Communication Compression for Byzantine Robust Learning:

New Efficient Algorithms and Improved Rates

Ahmad Rammal $^{1, 2}$ Kaja Gruntkowska 1 Nikita Fedin 3 Eduard Gorbunov 4 Peter Richtárik 1 ¹KAUST ²École Polytechnique ³MIPT ⁴MBZUAI

The Problem

Nonconvex distributed optimization problem:

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) = \frac{1}{G} \sum_{i \in \mathcal{G}} f_i(x) \right\}$$

$$f_i(x) = \frac{1}{m} \sum_{j=1}^m f_{i,j}(x)$$

- \mathcal{G} is the set of good/regular/non-Byzantineclients, $|\mathcal{G}| = G$
- \mathcal{B} is the set of bad/malicious/Byzantineclients
- $\bullet \mathcal{G} \sqcup \mathcal{B} = [n]$, where n is the total number of clients
- $f_i(x)$ loss of the model x on the data stored on worker i
- $f_{i,j}(x)$ loss on the j-th example from the local dataset of worker i

Goal: find \hat{x} such that $\mathbb{E}[\|\nabla f(\hat{x})\|^2] \leq \varepsilon^2$

Compressed learning

Unbiased compressor

 $\mathbb{E}\left[\mathcal{Q}(x)\right] = x, \ \mathbb{E}\left[\|\mathcal{Q}(x)\|^2\right] \le \omega \|x\|^2$

Example: Rand- $K \in \mathbb{U}(d/K)$:

$$Q(x) := \frac{d}{K} \sum_{i \in S} x_i e_i$$

Contractive compressor

$$\mathbb{E}\left[\|\mathcal{C}(x) - x\|^2\right] \le (1 - \alpha)\|x\|^2$$

Example: Top- $K \in \mathbb{B}(K/d)$:

$$C(x) := \sum_{i=d-K+1}^{d} x_{(i)} e_{(i)}$$

Assumptions

L-smoothness: The function $f: \mathbb{R}^d \to \mathbb{R}$ is L-smooth, i.e.,

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

for any $x, y \in \mathbb{R}^d$. Moreover, $f_* =$ $\inf_{x \in \mathbb{R}^d} f(x) > -\infty.$

Global Hessian variance [1]: There exists $L_{+} \geq 0$ such that for all $x, y \in \mathbb{R}^{d}$

$$\frac{1}{G} \sum_{i \in \mathcal{G}} \|\nabla f_i(x) - \nabla f_i(y)\|^2 - \|\nabla f(x) - \nabla f(y)\|^2 \\
\leq L_+^2 \|x - y\|^2.$$

Local Hessian variance [2]: There exists $\mathcal{L}_{\pm} \geq 0$ such that for all $x, y \in \mathbb{R}^d$ the unbiased mini-batched estimator $\Delta_i(x,y)$ of $\Delta_i(x,y) =$ $\nabla f_i(x) - \nabla f_i(y)$ with batch size b satisfies

$$\frac{1}{G} \sum_{i \in \mathcal{G}} \mathbb{E} \left[\| \widehat{\Delta}_i(x, y) - \Delta_i(x, y) \|^2 \right] \le \frac{\mathcal{L}_{\pm}^2}{b} \|x - y\|^2.$$

 (B, ζ^2) -heterogeneity [2]: There exist $B, \zeta \geq 0$ such that for all $x \in \mathbb{R}^d$

$$\frac{1}{G} \sum_{i=1}^{G} \|\nabla f_i(x) - \nabla f(x)\|^2 \le B \|\nabla f(x)\|^2 + \zeta^2.$$

