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Formulation of the problem

Consider the problem
f (x) → min

Rn
, (1)

where f(x) is convex and L-smooth with respect to || · ||2 on Rn,
that is, for every x , y ∈ Rn it satisfies

||∇f (x)−∇f (y)||2 6 L||x − y ||2

.



Designations

Let e ∈ RSn
2 (1), where RSn

2 (1) is uniform distribution of vectors on
n-dimensional Euclidean sphere. Instead of using ∇f (x) we will use
its stochastic approximation n⟨∇f (x), e⟩e. One can easily show
that Ee [n⟨∇f (x), e⟩e] = ∇f (x).



Designations

Consider d : Rn → R (and call it prox-function or distance
generating function) which is 1-strongly convex with respect to
norm || · ||p (1 6 p 6 2), for example, d(x) = 1

2(a−1) ||x ||
2
a, where

a = 2 log n
2 log n−1 , for the case p = 1. The Bregman divergence is given

as
Vz(y)

def
= d(y)− d(z)− ⟨∇d(z), y − z⟩. (2)

Let Vx0(x*) = Θ, where x0 is some initial point and x* is the
minimizer of f (x).



Designations

Let
Grade (x) = x − 1

L
⟨∇f (x) , e⟩ e, (3)

which corresponds the gradient descent step with respect to
2-norm, and

Mirre (x , z , 𝛼) = argmin
y∈Rn

{𝛼 ⟨n ⟨∇f (x) , e⟩ e, y − z⟩+ Vz (y)} ,

(4)
which corresponds the mirror descent step with respect to 1-norm.



Method

Algorithm 1 ACDS

Require: f — convex and L-smooth with respect to || · ||2 on Rn;
x0 — some initial point; N — the number of iterations.

Ensure: yN such that Ee1,e2,...,eN [f (yN)]− f (x*) 6 4ΘLCn,p

N2 ·.
1: y0 ← x0, z0 ← x0
2: for k = 0, . . . , N − 1 do
3: 𝛼k+1 ← k+2

2LCn,p
, 𝜏k ← 1

𝛼k+1LCn,p
= 2

k+2
4: Generate ek+1 ∈ RSn

2 (1) independently of previous iterations
5: xk+1 ← 𝜏kzk + (1− 𝜏k)yk
6: yk+1 ← Gradek+1(xk+1)
7: zk+1 ← Mirrek+1(xk+1, zk , 𝛼k+1)
8: end for
9: return yN



Convergence rate

Theorem

Let f (x) is convex and L-smooth with respect to || · ||2 on Rn, d(x)
is 1-strongly convex with respect to norm || · ||p (1 6 p 6 2), N is
the number of iterations. Then ACDS outputs yN satisfying

Ee1,e2,...,eN [f (yN)]− f (x*) 6
4ΘLCn,p

N2 , (5)

where Θ = Vx0(x*), Cn,p = 4
3 min {q − 1, 4 ln n} · n

2
q
+1

, 1
q + 1

p = 1.

Remark
Consider two special cases: p = 2 and p = 1. In the first situation
(p = 2) one can obtain Cn,p = n2 (without factor 4

3). In the case
when p = 1 we have Cn,p = 16

3 n ln n.

Proof of this theorem one can find in arXiv preprint 1710.00162 (in
Russian).



Parallel trajectories

Assume that we want to obtain such y that f (y)− f (x*) 6 2𝜀. In

this case we could choose N = ⌈
√︁

4ΘLCn,p

𝜀 ⌉ to guarantee
Ee1,e2,...,eN [f (yN)]− f (x*) 6 𝜀 ⇔ Ee1,e2,...,eN [f (yN)− f (x*)] 6 𝜀.
By Markov’s inequality

P{f (yN)− f (x*) > 2𝜀} 6 𝜀

2𝜀
=

1
2
. (6)

It means that if we run m = ⌈log2(𝜎−1)⌉ independent realizations
(trajectories) of ACDS we will obtain such y1

N , y
2
N , . . . , y

m
N that

P{ min
i=1,m

f (y iN)− f (x*) > 2𝜀} 6
(︂
1
2

)︂m

6 𝜎. (7)

So with probability 1− 𝜎 minimum among the values
f (y1

N), f (y2
N), . . . , f (ymN ) will satisfy required accuracy.



Discussion

In 2014 Z. Allen-Zhu and L. Orrechia proposed accelerated method
based on the idea of coupling gradient and mirror descents. Their
method uses gradient (no stochastic approximations) and after N
iterations outputs yN satisfying

f (yN)− f (x*) 6
4ΘL

N2 . (8)

In the case when p = 1 our method needs approximately n
ln n times

less arithmetical operations under the assumption that f (x) is
defined by black-box model and its gradient is restored by n + 1
values of f (x).


