Accelerated Directional Search with non－euclidean prox－structure

Eduard Gorbunov

Moscow Institute of Physics and Technology
27 October， 2017

Consider the problem

$$
\begin{equation*}
f(x) \rightarrow \min _{\mathbb{R}^{n}}, \tag{1}
\end{equation*}
$$

where $f(x)$ is convex and L-smooth with respect to $\|\cdot\|_{2}$ on \mathbb{R}^{n}, that is, for every $x, y \in \mathbb{R}^{n}$ it satisfies

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leqslant L\|x-y\|_{2}
$$

Designations

Let $e \in R S_{2}^{n}(1)$, where $R S_{2}^{n}(1)$ is uniform distribution of vectors on n-dimensional Euclidean sphere. Instead of using $\nabla f(x)$ we will use its stochastic approximation $n\langle\nabla f(x), e\rangle e$. One can easily show that $\mathbb{E}_{e}[n\langle\nabla f(x), e\rangle e]=\nabla f(x)$.

Designations

Consider $d: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (and call it prox-function or distance generating function) which is 1 -strongly convex with respect to norm $\|\cdot\|_{p}(1 \leqslant p \leqslant 2)$, for example, $d(x)=\frac{1}{2(a-1)}\|x\|_{a}^{2}$, where $a=\frac{2 \log n}{2 \log n-1}$, for the case $p=1$. The Bregman divergence is given as

$$
\begin{equation*}
V_{z}(y) \stackrel{\text { def }}{=} d(y)-d(z)-\langle\nabla d(z), y-z\rangle \tag{2}
\end{equation*}
$$

Let $V_{x_{0}}\left(x^{*}\right)=\Theta$, where x_{0} is some initial point and x^{*} is the minimizer of $f(x)$.

Designations

Let

$$
\begin{equation*}
\operatorname{Grad}_{e}(x)=x-\frac{1}{L}\langle\nabla f(x), e\rangle e \tag{3}
\end{equation*}
$$

which corresponds the gradient descent step with respect to 2-norm, and

$$
\begin{equation*}
\operatorname{Mirr}_{e}(x, z, \alpha)=\underset{y \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\alpha\langle n\langle\nabla f(x), e\rangle e, y-z\rangle+V_{z}(y)\right\}, \tag{4}
\end{equation*}
$$

which corresponds the mirror descent step with respect to 1-norm.

Algorithm 1 ACDS

Require: f - convex and L-smooth with respect to $\|\cdot\|_{2}$ on \mathbb{R}^{n};
x_{0} - some initial point; N - the number of iterations.
Ensure: y_{N} such that $\mathbb{E}_{e_{1}, e_{2}, \ldots, e_{N}}\left[f\left(y_{N}\right)\right]-f\left(x^{*}\right) \leqslant \frac{4 \Theta L C_{n, p}}{N^{2}}$.
1: $y_{0} \leftarrow x_{0}, z_{0} \leftarrow x_{0}$
2: for $k=0, \ldots, N-1$ do
3: $\quad \alpha_{k+1} \leftarrow \frac{k+2}{2 L C_{n, p}}, \tau_{k} \leftarrow \frac{1}{\alpha_{k+1} L C_{n, p}}=\frac{2}{k+2}$
4: \quad Generate $e_{k+1} \in R S_{2}^{n}(1)$ independently of previous iterations
5: $\quad x_{k+1} \leftarrow \tau_{k} z_{k}+\left(1-\tau_{k}\right) y_{k}$
6: $\quad y_{k+1} \leftarrow \operatorname{Grad}_{e_{k+1}}\left(x_{k+1}\right)$
7: $\quad z_{k+1} \leftarrow \operatorname{Mirr}_{e_{k+1}}\left(x_{k+1}, z_{k}, \alpha_{k+1}\right)$
8: end for
9: return y_{N}

Convergence rate

Theorem

Let $f(x)$ is convex and L-smooth with respect to $\|\cdot\|_{2}$ on $\mathbb{R}^{n}, d(x)$ is 1 -strongly convex with respect to norm $\|\cdot\|_{p}(1 \leqslant p \leqslant 2), N$ is the number of iterations. Then ACDS outputs y_{N} satisfying

$$
\begin{equation*}
\mathbb{E}_{e_{1}, e_{2}, \ldots, e_{N}}\left[f\left(y_{N}\right)\right]-f\left(x^{*}\right) \leqslant \frac{4 \Theta L C_{n, p}}{N^{2}}, \tag{5}
\end{equation*}
$$

where $\Theta=V_{x_{0}}\left(x^{*}\right), C_{n, p}=\frac{4}{3} \min \{q-1,4 \ln n\} \cdot n^{\frac{2}{q}+1}, \frac{1}{q}+\frac{1}{p}=1$.

Remark

Consider two special cases: $p=2$ and $p=1$. In the first situation ($p=2$) one can obtain $C_{n, p}=n^{2}$ (without factor $\frac{4}{3}$). In the case when $p=1$ we have $C_{n, p}=\frac{16}{3} n \ln n$.

Proof of this theorem one can find in arXiv preprint 1710.00162 (in Russian).

Assume that we want to obtain such y that $f(y)-f\left(x^{*}\right) \leqslant 2 \varepsilon$. In this case we could choose $N=\left\lceil\sqrt{\frac{4 \Theta L C_{n, p}}{\varepsilon}}\right\rceil$ to guarantee $\mathbb{E}_{e_{1}, e_{2}, \ldots, e_{N}}\left[f\left(y_{N}\right)\right]-f\left(x^{*}\right) \leqslant \varepsilon \Leftrightarrow \mathbb{E}_{e_{1}, e_{2}, \ldots, e_{N}}\left[f\left(y_{N}\right)-f\left(x^{*}\right)\right] \leqslant \varepsilon$. By Markov's inequality

$$
\begin{equation*}
\mathbb{P}\left\{f\left(y_{N}\right)-f\left(x^{*}\right) \geqslant 2 \varepsilon\right\} \leqslant \frac{\varepsilon}{2 \varepsilon}=\frac{1}{2} \tag{6}
\end{equation*}
$$

It means that if we run $m=\left\lceil\log _{2}\left(\sigma^{-1}\right)\right\rceil$ independent realizations (trajectories) of ACDS we will obtain such $y_{N}^{1}, y_{N}^{2}, \ldots, y_{N}^{m}$ that

$$
\begin{equation*}
\mathbb{P}\left\{\min _{i=1, m} f\left(y_{N}^{i}\right)-f\left(x^{*}\right) \geqslant 2 \varepsilon\right\} \leqslant\left(\frac{1}{2}\right)^{m} \leqslant \sigma \tag{7}
\end{equation*}
$$

So with probability $1-\sigma$ minimum among the values $f\left(y_{N}^{1}\right), f\left(y_{N}^{2}\right), \ldots, f\left(y_{N}^{m}\right)$ will satisfy required accuracy.

In 2014 Z. Allen-Zhu and L. Orrechia proposed accelerated method based on the idea of coupling gradient and mirror descents. Their method uses gradient (no stochastic approximations) and after N iterations outputs y_{N} satisfying

$$
\begin{equation*}
f\left(y_{N}\right)-f\left(x^{*}\right) \leqslant \frac{4 \Theta L}{N^{2}} . \tag{8}
\end{equation*}
$$

In the case when $p=1$ our method needs approximately $\frac{n}{\ln n}$ times less arithmetical operations under the assumption that $f(x)$ is defined by black-box model and its gradient is restored by $n+1$ values of $f(x)$.