Main contributions

- ♦ **Improved complexity bounds:** Two new Byzantine-robust methods with *unbiased* compression: Byz-VR-MARINA 2.0 and Byz-DASHA-PAGE, outperforming the previous SOTA Byz-VR-MARINA by factors of $\sqrt{\max\{\omega, m/b\}}$ and $\sqrt{\max\{\omega^3, m^2\omega/b^2\}}$ in the leading term.
- ♦ Smaller size of the neighborhood: Byz-VR-MARINA 2.0 and Byz-DASHA-PAGE converge to a smaller neighborhood of the solution than their competitors. When B =0, we prove that $\mathbb{E}[\|\nabla f(x)\|^2] = \mathcal{O}(c\delta)$, matching the lower bound [3] and improving on $\mathbb{E}[\|\nabla f(x)\|^2] = \mathcal{O}(c\delta/p)$ of Byz-VR-MARINA.
- \diamond Higher tolerance to Byzantine workers: When B > 0, our results guarantee convergence in the presence of 1/p times more Byzantine workers than in the case of Byz-VR-MARINA.
- ♦ The first Byzantine-robust methods with EF: Two new Byzantine-robust methods employing any contractive compressors – Byz-EF21 and Byz-EF21-BC. Additionally, Byz-EF21-BC is the first provably Byzantine-robust algorithm using bidirectional compression.

Table: Summary of the complexity bounds in the general non-convex case. Columns: "Rounds" = the number of communication rounds required to find x such that $\mathbb{E}[\|\nabla f(x)\|^2] \le \varepsilon^2$; " $\varepsilon \le "$ = the lower bound for the best achievable accuracy ε ; " $\delta <$ " = the maximal ratio of Byzantine workers that the method can provably tolerate.

Method	Rounds	$\varepsilon \leq$	$\delta <$
Byz-VR-MARINA ⁽¹⁾ [2]	$\frac{1}{\varepsilon^2} \left(1 + \sqrt{\max\{\omega^2, \frac{m\omega}{b}\}} \left(\sqrt{\frac{1}{G}} + \sqrt{c\delta \max\{\omega, \frac{m}{b}\}} \right) \right)$	$\frac{c\delta\zeta^2}{p-c\delta B}$	$\frac{p}{cB}$
Byz-VR-MARINA 2.0 (1)	$\frac{1}{\varepsilon^2} \left(1 + \sqrt{\max\{\omega^2, \frac{m\omega}{b}\}} \left(\sqrt{\frac{1}{G}} + \sqrt{c\delta} \right) \right)$	$\frac{c\delta\zeta^2}{1-c\delta B}$	$\frac{1}{(c+\sqrt{c})B}$
Byz-DASHA-PAGE (1)	$\frac{1}{\varepsilon^2} \left(1 + \left(\omega + \frac{\sqrt{m}}{b} \right) \left(\sqrt{\frac{1}{G}} + \sqrt{c\delta} \right) \right)$	$\frac{c\delta\zeta^2}{1-c\delta B}$	$\frac{1}{(c+\sqrt{c})B}$
Byz-EF21 ⁽²⁾	$\frac{1+\sqrt{c\delta}}{\alpha_D \varepsilon^2}$	$\frac{(c\delta + \sqrt{c\delta})\zeta^2}{1 - B(c\delta + \sqrt{c\delta})}$	$\frac{1}{c(B+B^2)}$
Byz-EF21-BC (2)	$\frac{1+\sqrt{c\delta}}{\alpha_D\alpha_P\varepsilon^2}$	$\frac{(c\delta + \sqrt{c\delta})\zeta^2}{1 - B(c\delta + \sqrt{c\delta})}$	$\frac{1}{c(B+B^2)}$
(1) Γ			

(1) For Byz-VR-MARINA (2.0), $p = \min\{1/\omega, b/m\}$; for Byz-DASHA-PAGE p = b/m.

(2) These methods use (biased) contractive compression and compute full gradients on regular workers.

