Accelerated Directional Search with non-euclidean prox-structure

Eduard Gorbunov

Moscow Institute of Physics and Technology

27 October, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider the problem

٠

$$f(x) \rightarrow \min_{\mathbb{R}^n},$$
 (1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where f(x) is convex and L-smooth with respect to $|| \cdot ||_2$ on \mathbb{R}^n , that is, for every $x, y \in \mathbb{R}^n$ it satisfies

$$||\nabla f(x) - \nabla f(y)||_2 \leq L||x - y||_2$$

Let $e \in RS_2^n(1)$, where $RS_2^n(1)$ is uniform distribution of vectors on n-dimensional Euclidean sphere. Instead of using $\nabla f(x)$ we will use its stochastic approximation $n\langle \nabla f(x), e \rangle e$. One can easily show that $\mathbb{E}_e[n\langle \nabla f(x), e \rangle e] = \nabla f(x)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Consider $d : \mathbb{R}^n \to \mathbb{R}$ (and call it *prox-function* or *distance* generating function) which is 1-strongly convex with respect to norm $|| \cdot ||_p$ ($1 \le p \le 2$), for example, $d(x) = \frac{1}{2(a-1)} ||x||_a^2$, where $a = \frac{2 \log n}{2 \log n - 1}$, for the case p = 1. The Bregman divergence is given as

$$V_z(y) \stackrel{\text{def}}{=} d(y) - d(z) - \langle \nabla d(z), y - z \rangle.$$
(2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $V_{x_0}(x^*) = \Theta$, where x_0 is some initial point and x^* is the minimizer of f(x).

Let

$$\operatorname{Grad}_{e}(x) = x - \frac{1}{L} \left\langle \nabla f(x), e \right\rangle e, \qquad (3)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

which corresponds the gradient descent step with respect to 2-norm, and

$$\operatorname{Mirr}_{e}(x, z, \alpha) = \operatorname{argmin}_{y \in \mathbb{R}^{n}} \left\{ \alpha \left\langle n \left\langle \nabla f(x), e \right\rangle e, y - z \right\rangle + V_{z}(y) \right\},$$
(4)

which corresponds the mirror descent step with respect to 1-norm.

Algorithm 1 ACDS

Require: f — convex and L-smooth with respect to $|| \cdot ||_2$ on \mathbb{R}^n ; x_0 — some initial point; N — the number of iterations. **Ensure:** y_N such that $\mathbb{E}_{e_1,e_2,\ldots,e_N}[f(y_N)] - f(x^*) \leqslant \frac{4\Theta LC_{n,p}}{N^2}$. 1: $y_0 \leftarrow x_0, z_0 \leftarrow x_0$ 2: for k = 0, ..., N - 1 do $\alpha_{k+1} \leftarrow \frac{k+2}{2LC_{n}}, \ \tau_k \leftarrow \frac{1}{\alpha_{k+1}/C_{n}} = \frac{2}{k+2}$ 3: 4: Generate $e_{k+1} \in RS_2^n(1)$ independently of previous iterations 5: $x_{k+1} \leftarrow \tau_k z_k + (1 - \tau_k) y_k$ 6: $y_{k+1} \leftarrow \operatorname{Grad}_{e_{k+1}}(x_{k+1})$ $z_{k+1} \leftarrow \mathsf{Mirr}_{e_{k+1}}(x_{k+1}, z_k, \alpha_{k+1})$ 7: 8: end for 9: return y_N

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Theorem

Let f(x) is convex and L-smooth with respect to $||\cdot||_2$ on \mathbb{R}^n , d(x) is 1-strongly convex with respect to norm $||\cdot||_p$ ($1 \le p \le 2$), N is the number of iterations. Then ACDS outputs y_N satisfying

$$\mathbb{E}_{e_1,e_2,\ldots,e_N}[f(y_N)] - f(x^*) \leqslant \frac{4\Theta LC_{n,p}}{N^2},\tag{5}$$

where
$$\Theta = V_{x_0}(x^*)$$
, $C_{n,p} = \frac{4}{3} \min \{q - 1, 4 \ln n\} \cdot n^{\frac{2}{q}+1}, \frac{1}{q} + \frac{1}{p} = 1.$

Remark

Consider two special cases: p = 2 and p = 1. In the first situation (p = 2) one can obtain $C_{n,p} = n^2$ (without factor $\frac{4}{3}$). In the case when p = 1 we have $C_{n,p} = \frac{16}{3}n \ln n$.

Proof of this theorem one can find in arXiv preprint 1710.00162 (in Russian).

Parallel trajectories

Assume that we want to obtain such y that $f(y) - f(x^*) \leq 2\varepsilon$. In this case we could choose $N = \lceil \sqrt{\frac{4\Theta LC_{n,p}}{\varepsilon}} \rceil$ to guarantee $\mathbb{E}_{e_1,e_2,\ldots,e_N}[f(y_N)] - f(x^*) \leq \varepsilon \Leftrightarrow \mathbb{E}_{e_1,e_2,\ldots,e_N}[f(y_N) - f(x^*)] \leq \varepsilon$. By Markov's inequality

$$\mathbb{P}\{f(y_N) - f(x^*) \ge 2\varepsilon\} \leqslant \frac{\varepsilon}{2\varepsilon} = \frac{1}{2}.$$
 (6)

It means that if we run $m = \lceil \log_2(\sigma^{-1}) \rceil$ independent realizations (trajectories) of ACDS we will obtain such $y_N^1, y_N^2, \ldots, y_N^m$ that

$$\mathbb{P}\{\min_{i=\overline{1,m}}f(y_N^i)-f(x^*) \ge 2\varepsilon\} \leqslant \left(\frac{1}{2}\right)^m \leqslant \sigma.$$
(7)

So with probability $1 - \sigma$ minimum among the values $f(y_N^1), f(y_N^2), \ldots, f(y_N^m)$ will satisfy required accuracy.

In 2014 Z. Allen-Zhu and L. Orrechia proposed accelerated method based on the idea of coupling gradient and mirror descents. Their method uses gradient (no stochastic approximations) and after N iterations outputs y_N satisfying

$$f(y_N) - f(x^*) \leqslant \frac{4\Theta L}{N^2}.$$
(8)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

In the case when p = 1 our method needs approximately $\frac{n}{\ln n}$ times less arithmetical operations under the assumption that f(x) is defined by black-box model and its gradient is restored by n + 1 values of f(x).