy 0252 } v/ /

k=0 c
(QSM)+(SC) clipped-SGDA HacK — x| max { o ME v v

® Logarithmic factors of 1/ and 1/, are omitted ® HT? = Heavy-Tailed noise?

® UD? = Unbounded domain?
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4. Numerical Experiments

Training WGAN-GP on CIFAR10
1. WGAN-GP on CIFAR10 has heavy-tailed gradients

L2 it ® » . relative fraction of mass after
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0.2 We compute the mass here o

00 per. relative fraction of mass after
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® For normal distr.: ~ 10~%9% of the mass
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2. Clipping helps for WGAN-GP on CIFAR10
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® Clipping improves the results both in terms of 100 “

the quality of the generated images and 50
Frechet inception distance (FID)

® Methods without clipping diverge for most of
the tested hyperparameters
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Training StyleGAN2 on FFHQ

1. StyleGAN2 on FFHQ has heavy-tailed 2. Clipping helps for StyleGANZ2 on
gradients FFHQ
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(b) clipped-SGDA

(a) Initialization

(c) SGDA (d) clipped-SGDA

Still not matching Adam (on this GAN)
® StyleGAN2 is full of tricks and heuristics
It has been tuned for Adam
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