Algorithms

Byz-VR-MARINA 2.0

Input: starting point $x_0 \in \mathbb{R}^d$, stepsize $\gamma > 0$, probability $p \in (0,1]$, number of iterations $T \geq 1$, unbiased compressors $\{\mathcal{Q}_i\}_{i\in\mathcal{G}}$

2: **for**
$$t=0,1,\ldots,T-1$$
 do
3: Sample $c^{t+1}\sim Bernoulli(p)$
4: Broadcast g^t to all nodes
5: **for** $i\in\mathcal{G}$ in parallel **do**
6: $x^{t+1}=x^t-\gamma g^t$
7: **if** $c^{t+1}=1$ **then**
8: $g_i^{t+1}=\nabla f_i(x^{t+1})$
9: Send $\nabla f_i(x^{t+1})$ to the server.
10: **else**
11: $m_i^{t+1}=\mathcal{Q}_i(\widehat{\Delta}_i(x^{t+1},x^t))$
12: $g_i^{t+1}=\frac{g_i^t}{i}+m_i^{t+1}$
13: Send m_i^{t+1} to the server
14: **end if**
15: **end for**
16: $g^{t+1}=\mathsf{ARAgg}\left(g_1^{t+1},\ldots,g_n^{t+1}\right)$
17: **end for**

Byz-EF21

- **Input:** starting point $x^0 \in \mathbb{R}^d$, stepsize $\gamma > 0$, number of iterations $T \geq 1$, biased compressors $\{C_i\}_{i\in\mathcal{G}}$
- 2: **for** $t = 0, 1, \dots, T 1$ **do** 3: $x^{t+1} = x^t - \gamma q^t$
- Broadcast x^{t+1} to all workers
- for $i \in \mathcal{G}$ in parallel do

6:
$$c_i^t = \mathcal{C}_i(\nabla f_i(x^{t+1}) - g_i^t)$$

7: $g_i^{t+1} = g_i^t + c_i^t$
8: Send message c_i^t to the server

- end for $g^{t+1} = \mathtt{ARAgg}(g_1^{t+1}, \dots, g_n^{t+1})$
- 11: end for

Byz-DASHA-PAGE

1: **Input:** starting point $x^0 \in \mathbb{R}^d$, stepsize $\gamma > 0$, momentum $a \in (0,1]$, probability $p \in (0,1]$, number of iterations $T \geq 1$, unbiased compressors $\{Q_i\}_{i \in \mathcal{G}}$

2: **for** $t = 0, 1, \dots, T - 1$ **do** Sample $c^{t+1} \sim Bernoulli(p)$ Broadcast g^t to all nodes for $i \in \mathcal{G}$ in parallel do $x^{t+1} = x^t - \gamma q^t$ if $c^{t+1}=1$ then $h_i^{t+1} = \nabla f_i(x^{t+1})$ else $h_i^{t+1} = h_i^t + \widehat{\Delta}_i(x^{t+1}, x^t)$ end if $m_i^{t+1} = \mathcal{Q}_i(h_i^{t+1} - h_i^t - a(g_i^t - h_i^t))$ $g_i^{t+1} = g_i^t + m_i^{t+1}$ Send m_i^{t+1} to the server end for

Byz-EF21-BC

 $g^{t+1} = \mathsf{ARAgg}(g_1^{t+1}, \dots, g_n^{t+1})$

- **Input:** starting point $x^0 \in \mathbb{R}^d$, stepsize $\gamma > 0$, number of iterations $T \geq 1$, biased compressors $\{\mathcal{C}_i^D\}_{i\in\mathcal{G}}$, \mathcal{C}^P
- 2: **for** $t = 0, 1, \dots, T 1$ **do** $x^{t+1} = x^t - \gamma q^t$

17: end for

- $s^{t+1} = \mathcal{C}^P (x^{t+1} w^t)$ $w^{t+1} = w^t + s^{t+1}$
- Broadcast s^{t+1} to all workers for $i \in \mathcal{G}$ in parallel do
- $w^{t+1} = w^t + s^{t+1}$ $c_i^t = \mathcal{C}_i^D(\nabla f_i(w^{t+1}) - g_i^t)$ $g_i^{t+1} = g_i^t + c_i^t$
- Send message c_i^t to the server end for
- $g^{t+1} = \mathsf{ARAgg}(g_1^{t+1}, \dots, g_n^{t+1})$
- 14: end for

Robust Aggregation

(δ, c) -Robust Aggregator [2]

Assume that $\{x_1, \ldots, x_n\}$ is such that there exists a subset $\mathcal{G}\subseteq [n]$ of size $|\mathcal{G}|=G\geq$ $(1 - \delta)n$ with $\delta < 0.5$, and $\sigma \ge 0$ such that $\frac{1}{G(G-1)} \sum_{i,l \in \mathcal{G}} \mathbb{E}[\|x_i - x_l\|^2] \leq \sigma^2$. Then \widehat{x} is a (δ, c) -Robust Aggregator $(\widehat{x} =$ $\mathsf{RAgg}(x_1,\ldots,x_n))$ if

$$\mathbb{E}\left[\|\widehat{x} - \overline{x}\|^2\right] \le c\delta\sigma^2$$

for some c > 0, where $\overline{x} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} x_i$. If additionally \hat{x} is computed without the knowledge of σ^2 , then \widehat{x} is a (δ, c) -Agnostic Robust Aggregator $((\delta,c) ext{-ARAgg}) \ (\widehat{x}= ext{ARAgg}(x_1,\ldots,x_n)).$

Examples:

$$[exttt{CM}(x_1,\ldots,x_n)]_j:= exttt{Median}([x_1]_j,\ldots,[x_n]_j)$$
 $exttt{GM}(x_1,\ldots,x_n):=rg\min_{x\in\mathbb{R}^d}\sum_{i=1}^n\lVert x-x_i
Vert$ $exttt{Krum}(x_1,\ldots,x_n):=rg\min_{x_i\in\{x_1,\ldots,x_n\}}\sum_{j\in S_i}\lVert x_j-x_i
Vert^2$

+ Bucketing [3]

- 1: Input: $\{x_1,\ldots,x_n\}$, bucket size $s\in\mathbb{N}$, aggregation rule Aggr
- 2: Sample a random permutation $\pi = (\pi(1), \dots, \pi(n))$ of [n]3: Set $y_i = \frac{1}{s} \sum_{k=s(i-1)+1}^{\min\{si,n\}} x_{\pi(k)}$ for $i = 1, \dots, \lceil n/s \rceil$
- 4: **Return:** $\hat{x} = \operatorname{Aggr}(y_1, \dots, y_{\lceil n/s \rceil})$

Variance reduction = less space to hide in the noise

Experiments

Figure: Logistic regression problem with non-convex regularizer in the homogeneous setting.

Figure: Logistic regression problem with non-convex regularizer in the heterogeneous setting.

- ♦ Bit Flipping (BF): flip the sign of the updates.
- \diamond Label Flipping (LF): change labels: $y_{i,j} \mapsto -y_{i,j}$. ♦ A Little Is Enough (ALIE): estimate the mean $\mu_{\mathcal{G}}$ and standard deviation $\sigma_{\mathcal{G}}$ of the regular updates and send $\mu_{\mathcal{G}} - z\sigma_{\mathcal{G}}$.
- ♦ Inner Product Manipulation (IPM): send $-\frac{z}{G}\sum_{i\in\mathcal{G}}\nabla f_i(x)$.

References

- [1] R. Szlendak, A. Tyurin, and P. Richtárik. Permutation compressors for provably faster distributed nonconvex op-
- timization. arXiv preprint arXiv:2110.03300, 2021. [2] E. Gorbunov, S. Horváth, P. Richtárik, and G. Gidel. Variance reduction is an antidote to byzantines: Better rates,
- weaker assumptions and communication compression as a cherry on the top. International Conference on Learning Representations, 2023.
- [3] S. P. Karimireddy, L. He, and M. Jaggi. Byzantine-robust learning on heterogeneous datasets via bucketing. International Conference on Learning Representations, 2022.

